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A EVENTS GENERATION498

The event stream E consists of a set of event e “ px, y, t, pq, where each event is triggered and499

recorded when the brightness change at pixel px, yq exceeds a certain threshold C. The time interval500

between events is denoted as ∆te, which is a short period, and the brightness at position x “ px, yq501

is represented as F px, tq. The brightness change can be calculated as ∆b “ logpF px, teqq ´502

logpF px, te ´ ∆teqq. The output signal p is determined by Eq. 8.503

p “

#

1, ∆b ą C
0, others

´1, ∆b ă ´C
(8)

B THE ENCODING NETWORK STRUCTURE504

The encoder serves as the core component of our architecture, drawing inspiration from eSL-505

Net(Wang et al., 2020). However, we have made modifications to its structure by excluding the506

decoding segment responsible for upsampling. Consequently, we retain solely the feature extraction507

module, as illustrated in Fig. 11, and the code of the encoder is shown in Code (Listing. 1).508

The encoder receives inputs, rolling shutter blur image Irsb, and events E. The image Irsb has the509

shape of H ˆ W ˆ 1 or H ˆ W ˆ 3, corresponding to grayscale and RGB image, respectively.510

Moreover, the event E is transformed into count images (Zheng et al., 2023), with the shape of511

H ˆ W ˆ M , where M denotes the number of temporal divisions within the event stream. The512

encoder produces a high-dimensional tensor as output θ, with the shape of H ˆ W ˆ C.513

The encoder can be decomposed into two constituent components: data preprocessing and spatio-514

temporal information modeling. During the preprocessing stage, the image undergoes a convolution515

operation to augment the channel dimensionality, while the event data is transformed into a high-516

dimensional Tensor using two convolutions followed by a Sigmoid activation. Subsequently, the517

processed tensors from the image and event data are subjected to the sparse learning module. Within518

the sparse learning module, both image features and event features undergo iterative cycles to derive519

spatio-temporal representations θ. In contrast to the original approach eSL-Net (Wang et al., 2020),520

we aim to incorporate deformable convolutions (Wang et al., 2022a) into this loop, thereby enhancing521

the motion estimation and correction capabilities throughout the iterations.522

C MORE EXPLANATION AND DISCUSSION523

Due to the constraints of the main paper’s length, this supplementary section provides additional524

experimental details and discussions. Specifically, we elaborate on the following 11 aspects to offer525

readers a more comprehensive understanding of our approach:526

C.1 Further Details on the Dataset527

C.2 Extended Discussion on Inference Speed528

C.3 Additional Insights into the Real-World Dataset529

C.4 Correlation Between PSNR and Interpolation Frame Index530

C.5 Advanced Operations in Exposure Time Embedding531

C.6 Comparative Studies Across Different Exposure Times532

C.7 Detailed Comparisons with Other Methods533

C.8 Visualization of Temporal Dimension Gradients534

C.9 Analysis of PSNR and SSIM Across Different Interpolation Multiples535

C.10 Efficacy of the DCN536

C.11 Exploring Why DeblurSR Appears to Correct Rolling Shutter537
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C.1 FURTHER DETAIL ON THE DATASET:538

1) Gev-RS dataset (Zhou et al., 2022) contains original videos shot by GS high-speed cameras539

with 1280 ˆ 720 resolution at 5700 fps. However, EvUnroll (Zhou et al., 2022) primarily focuses540

on RS correction, and provided by EvUnroll Gev-RS dataset does not include RS frames with541

severe motion blur. Therefore, we reconstruct RS frames with severe motion blur and events from542

original videos. We initially downsample the original videos to DAVIS346 event camera’s resolution543

(260 ˆ 346) (Scheerlinck et al., 2019). Then, we employ the event simulator vid2e (Gehrig et al.,544

2020) to synthesize events from the resized frames. We simulate RS blur frames by first generating545

RS sharp frames as the same RS simulation process of Fastec-RS (Liu et al., 2020) and then averaging546

260 RS sharp frames after gamma correction. We use the same dataset split as EvUnroll (Zhou et al.,547

2022), with 20 videos used for training and 9 videos used for testing. The total amounts of RS blur548

frames in Gev-RS (Zhou et al., 2022) dataset are 784 in the training set and 441 testing set.549

2) Fastec-RS dataset (Liu et al., 2020) provides the original frame sequences recorded by the550

high-speed GS cameras with the resolution of 640 ˆ 480 at 2400 fps. We use the same settings to551

resize frame sequences, create events, and RS blurry frames. Furthermore, we use the same dataset552

split strategy as Fastec-RS (Liu et al., 2020): 56 sequences for training and 20 sequences for testing.553

Specifically, this dataset includes 1620 RS blur frames for training and 636 RS blur frames for testing.554

3) Real-world dataset (Zhou et al., 2022) currently the sole real dataset accessible, comprises four555

videos. Among these, two capture outdoor scenes, while the other two focus on indoor scenes. Each556

video pairs rolling shutter frames with events; the events are derived from DVS346. However, given557

the absence of ground truth in this dataset, it can only provide quantitative visualization results.558

(a) Events (b) Color (c) Gray (d) EvUnRoll (e) Ours Gray (f) Our Color

Figure 6: Visualization results in a real-world dataset (Zhou et al., 2022). (a) is the events visualization
results. (b) (c) are the input RGB and gray images that have clear rolling shutter distortions. (d) is the output of
EvUnRoll. (e) (f) are the outputs of our method.

C.2 EXTENDED DISCUSSION ON INFERENCE SPEED:559

Fig. 5 illustrates the inference time of our method with a wide range of interpolation multiples560

spanning from 1ˆ to 31ˆ, including the total inference time and the average inference time per561
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Figure 7: The x-axis corresponds to the subscript of the frame interpolation result achieved through
9-fold interpolation, while the y-axis represents the PSNR value associated with each frame. A higher
PSNR value indicates a higher reconstruction quality.

frame. Importantly, the total inference time increases gradually as the frame interpolation multiple562

increases. For instance, when going from 1ˆ to 31ˆ frame interpolation, the total inference time563

only increases from 30.8 ms to 86.9 ms. This signifies a mere 2.8-fold increase in time despite a564

31-fold increase in the interpolation multiple. Additionally, it is notable that the average inference565

time per frame decreases with higher frame interpolation multiples. At 31ˆ frame interpolation, the566

average time per frame is a mere 2.8 ms.567

Our method exhibits distinct advantages over the EvUnRoll (Zhou et al., 2022) and Time-568

Lens (Tulyakov et al., 2021) cascade approaches, particularly in terms of computational efficiency.569

Specifically, when the focus is solely on RS frame correction and deblurring, the inference time570

for EvUnRoll is measured at 42.3 ms, while our approach necessitates only 72% of that time. This571

computational advantage becomes even more pronounced during high-magnification frame inter-572

polation. For instance, in scenarios requiring N -times interpolation, the cascading strategy calls573

for two invocations of EvUnRoll and pN ´ 2q of TimeLens, with the latter having a time cost of574

ptTL “ 186.76msq. Consequently, our method offers a significant advantage in high-magnification575

frame interpolation scenarios. It is crucial to note that our inference time calculations are restricted to576

GPU-based computations, intentionally omitting the time required for data loading and storage. In577

practical applications, the EvUnRoll and TimeLens cascade introduces additional disk I/O overhead,578

thereby further exacerbating its time consumption.579

C.3 ADDITIONAL INSIGHTS INTO THE REAL-WORLD DATASET:580

The visualization results for the real-world dataset can be seen in Fig. 6. The input frame, which581

displays a rolling shutter pattern, is characterized by clear distortions in dynamic scenes. For example,582

the palette’s edges are curved, and the building windows tilt. In contrast, events display global shutter583

characteristics, as evidenced by the lack of distorted edges in the event visualizations. Both our584

method and EvUnRoll effectively correct the rolling shutter distortion, whether it’s the distortion of585

the palette’s edge or the deformation of building windows. However, due to the absence of ground586

truth, quantitative analysis remains unattainable. It’s worth noting that while EvUnRoll exhibits some587

artifacts in the palette scenarios, our method remains artifact-free. By concurrently addressing RSC,588

Deblur, and VFI, our method avoids accumulating errors, leading to a more artifact-free outcome.589

C.4 CORRELATION BETWEEN PSNR AND INTERPOLATION FRAME INDEX590

Fig. 7 illustrates the PSNR values for each frame obtained through various methods using 9-fold591

frame interpolation. Our proposed method demonstrates superior performance. Specifically, the592

intermediate image attains the highest quality, while the reconstruction quality diminishes towards593

both the beginning and end of the exposure, displaying a symmetrical pattern. To further enhance594

image quality across the entire frame, future investigations could explore the integration of multi-595

frame algorithms.596
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Table 5: More operation studies for exposure time embedding. (Gray blur frame as inputs in 1, 3, 5, 9
times frame interpolation).

Time Embedding Type PSNR SSIM

Add 33.12 0.9881
1ˆ Multiplication 33.15 0.9757

Concat 33.15 0.9876
Add 31.11 0.9738

3ˆ Multiplication 31.10 0.9635
Concat 31.14 0.9710

Add 30.84 0.9673
5ˆ Multiplication 30.96 0.9684

Concat 30.89 0.9632
Add 30.54 0.9579

9ˆ Multiplication 30.74 0.9592
Concat 30.77 0.9538

(b) Outputs (a sequence of global shutter sharp frame)(a) Inputs (a rolling shutter blur image and events)
Rolling Start 𝑡! Rolling End 𝑡"

Exposure Time 
𝑡"#$

Rolling shutter blur frame Events
𝐻

Time 𝑇𝑖𝑚𝑒

H
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(d) Outputs (a sequence of global shutter sharp frame)(c) Inputs (a rolling shutter sharp image and events)
Rolling Start 𝑡! Rolling End 𝑡"

Rolling shutter sharp frame Events
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(I) Long exposure time frame as input. (Rolling shutter correction, Deblur and VFI)

(II) Short exposure time frame as input. (Rolling shutter correction and VFI) 

Figure 8: The schematic diagram elucidates the methodologies for correcting and interpolating rolling
shutter (RS) frames under varying exposure durations. Subfigure (I) delineates the procedure for
long-exposure RS frames, where the presence of blur is a significant factor to be addressed. In
contrast, Subfigure (II) outlines the approach for short-exposure RS frames, thereby eliminating the
necessity for deblurring.

C.5 MORE OPERATIONS IN EXPOSURE TIME EMBEDDING597

We perform more experiments on Gev-RS dataset (Zhou et al., 2022) to validate the effect of598

element-wise addition, multiplication, and concatenation in Eq. 6. The quantitative result is shown599

in Tab. 5, and we find that concatenation and multiplication have higher PSNR than element-wise600

addition.601

C.6 COMPARATIVE STUDIES ACROSS DIFFERENT EXPOSURE TIMES602

Our model performs reliably with different exposure times. Tab. 1 highlighted results under long603

exposure scenarios (blurred rolling shutter frames). Tab. 6 shows our model’s efficacy in short604

exposure scenarios (sharp rolling shutter frames). These findings affirm the model’s robustness in605

different exposure times under the rolling shutter pattern.606
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Figure 9: Schematic diagram of frame insertion at different magnifications

Table 6: Experiments on short exposure times.
Method Exposure Time Interpolation Frames PSNR SSIM

EvUnroll short 1 28.56 0.9026
Ours short 1 29.65 0.9457
Ours short 3 28.88 0.9364
Ours short 5 28.89 0.9457
Ours short 9 28.20 0.9037

C.7 DETAILED COMPARISONS WITH OTHER METHODS:607

Table 7: Comparison of our method with prior works.
Methods Publication Frames Color Events Deblur RS Correction VFI

JCD CVPR 2021 3 ✓ ✗ ✓ ✓ ✗
eSL-Net ECCV 2020 1 ✗ ✓ ✓ ✗ ✗
eSL-Net* ECCV 2020 1 ✗ ✓ ✓ ✓ ✗
EvUnroll CVPR 2022 1 ✓ ✓ ✓ ✓ -
TimeLens CVPR 2021 2 ✓ ✓ ✗ ✗ ✓
E-CIR CVPR 2022 1 ✗ ✓ ✓ ✗ ✓
VideoINR CVPR 2022 2 ✓ ✗ ✗ ✗ ✓
EvShutter CVPR 2023 1 ✗ ✗ ✓ ✓ ✗
DeblurSR Arxiv 2023 1 ✗ ✓ ✓ ✗ ✓
NEIR Arxiv 2023 1 ✓ ✓ ✓ ✓ ✓
Ours - 1 ✓ ✓ ✓ ✓ ✓

In this section, we will explain the motivations for comparing EvUnroll (Zhou et al., 2022) (event-608

guided RS correction) in the experiment that outputs a single GS sharp frame and comparing EvUnroll609

+ Timelens (Tulyakov et al., 2021) (event-guided video frame interpolation) in the experiment that610

outputs a sequence of GS sharp frames. Fig. 10 (I) shows the process of generating a sequence of611

global shutter sharp (GS) frames from a rolling shutter (RS) blur image and paired events by deblur612

and RS correction. However, the deblur module in EvUnroll recovers the midpoint of the exposure613

time of each row (Zhou et al., 2022), as shown in Fig. 10 (b); furthermore, EvUnroll can only recover614

the GS sharp frames between the rolling start time tms and rolling end time tme of the reconstructed615

RS sharp frame, which can not output the arbitrary GS sharp frames during the whole exposure time616

of the RS blur frame. Therefore, in the joint task of deblur and RS correction, EvUnroll can not617
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Figure 10: Illustration of Experiment Settings of EvUnroll (Zhou et al., 2022) and the combination of
EvUnroll and TimeLens (Tulyakov et al., 2021).

realize arbitrary frame interpolation as shown in Tab. C.7 and we combine EvUnroll and Timelens618

in the experiment outputting a sequence of GS sharp frames. Specifically, we first generate two GS619

sharp frames with EvUnroll at the midpoint of the whole exposure time texp from two RS blur frames620

and paired events, and then we use TimeLens to generate latent GS sharp frames with the input of621

two GS sharp frames and events, as shown in Fig. 10 (II).622
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Spatio-temporal 
representation

(a) Previous work, e.g., EvUnRoll, eSL-Net, TimeLens … (b) Our method

Time

Figure 11: Differences between our method and previous methods. In contrast to the previous
method, our approach introduces spatio-temporal representation and exposure time embedding. The
spatio-temporal representation involves capturing all the spatio-temporal information during the
exposure time. Furthermore, specific exposure time information is embedded, which enables the
decoder to generate a frame with high-quality.

Compared with the latest research VideoINR (Chen et al., 2022), our work differs in two aspects.623

a) Different research questions: While VideoINR tackles space-time super-resolution in the global624

shutter by introducing implicit neural representation (INR), our proposed method first simultaneously625

realizes RS correction, deblurring, and frame interpolation with INR. b) Different methodologies:626

i. VideoINR consists of SpatialINR and TemporalINR, which are sequentially used to transfer the627

frame feature according to the spatial-temporal coordinate to achieve super-resolution and frame628

interpolation. However, SpatialINR, and TemporalINR cannot handle motion blur and rolling shutter629

distortion in the input frames. ii. In contrast, our approach develops a unified INR to simultaneously630

realize RS correction, deblurring, and frame interpolation. Especially, according to the principle of631

RS and GS images, we design Exposure Time Embedding enabling the generation of RS and GS632

images given the specific exposure time information, which is a feat unachievable by VideoINR due633

to its inconsideration towards RS distortion and blur.634
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(a) Events (b) Input RS Frame (c) Reconstructed 
RS Frame
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Figure 12: Rolling shutter frame reconstruction visualization in real-world dataset.
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Figure 13: (I) and (I) show visualizations on simulated and real-world datasets, respectively. From left to
right: the predicted images, temporal gradients (BF px, t, θq{Bt), and events. Orange and blue hues in the image
signify positive and negative gradients, respectively. The color intensity is associated with the gradient value,
with higher absolute values manifested by stronger colors.

C.8 VISUALIZATION OF TEMPORAL DIMENSION GRADIENTS:635

Fig. 13 depicts the visualization of the gradients in the temporal dimension, demonstrating the636

successful training of the function F px, t, θq. Both the gradient visualization and events exhibit637

a similar intensity trend for F px, t, θq at the specified time t. However, the gradient visualization638

appears smoother with more continuous edges. This observation confirms that our method is capable639

of learning the high temporal resolution of intensity changes present in events, simultaneously filtering640

out noise.641

C.9 ANALYSIS OF PSNR AND SSIM ACROSS DIFFERENT INTERPOLATION MULTIPLES:642

In Tab. 1 of the main manuscript and Tab. 6 in supplementary material, we observe an intriguing643

discrepancy in the PSNR and SSIM metrics for 3ˆ and 5ˆ color frame interpolations, registering644

values of 28.36 and 0.9062, and 28.41 and 0.9062, respectively. Contrary to conventional wisdom,645

which posits that an increase in frame rate interpolation should correspondingly degrade PSNR646

and SSIM metrics when the model architecture remains constant, our findings deviate from this647

expectation. We attribute this anomaly to the network’s varying predictive accuracy across the648

temporal spectrum. Specifically, edge frames pose a greater challenge for the network compared649

to those situated centrally. As illustrated in Fig. 7, for a 3ˆ frame insertion, the terminal global650

19



Under review as a conference paper at ICLR 2024

Table 8: Ablation for deformable convolution (DC).
Interpolation multiple DC PSNR SSIM

✗ 33.15 0.9729
1ˆ ✓ 33.12 0.9881

✗ 31.11 0.9701
3ˆ ✓ 31.11 0.9738

✗ 30.79 0.9609
5ˆ ✓ 30.84 0.9673

✗ 30.48 0.9685
9ˆ ✓ 30.54 0.9579

Average Increase + 0.0775 + 0.0088

shutter sharp frames contribute to 2{3 of the overall weight. Conversely, for a 5ˆ frame insertion, the651

terminal frames account for only 2{5 of the weight.652

C.10 EFFECTIVENESS OF THE DCN:653

Deformable convolutions offer an effective means of modeling long-range dependencies while654

preserving computational efficiency. Given these advantages, we have incorporated deformable655

convolutions into the backbone architecture of encoding. To evaluate their impact, we conducted an656

ablation study, as presented in Tab. 8. Our results demonstrate an average improvement of 0.0775657

dB in PSNR and 0.0088 in SSIM with the inclusion of deformable convolutions, highlighting their658

beneficial effect.659

Due to the limited size of our dataset, we have introduced only one layer of deformable convolution.660

In contrast to the referenced research (Wang et al., 2022a), which utilized a training set of over661

14.2 million samples in the training set, our dataset is comparatively smaller. The GEV training set662

comprises 784 samples, while the FASTEC training set consists of 1620 samples.663

C.11 EXPLORING WHY DEBLURSR APPEARS TO CORRECT ROLLING SHUTTER:664

While the primary focus of the DeblurSR (Song et al., 2023) study did not lie in the correction665

of the rolling shutter effect, we can observe a certain level of correction in the experiments, albeit666

accompanied by artifacts. We attribute this phenomenon to the fact that events themselves can be667

viewed as capturing a global shutter perspective. Consequently, the spiking representation learned by668

DeblurSR using events possesses the potential for rolling shutter correction. The effectiveness of669

using events to learn implicit representation for rolling shutter correction is evident.670
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1import torch671

2import torch.nn as nn672

3from absl.logging import info673

4from egrsdb.models.unet.dcnv3_nchw import DCNv3NCHW674

5675

6class _SCN(nn.Module):676

7def __init__(self, hidden_channels, high_dim_channels, is_deformable,677

loop):678

8super(_SCN, self).__init__()679

9self.hidden_channels = hidden_channels680

10self.high_dim_channels = high_dim_channels681

11self.is_deformable = is_deformable682

12self.loop = loop683

13self.W1 = nn.Conv2d(hidden_channels, high_dim_channels, 3, 1, 1,684

bias=False)685

14self.S1 = nn.Conv2d(high_dim_channels, hidden_channels, 3, 1, 1,686

groups=1, bias=False)687

15self.S2 = nn.Conv2d(hidden_channels, high_dim_channels, 3, 1, 1,688

groups=1, bias=False)689

16self.shlu = nn.ReLU(True)690

17if is_deformable:691

18self.dcn = DCNv3NCHW(channels=high_dim_channels, groups=1,692

offset_scale=2, act_layer="ReLU", norm_layer="LN", dw_kernel_size=3,693

center_feature_scale=0.25)694

19695

20def forward(self, blur_image, events):696

21x1 = blur_image697

22event_input = events698

23x1 = torch.mul(x1, event_input)699

24z = self.W1(x1)700

25tmp = z701

26for i in range(self.loop):702

27ttmp = self.shlu(tmp)703

28x = self.S1(ttmp)704

29x = torch.mul(x, event_input)705

30x = torch.mul(x, event_input)706

31x = self.S2(x)707

32if self.is_deformable:708

33x = torch.relu(x)709

34x = self.dcn(x)710

35x = ttmp - x711

36tmp = torch.add(x, z)712

37c = self.shlu(tmp)713

38return c714

39715

40716

41class ESLBackBone(nn.Module):717

42def __init__(self, is_color, event_moments, hidden_channels,718

high_dim_channels, is_deformable, loop):719

43super(ESLBackBone, self).__init__()720

44in_channel = 3 if is_color else 1721

45self.in_channel = in_channel722

46self.event_moments = event_moments723

47self.hidden_channels = hidden_channels724

48self.high_dim_channels = high_dim_channels725

49self.is_deformable = is_deformable726

50self.loop = loop727

51self.image_d = nn.Conv2d(in_channels=in_channel, out_channels=728

self.hidden_channels, kernel_size=1, stride=1, padding=0, bias=False)729

52self.event_c1 = nn.Conv2d(in_channels=event_moments, out_channels730

=self.hidden_channels, kernel_size=1, stride=1, padding=0, bias=False731

)732
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53self.event_c2 = nn.Conv2d(in_channels=self.hidden_channels,733

out_channels=self.hidden_channels, kernel_size=1, stride=1, padding734

=0, bias=False)735

54self.relu = nn.ReLU(inplace=True)736

55self.end_conv = nn.Conv2d(in_channels=128, out_channels=737

high_dim_channels, kernel_size=3, stride=1, padding=1, bias=False)738

56self.scn_1 = _SCN(hidden_channels, high_dim_channels,739

is_deformable, loop)740

57741

58def forward(self, events, blur_frame):742

59x1 = self.image_d(blur_frame)743

60event_out = self.event_c1(events)744

61event_out = torch.sigmoid(event_out)745

62event_out = self.event_c2(event_out)746

63event_out = torch.sigmoid(event_out)747

64out = self.scn_1(x1, event_out)748

65out = self.end_conv(out)749

66return out750

Listing 1: The pytorch implementation of encoder.
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