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Ego3DT: Tracking All 3D Objects in Ego-Centric Video of Daily
Activities

Anonymous Authors
ABSTRACT
The growing interest in embodied intelligence has brought ego-
centric perspectives to contemporary research. One significant
challenge within this realm is the accurate localization and tracking
of objects in ego-centric videos, primarily due to the substantial
variability in viewing angles. Addressing this issue, this paper in-
troduces a novel zero-shot approach for the 3D reconstruction
and tracking of all objects from the ego-centric video. We present
Ego3DT, a novel framework that initially identifies and extracts
detection and segmentation information of objects within the ego
environment. Utilizing information from adjacent video frames,
Ego3DT dynamically constructs a 3D scene of the ego view using a
pre-trained 3D scene reconstruction model. Additionally, we have
innovated a dynamic hierarchical association mechanism for creat-
ing stable 3D tracking trajectories of objects in ego-centric videos.
Moreover, the efficacy of our approach is corroborated by extensive
experiments on two newly compiled datasets, with 1.04× - 2.90×
in HOTA, showcasing the robustness and accuracy of our method
in diverse ego-centric scenarios.

CCS CONCEPTS
• Computing methodologies→ Scene understanding.

KEYWORDS
3D Vision, Open Vocabulary Tracking, Ego-centric Video

1 INTRODUCTION
Ego-centric, or first-person, computer vision addresses the percep-
tual challenges an embodied AI encounters in real-world situations.
This area of research has garnered significant interest due to its
relevance in various applications, including robotics [10, 55], em-
bodied agents [70, 86–88], and augmented as well as mixed real-
ity [16, 17, 35, 59]. One of the central tasks in this domain is multi-
object tracking (MOT), which plays a critical role in numerous
ego-centric applications. These applications range from monitoring
the progress of actions or activities, re-identifying objects in one’s
environment, and forecasting the future states of the surrounding
world.

Despite significant advancements in MOT, applying these meth-
ods to ego-centric videos remains underexplored. This gap is largely
attributed to the absence of comprehensive ego-centric tracking
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Figure 1: An illustrative example of Ego3DT. It showcases
robust 3D object tracking across ego-centric video frames
(from Frame 1 to Frame 5). The 3D field maintains consistent
object information, ensuring the tracking ID remains un-
changed. This delivers reliable tracking results in dynamic
video scenarios, as shown by the persistent tracking of ID 1
and ID 2 across different viewpoints.

datasets, essential for training and evaluating tracking algorithms [13].
Although the research community has introduced several popular
tracking datasets such as OTB [74], TrackingNet [44], GOT-10k [21],
and LaSOT [13], the high performance achieved by state-of-the-art
trackers on these benchmarks does not effectively translate to ego-
centric videos. This discrepancy underscores the urgent need for
a dedicated ego-centric tracking dataset, particularly one that can
support the unique requirements of ego-centric applications.

The distinct characteristics of ego-centric videos, as opposed to
conventional third-person videos, pose unique challenges. These
videos often capture a wide range of activities, objects, and locations
without specific focus, reflecting the wearer’s shifts in attention.
Large head movements from the camera wearer frequently cause
objects to exit and re-enter the field of view, and objects manipu-
lated by hands may undergo frequent occlusions, along with rapid
changes in scale, pose, and even state or appearance [57]. These
unique aspects make object tracking significantly more demanding
than in scenarios typically presented in existing datasets, highlight-
ing a critical gap in current evaluation methodologies. Traditional
MOT tasks [83], when applied to ego-centric videos [61], often
result in poor tracking accuracy and robustness.

To better suit the variable conditions of ego-centric videos, our
approach utilizes a 3D field representation, which offers a more
adaptable and comprehensive framework for tracking. As shown

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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in Figure 1, the 3D field captures the spatial layout and the tempo-
ral dynamics of objects within the scene, making it exceptionally
suitable for the complexities of ego-centric views. This concept
involves maintaining a dynamic 3D scene to enhance perceptual
tasks [69, 70]. 3D perception can improve task robustness by ensur-
ing stable object properties and relationships throughout the scene.
By maintaining a dynamic 3D field, our approach preserves stable
relationships and properties of 3D objects, significantly enhancing
performance. Moreover, our method employs training-free, plug-
and-play modules that deliver few-shot capabilities, distinguishing
it from conventional approaches.

We summarize our contributions as follows:
• We propose a method for constructing a 3D scene from
an ego-centric video and achieving open vocabulary object
tracking, which requires only RGB videos as input and is a
zero-shot approach.
• We implement object 3D position matching through a dy-
namic cross-window matching method, thereby alleviating
the instability caused by relying solely on 2D image tracking.
• We achieve state-of-the-art performance on the open vocab-
ulary multi-object tracking in ego-centric videos of daily
activities, with 1.04× - 2.90× in HOTA.

2 RELATEDWORK
2.1 Open Vocabulary Detection
Open vocabulary (OV) detection [79] has emerged as a novel ap-
proach to modern object detection, which aims to identify objects
beyond the predefined categories. Early studies [18] followed the
standard OV Detection setting [79] by training detectors on the
base classes and evaluating the novel or unknown classes. However,
this open-vocabulary setting, while capable of evaluating the de-
tectors’ ability to detect and recognize novel objects, is still limited
to open scenarios and lacks generalization ability to other domains
due to training on a limited dataset and vocabulary. Inspired by
vision-language pre-training [23, 52], recent works [9, 26, 73, 89, 91]
formulate open-vocabulary object detection as image-text matching
and exploit large-scale image-text data to increase the vocabulary
at scale. GLIP [32] presents a pre-training framework for open-
vocabulary detection based on phrase grounding and evaluates in a
zero-shot setting. Grounding DINO [39] incorporates the grounded
pre-training into detection transformers [80] with cross-modality
fusions. Several methods [36, 77, 78, 81] unify detection datasets
and image-text datasets through region-text matching and pre-train
detectors with large-scale image-text pairs, achieving promising
performance and generalization. However, these methods often
use heavy detectors, leading to high computational demands and
deployment challenges. Utilizing the YOLO framework with an
effective pretraining strategy, some works [4, 75] enhance open-
vocabulary performance and generalization. GLEE [72] excels in
recognizing and tracking objects across both images and videos.

2.2 Ego-centric Tracking
Over the last few decades, the introduction of numerous ego-centric
video datasets [6, 14, 16, 28, 50, 60], has presented a wide range
of fascinating challenges. Although many methodologies utilize
tracking to address these challenges [7, 16, 29, 37, 41], it’s notable

that only a few studies have focused solely on the crucial issue of
tracking. The works by Dunnhofer et al. [11, 12] address the specific
challenges associatedwith ego-centric object tracking and represent
the research most closely related to our own. However, a significant
distinction exists in the scale of the dataset they utilized, which
comprises 150 tracks designed purely for assessment purposes. In
the realm of ego-centric video comprehension, Ego4D [16], EPIC-
KITCHENS VISOR [7] and EgoTracks [61] are critical to our work.
Ego4D stands out for its extensive compilation of ego-centric videos
captured in natural settings and introduces numerous innovative
tasks, including Episodic Memory, where tracking plays a pivotal
role. Concurrently introduced, VISOR focuses on annotating brief
videos (averaging 12 seconds in length) from EPIC-KITCHENS [6]
with instance segmentation masks, illustrating the dynamic and
detailed nature of research in this field.

2.3 Ego-centric 3D Understanding
The study of 3D object detection has made considerable advance-
ments through the utilization of images [1, 20, 43, 54], point clouds [15,
30, 51, 58], and videos [2, 22]. To convert 2D images into 3D scenes,
researchers have extensively employed Structure fromMotion (SfM)
techniques [47]. These techniques are divided into geometric-based
methods [27, 45, 56], which rely on multiview geometry; learning-
based methods [24, 67, 90], which utilize deep neural networks; and
hybrid SfM approaches [62, 63], which integrate both strategies.
SfM has been adapted for extensive videos in dynamic settings [85]
and casual videos capturing everyday life [38, 84]. Yet, the distinct
nature of ego-centric videos, characterized by their dynamic con-
tent, motion blur, and unconventional viewpoints, poses substantial
hurdles to 3D scene understanding. While numerous studies have
explored the reconstruction of 3D human poses from ego-centric
footage [5, 19, 31, 53, 64, 68, 82], the field of 3D perception from an
ego-centric perspective has seen exciting developments recently.
HuCenLife [76] dataset is for large-scale human-centric scenarios,
providing benchmarks for segmentation and action recognition
tasks. Some work [48] tackled the challenges of ego-centric 3D
human pose estimation with their domain-guided spatiotemporal
transformer model, Ego-STAN, achieving significant improvements.
EgoFish3D framework [40] employed self-supervised learning for
accurate egocentric 3D pose estimation. Noteworthy efforts include
investigation into ego-centric indoor localization using the Man-
hattan world assumption for room layouts [3], the development
of EGO-SLAM for outdoor ego-centric videos through SfM over
time [49], and the creation of NeuralDiff [66] and N3F [65], which in-
novate in dynamic NeRF technology for identifying and segmenting
moving objects in ego-centric videos. Additionally, some work [46]
proposed a method that correlates camera positions with video data
to anticipate human-centric scene contexts. Our approach focuses
on 3D tracking via dynamic matching in the 3D field. It is a zero-
shot, RGB-only approach for open-vocabulary object tracking by
constructing a 3D scene from an ego-centric video.

3 METHOD
3.1 Overview
As shown in Figure 2, Ego3DT is a purely vision-based open vocab-
ulary 3D object tracking method F to achieve tracking results 𝑌
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Figure 2: Ego3DT framework. (1) 2D Detection & Segmentation: Ego-centric video frames undergo object detection and
segmentation using SAM to segment object points and an OV detector to identify objects. (2) Window-level 3D Field: The
encoder-decoder structure processes the segmented frames to construct a window-level 3D field. (3) Cross-window Matching
and Projection: Subsequent windows are aligned using rotational transforms to maintain object consistency across frames.
(4) Global 3D Field: The cumulative data from all windows is integrated to form a global 3D field, with each object assigned a
unique ID, facilitating precise object tracking throughout the video sequence.

from RGB ego videos 𝑋 containing frames from 𝐼1 to 𝐼𝑁 . The open
vocabulary object tracking results 𝑌 can be obtained as follows,

𝑌 = F (𝑋 ), 𝑋 = [𝐼1, 𝐼2, ..., 𝐼𝑁 ], (1)

where 𝑌 = {𝑂𝑖 }𝑖≤𝑁 is the 3D object tracking output of the video
with 𝑁 frames, 𝑂𝑖 = [(𝑥 𝑗 , 𝑦 𝑗 , 𝑧 𝑗 , ID𝑗 )] 𝑗≤𝐾 is a matrix containing
3D coordinates of tracked objects in each frame with identification
ID, and 𝐾 is the total number of tracked objects.

First, we conduct object detectionDet on videos𝑋 , and semantic
segmentation Seg based on detection output 𝑂𝐷𝑒𝑡2𝐷 as prompts:

𝑂
𝑆𝑒𝑔

2𝐷 = Seg(𝑂𝐷𝑒𝑡2𝐷 ), 𝑂𝐷𝑒𝑡2𝐷 = Det(𝑋 ), (2)

where𝑂𝑆𝑒𝑔2𝐷 and𝑂𝐷𝑒𝑡2𝐷 are the semantic segmentation and detection
output respectively.

Then, we utilize a 3D estimation model G to map segmentation
coordinates from 2D space 𝑂𝑆𝑒𝑔2𝐷 to 3D space 𝑂3𝐷 ∈ R𝐾×𝑁×3:

𝑂3𝐷 = G(𝑋,𝑂𝑆𝑒𝑔2𝐷 ), (3)

where 𝑂3𝐷 forms a one-to-one mapping between image pixels
and 3D scene points, i.e., 𝑂2𝐷 ↔ 𝑂3𝐷 , for all object coordinates
(𝑥,𝑦) ∈ {1 . . . 𝐾} × {1 . . . 𝑁 }.

Finally, Ego3DT involves matching the 3D positions of objects
using a hierarchical method, avoiding the instability issues that can
arise from relying solely on 2D image tracking:

𝑌 =M(𝑂3𝐷 ) = PointMatch(A(𝑂3𝐷 )), (4)

where the matching moduleM compares all the 3D points from
frame to frame for precise object tracking 𝑌 with identification ID,
and A is a 3D scene registration method aligning adjacent points.
We use the additional Hungarian process to initialize matching ID.

3.2 2D Segmentation and Open-Vocab Detection
The foundational step in our method involves the precise identifi-
cation and segmentation of objects within each frame of an ego-
centric video. As shown in Equation (2), this process is bifurcated
into two pivotal operations: 2D Open Vocabulary (OV) Detection
Det and 2D Segmentation Seg, applied sequentially to the raw video
frames to ensure a comprehensive understanding of the scene.

To achieve accurate object detection within our framework, we
leverage the capabilities of the pretrained GLEE [72] in the experi-
ment. Our efficient object detection model can identify a wide range
of objects in 2D space across video frames, even those not explicitly
labeled in the training data. We obtain precise 2D bounding boxes
for all detectable objects by processing each frame through the
model, setting the stage for subsequent segmentation.

Following the detection phase, the identified objects are further
processed through SAM [25], a segmentation foundation model
designed to delineate the precise boundaries of objects within an im-
age. The bounding boxes obtained from GLEE [72] serve as prompts
for SAM [25], enabling it to focus on specific regions of interest
within the frame. This approach generates detailed segmentation
maps for each object, including shape and location.
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3.3 Window-level 3D Fields
We maintain window-level 3D fields with a 3D estimation model
called G, a pretrained DUSt3R [69]. This dual-branch system con-
sists of image encoders, decoders, and regression heads. The im-
age encoders are designed to extract detailed feature maps from
segmented 2D object points, which are inputs derived from the
preceding object detection and segmentation phases. The decoders
then process these feature maps, which focus on extracting spatial
relationships and depth cues from the encoded data. As shown
in Equation (3), the 3D estimation model G processes segmented
2D object points, transforming them into their 3D counterparts
through the pretrained DUSt3R [69]. This process is predicated on
accurately detecting and segmenting objects within the 2D space,
followed by their elevation into the 3D domain.

From 2D Segmentation to 3D Localization. As shown in Figure 2,
the image encoders are designed to extract detailed feature maps
from segmented 2D object points, inputs derived from the pre-
ceding object detection and segmentation phases. The decoders
then process these feature maps, which focus on extracting spatial
relationships and depth cues from the encoded data.

Integration and Alignment of 3D Data. The output from G con-
sists of accurate 3D coordinates inherently aligned with the original
RGB video frames. This alignment is critical as it ensures that each
3D point precisely represents its corresponding 2D point and is
correctly positioned within the global context of the video sequence.
This meticulous alignment facilitates the seamless integration of
2D and 3D data, enhancing the robustness and accuracy of the
subsequent object-tracking processes.

Keeping window-level 3D fields in our framework advances the
field of 3D object tracking and sets a new standard for the accuracy
and efficiency of converting 2D video data into actionable 3D in-
formation. The rigorous processing and alignment of data ensure
that our model is highly effective in the challenging environment
of ego-centric videos, paving the way for innovative applications
in multiple domains.

3.4 Cross-window Matching and Projection
The Matching ModuleM is a crucial component of the Ego3DT
framework for tracking 3D objects across the video sequences.
As shown in Equation (4), the Matching Module M consists of
point-matching algorithms and a sliding window mechanism to
ensure accurate and robust object tracking, even in occlusion or
rapid movements. To minimize errors in point matching, we retain
mutual correspondences between two images. This is achieved by
performing KDTree search [69] in the 3D pointmap space.

Sliding Window Mechanism. We adapt the sliding window mech-
anism in the matching module, defined by the window size𝑊 ,
ensuring an overlap size 𝑇 to maintain temporal continuity be-
tween frames. This design choice allows for the efficient processing
of video frames by dividing the extensive task of 3D object tracking
into manageable segments, each containing𝑊 frames. The step dis-
tance 𝑆 =𝑊 −𝑇 dictates the window’s movement across the video
sequence, ensuring that every frame is analyzed while optimizing
computational resources.

Initial Object Tracking. The process begins by establishing a
baseline of object tracking within the first window. For each frame
𝑖 , up to the window size𝑊 , the 3D coordinates of detected ob-
jects 𝑂𝑖3𝐷 = {(𝑥 𝑗 , 𝑦 𝑗 , 𝑧 𝑗 )} 𝑗≤𝐾 are determined, where 𝐾 represents
the number of objects detected within a frame. Utilizing KDTree
distance calculations between every two consecutive frames, we
employ the Hungarian algorithm to match objects based on their
spatial proximity, thus assigning a unique Identification Number
ID to each object. The result, 𝑌0, comprising tracked objects with
their respective IDs within the first window, is stored in a buffer B
for subsequent processing.

Dynamic matching across windows. As shown in the Algorithm 1,
the module employs a hierarchical object-tracking approach. As
the window slides by step 𝑆 , each new set of frames is processed
based on the previous window’s data. Specifically, we employ a 3D
scene registration method A, an optimized homography process
to align the 3D points of objects between the current and previous
windows, thus 𝑂𝑡3𝐷 = A(𝑂𝑡−13𝐷 ,𝑂𝑡3𝐷 ) to keep the current windows
𝑂𝑡3𝐷 into the same space of the previous 𝑂𝑡−13𝐷 . The homography
process is shown as follows:

𝑂𝑡−13𝐷 =

𝑇∏
𝑡=1

𝐻𝑡𝑂𝑡3𝐷 , (5)

where 𝐻𝑡 is the homography matrix between the current points
𝑂𝑡3𝐷 and the previous points𝑂𝑡−13𝐷 of overlapped frames, the ground
points of all current frames are unified into the previous space. To
further refine the alignment process,M employs an optimization
strategy that minimizes the Euclidean distance between matched
points across the homography transformations:

𝐻𝑡∗ = argmin
KT

1
𝐴

𝑇∑︁
𝑡=1
| |𝑂𝑡−13𝐷 − 𝐻

𝑡𝑂𝑡3𝐷 | |2, (6)

where𝐴 is the total number of matching points,𝐻𝑡 is a 4× 4matrix
with rotation matrix K ∈ R3×3 and translation matrix T ∈ R3×1.
All parameters are random numbers in the (0, 1) range during
initialization.

By recalculating KDTree distances for the newly aligned 3D
points and based on the applied Hungarian algorithm, PointMatch
matches pixels of objects from frame to frame. Each object in the
current window is then assigned the ID of its closest match from the
previous window, thus extending the tracking sequence. This pro-
cess is repeated for each window throughout the video, culminating
in comprehensively tracking all objects across the sequence.

The Matching ModuleM of Ego3DT achieves high precision
and robustness in 3D object tracking through these sophisticated
algorithms and mechanisms. It provides a global 3D field as shown
in Figure 3. This innovative approach ensures that Ego3DT can
effectively handle the complexities of ego-centric video analysis,
paving the way for advancements in interactive and immersive
technologies. We summarize the matching process in Algorithm 1,
which outlines the step-by-step procedures for achieving accurate
and reliable tracking results.
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Table 1: Comparison of Open Vocabulary MOT performance. 2D box and 3D point refer to association to 2D box and 3D point.
“𝑓 ” stands for feature association.

Tracker Detector Association HOTA (↑) IDF1 (↑) DetA (↑) MT (↑) ML (↓) Frag (↓)

ByteTrack [83] YOLO-World [4] 2D box 19.14 18.77 17.11 23 78 775
GLEE [72] 2D box 29.58 31.28 29.10 30 73 1217

DeepSort [71] YOLO-World [4] 2D box + 𝑓 10.63 9.63 11.15 9 106 637
GLEE [72] 2D box + 𝑓 15.91 15.79 18 9 90 710

OVTrack [34] OVTrack [34] 2D box + 𝑓 15.40 15.15 12.9 6 123 816
TET [33] TET [33] 2D box + 𝑓 13.94 13.34 11.41 5 134 583

Ego3DT (Ours)

OVTrack [34]

3D point

13.44 12.9 13.79 5 138 512
TET [33] 12.4 11.62 13.24 5 134 463

YOLO-World [4] 16.28 15.28 19.43 14 78 1196
GLEE [72] 30.83 29.71 47.91 24 49 1217

Algorithm 1 Cross-window Matching ProcessM

1: Input: Video frames 𝑋 = {𝐼𝑖 }𝑁𝑖=1, Initial object 3D coordinates
𝑂1
3𝐷 , Window size𝑊 , Overlap size 𝑇

2: Output: Tracked objects 𝑌 with 3D coordinates and IDs
3: Initialize: Step size 𝑆 =𝑊 −𝑇 , Buffer B ← ∅
4: 𝑌0 ← 𝐻𝑢𝑛𝑔𝑎𝑟𝑖𝑎𝑛(PointMatch(𝑂1

3𝐷 ))
5: Add 𝑌0 to B
6: for 𝑡 = 1 to 𝑇 do
7: 𝑂𝑡3𝐷 ← G(𝑋, Seg(Det(𝐼𝑡 )))
8: Align 3D scenes: 𝑂𝑡3𝐷 ← A(𝑂

𝑡−1
3𝐷 ,𝑂𝑡3𝐷 )

9: 𝑌𝑡 ← PointMatch(𝑂𝑡−13𝐷 ,𝑂𝑡3𝐷 )
10: Add 𝑌𝑡 with IDs to B
11: end for
12: Convert buffer B to the output space 𝑌
13: return 𝑌

4 EXPERIMENT
This section evaluates the Ego3DT framework for 3D object track-
ing in ego-centric videos using the Ego3DT Benchmark. We form
two datasets: Ego3DT-daily and Ego3DT-indoor, and advance met-
rics to evaluate tracking accuracy. We test the state-of-the-art de-
tectors and compare their performance to baseline models, demon-
strating the efficacy and robustness of the Ego3DT in handling
the unique challenges of ego-centric video analysis. Through rigor-
ous testing and validation, this section illustrates the robustness,
precision, and scalability of the Ego3DT framework.

4.1 Ego3DT Benchmark
Since there is no existing 3D object tracking benchmark based
on ego-centric videos, we build a new benchmark called Ego3DT
Benchmark to evaluate the performance of our model.

4.1.1 Datasets Description. We collected and re-annotated two
datasets, Ego3DT-daily and Ego3DT-indoor, from Ego4D [16] and

EmbodiedScan [70]. These datasets include 2D detection boxes and
daily object trajectories in indoor and outdoor scenes.

Ego3DT-daily. contains six indoor and outdoor scenes, from
which we collected videos from EGO4D. Each video, sampled at
10 FPS, consists of 500 consecutive frames. There are two out-
door scenes and four indoor scenes. The video collection loca-
tions include supermarkets, gardens, corridors, and kitchens. These
ego-centric videos feature noticeable shaking and diverse object
changes.

Ego3DT-indoor. includes data from five indoor scenes. Based
on the Embodied Scan dataset, we collected ego-centric videos
following predefined camera trajectories. We collected about 100
frames per video at 3 FPS from five scenes.

4.1.2 Annotation and Metrics. Our annotation pipeline is semi-
automatic. We annotated the same objects with detection boxes
and a global ID in a single video. For the Ego3DT-daily dataset, we
first used the existing open vocabulary detector GLEE to extract
object detection boxes to save annotation time. We then calibrated
and aligned each object’s detection boxes and IDs frame by frame.
For objects that disappeared and then reappeared, we assigned
them a consistent global ID. For the Ego3DT-indoor dataset, since
Embodied Scan provides 3D detection boxes for each object, we
projected the 3D detection boxes onto the current frame based on
the camera’s pose in each frame, thus determining the object’s 2D
detection boxes and global ID.

We evaluate the performance of our method using HOTA [42]
and the MOT Challenge [8] evaluation metrics, including MOTA,
IDF1, MT, ML, Frag etc.MOTA is computed based on false positives,
false negatives, and ID switches and primarily focuses on detection
performance. IDF1 assesses the consistency of IDs and places more
emphasis on association performance. HOTA explicitly balances
the accuracy of detection, association, and localization.
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Table 2: Ablation study with different detectors and memory mechanisms of varying strengths.

Setting HOTA (↑) IDF1 (↑) DetA (↑) MT (↑) ML (↓) Frag (↓)

Detector YOLO-World [4] 16.28 15.28 19.43 14 78 1196
GLEE [72] 30.83 29.71 47.91 24 49 1217

Memory
w/o Memory 29.13 28.68 44.56 21 49 1216
30 Frames 30.83 29.71 47.91 24 49 1217
Full Frames 27.6 28.54 38.6 18 109 1241

4.2 Experiment Setups
We conduct experiments on Ego3DT using different detectors for
open vocabulary detection, namely GLEE [72] via GLEE-Plus back-
bone Swin-L and YOLO-World [4] via YOLO-Worldv2-X. We also
use SAM [25] with ViT-H backbone for open vocabulary segmen-
tation. Then, we utilize the 3D estimation model via DUSt3R [69]
with DPT Head, ViT-L Encoder, and ViT-B Decoder. Note that our
experiments are conducted using only a single RTX3090-24G.

4.3 Baselines
We critically evaluate the Ego3DT framework against established
baselines: ByteTrack [83], DeepSort [71], OVTrack [34], and TET [33],
each offering unique strengths in multi-object tracking (MOT) and
providing a comprehensive context for benchmarking our model’s
performance.

ByteTrack [83] is a powerful multi-object tracking (MOT) system
designed to associate almost every detection box, regardless of the
score, to improve tracking consistency, especially in cases with
occluded objects. It stands out due to its simplicity, efficiency, and
robustness against occlusions and low-confidence detections. The
system has been successfully applied to different tracking bench-
marks, confirming its versatility and strength as a baseline model
for MOT tasks.

DeepSort [71] is an effective MOT method in videos, enabling ac-
curate identity retention over time, particularly in scenarios where
objects are frequently occluded. This system is a go-to choice for
practitioners seeking a balance between performance and computa-
tional efficiency. The system proved versatile and robust, excelling
as a baseline model in various MOT tasks.

OVTrack [34] is an open-vocabulary MOT method, utilizing
vision-language models for classification and association, applying
knowledge distillation and data hallucination techniques for fea-
ture learning. The approach aims to be highly data-efficient and is
tailored for large-scale tracking, focusing on using static images
for training.

TET [33] is a large-scale MOT method. It critically examines the
limitations of current MOT metrics and methods, which often as-
sume near-perfect classification performance, a presumption rarely
met in practice. TET performs associations using Class Exemplar
Matching, showing notable improvements in challenging tracking.

4.4 Evaluation Results
As shown in Table 1, we have evaluated the open-vocabulary multi-
object tracking performance using a comprehensive range of met-
rics from the MOT Challenge and HOTA. Ego3DT greatly out-
performs well-established baselines with a unique approach to 3D
point association. It has been assessed on additional performance
indicators, thus enhancing the breadth of our evaluation.

Notably, the Ego3DT framework with the GLEE detector [72]
achieves the highest HOTA score of 30.83 among all evaluated track-
ers, indicative of a well-balanced detection and association accuracy.
It excels in DetA (Detection Accuracy) with a leading score of 47.91,
demonstrating our framework’s exceptional capability in precise
object detection. Note that DetA is not the same across different
methods, even if the same detector is used. This is because different
methods adopt different association and post-processing strategies
that may affect the detection results. Furthermore, Ego3DT main-
tains a competitive edge with a high number of Mostly Tracked
(MT) targets and the fewest Mostly Lost (ML) targets among the
automatic tracking methods, with respective scores of 24 and 49,
highlighting the framework’s robustness in persistent object track-
ing over time. The TET detector [33] produces the highest number
of Fragmentations (Frag), indicating that our tracking is accurate
and the object identity is stable compared to the real object trajec-
tories in the ground truth data.

These expanded metrics provide a holistic view of our frame-
work’s performance, affirming its strengths in maintaining object
identities (as evidenced by its IDF1 score of 29.71) and effectively
tracking objects throughout the video sequence. Despite the high
Frag count, the Ego3DT framework’s overall leading performance
in key metrics solidifies its status as a robust solution for the MOT
challenge, particularly within the demanding context of ego-centric
videos.

4.5 Ablation Study
To refine the Ego3DT framework, we conduct a comprehensive
ablation study to discern the individual contributions of detector
quality and memory mechanisms to the framework’s overall perfor-
mance. The experiments are carefully designed to isolate the impact
of these components, providing insights into their respective signif-
icance and interplay. As shown in Table 2, a high-quality detector
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Figure 3: Qualitative results of the 3D tracking field in Ego3DT: a) For the Ego3DT-daily dataset, diverse outdoor objects (IDs 1-7)
are successfully tracked within the environment, showing the model’s capability to handle varying object types and outdoor
conditions. b) In the Ego3DT-indoor dataset, common indoor objects (IDs 1-4) are tracked with high fidelity in a typical room
setup, demonstrating the precision of the 3D tracking across different indoor scenes.

profoundly influences the framework’s performance, and mem-
ory mechanisms play a nuanced role in achieving state-of-the-art
tracking performance in open vocabulary MOT scenarios.

Accurate Detector is Pivotal. The choice of detector plays a pivotal
role. The GLEE detector [72], being a high-quality pretrained detec-
tor, synergizes exceptionally well with our 3D association approach,
yielding a HOTA score of 30.83, which robustly indicates superior
detection and ID association. This confirms that a proficient de-
tector, coupled with our sophisticated 3D tracking methodology,
can substantially boost the overall tracking quality, ensuring that
high-quality detections translate into high-quality ID annotations.

Appropriate Memory Mechanism is Critical. It reflects on the bal-
ance between memory usage and tracking performance. Notably,
using a 30-frame memory mechanism offers the best performance
across all metrics. This optimized setting achieves a HOTA of 30.83
and an IDF1 of 29.71, underscoring the effectiveness of a limited
temporal memory that captures the immediate past to maintain
context without being burdened by the noise of distant frames.
On the other hand, the absence of a memory mechanism and the
use of full frame memory result in reduced performance, demon-
strating the importance of a focused temporal window for accurate
tracking. This suggests that an excessive memory span can dilute
the relevancy of information, leading to higher fragmentation and
decreased detection accuracy. The results highlight the delicate
trade-off between the memory’s depth and the tracking accuracy,
suggesting that moderate memory size is instrumental in improv-
ing the consistency and precision of object tracking in ego-centric
videos.

4.6 Qualitative Results
Our Ego3DT framework exhibits significant advancements in 3D
reconstruction and 2D tracking, showcasing robust performance
even under challenging first-person motion scenarios. We provide
a qualitative analysis of these two core aspects to highlight the
efficacy and improvements over existing methodologies.

4.6.1 Qualitive Results on 3D Reconstruction. A closer examination
of Ego3DT’s performance on our meticulously collected datasets
reveals the nuanced capability of our framework in handling com-
plex 3D environments. As shown in Figure 3, we present two dis-
tinct scenarios that showcase the efficacy of Ego3DT in real-world
applications.

Outdoor Tracking in Ego3DT-daily. The Ego3DT-daily dataset,
representing an array of outdoor settings, challenges the framework
with dynamic lighting, diverse object shapes, and sizes. Our model
demonstrates robustness in these conditions, accurately tracking
and maintaining consistent IDs across different object types, from
smaller items like a wok (ID 3) to larger potted plants (IDs 5 and
6). The 3D tracking field captures the spatial relations and move-
ment paths, illustrating the model’s adaptability to outdoor envi-
ronments.

Indoor Persistence in Ego3DT-indoor. Transitioning to the indoor
domain, the Ego3DT-indoor dataset offers a contrasting setting
with more controlled lighting but equally complex object interac-
tions. The model successfully delineates and tracks objects such
as furniture (IDs 1 to 4) in a typical room scenario, highlighting
its precision in cluttered, confined spaces. The tracking continuity
is evident, with the framework skillfully handling occlusions and
varying distances from the camera.
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Figure 4: Qualitative results of 2D tracking comparison: a) Ground Truth sequence showing accurate object detection and
consistent ID assignment over time. b) ByteTrack with GLEE detection demonstrating object tracking and identification, with
occasional ID inconsistencies and missed detections. c) Our Ego3DT approach, which maintains stable object identification,
accurately captures dynamic objects and shows superior consistency in ID assignment, especially evident in motion-rich
ego-centric perspectives. From left to right, the frames progress temporally, illustrating each method’s tracking continuity and
precision.

4.6.2 Qualitive Results on 2D Tracking. As shown in Figure 4,
we compare our method to ByteTrack [83] and demonstrate how
our approach offers improved detection stability. Our framework,
Ego3DT, is particularly effective in dynamic scenes that involve
uniform motion from a first-person perspective. It consistently
identifies and tracks a higher number of objects with greater re-
liability, making it an ideal solution for applications that require
real-time responsiveness and accuracy, such as augmented reality
and autonomous navigation systems.

As seen in the side-by-side comparison of 2D tracking techniques,
our Ego3DT framework excels at preserving object identity across
frames. The Ground Truth (a) provides a benchmark with flawless
tracking and ID fidelity. ByteTrack coupled with GLEE detection (b)
provides a strong baseline but occasionally falters with ID switches
and detection lapses, especially under the erratic motion intrinsic
to ego-centric videos. In contrast, our approach (c) consistently
demonstrates a remarkable grasp on object trajectories, maintaining
accurate IDs even in the presence of motion blur and rapid scene
changes. Moving from left to right through the temporal sequence,
this comparison underscores the Ego3DT framework’s advanced
capability to deliver reliable and coherent tracking performance in
dynamic and challenging first-person video scenarios.

These qualitative results underscore the versatile 3D tracking
capabilities of Ego3DT, cementing its potential for comprehensive
scene understanding and robust object tracking in diverse environ-
ments.

5 LIMITATION AND FUTUREWORK
Although our proposed Ego3DT can successfully detect and track
almost every 3D object in the scene, it might still fail in tracking
some rapidly moving objects like cats, dogs, or humans. We leave
this in future work, including tracking the moving objects and
detecting the interaction with the scene and other objects.

6 CONCLUSION
We have introduced the Ego3DT framework for accurately track-
ing 3D objects in ego-centric videos. The framework uses a so-
phisticated 3D estimation model and state-of-the-art detection and
segmentation technologies. Our experimental results demonstrate
that the Ego3DT framework outperforms established baselines and
can ensure accurate detection, consistent ID tracking, and precise
localization. The Ego3DT framework can facilitate practical appli-
cations in augmented reality, robotics, and advanced surveillance
systems.
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