
Appendices

Below we give an overview of the structure of the Appendices.

• In Appendix A we present some auxiliary lemmas which are used to prove our results.

• In Appendix B we present the proof of Lemma 4.1.

• Appendix C presents the proofs for the results in Sec. 5.

• In Appendix D we include additional details on the experimental setting in Sec. 6 and an
experiment on the US Census Data with gender as sensitive attribute.

• In Appendix E we provide a more rigorous treatment of the setting introduced in Sec. 7,
where we can have multiple condidates for each group at any given round. We also provide
more details and additional comparisons for the experiment on the US Census Data in Sec. 7.

• In Appendix F we investigate the tradeoff between fair an standard regret.

A Auxiliary Lemmas

Lemma A.1. Let n ∈ N, and assume that Y, ν are independent random variables in Rn, such that Y
is absolutely continuous and ν ̸= 0, almost surely. Then, ν⊤Y is an absolutely continuous random
variable.

Proof. It is enough to show that for any A ⊂ R with zero Lebesgue measure, P(ν⊤Y ∈ A) = 0. Let
A ⊆ R, then we can write

P(ν⊤Y ∈ A) = E[P(ν⊤Y ∈ A | ν)] .

We proceed the proof by controlling the term P(ν⊤Y ∈ A | ν). We know that ν ̸= 0 almost surely.
Now, since Y and ν are independent, let ν = w for a fixed w ∈ Rn such that w ̸= 0, then we have
that

P(w⊤Y ∈ A) =

∫
y∈Rn

1

{
w⊤

∥w∥2
Y ∈ A′

}
fY (y) dy ,

where we defined A′ :=
{

x
∥w∥2

: x ∈ A
}

. Now consider the change of basis matrix R =

(v1, . . . , vn)
⊤, such that v1 = w

∥w∥2
, with RR⊤ = In. By assigning Ŷ = R⊤Y , we can write

P(w⊤Y ∈ A) =

∫
ŷ∈Rn

1 {ŷ1 ∈ A′} fY (Rŷ) dŷ .

Since we assume that Y is an absolutely continuous random variable, there exists MY > 0, such that
supy∈Rn fY (y) ≤MY almost surely, which allows us to write

P(w⊤Y ∈ A) ≤MY

∫
ŷ∈Rn

1 {ŷ1 ∈ A′} dŷ .

Finally, it is straightforward to check that if A has a zero Lebesgue measure, then A′ also has a a zero
Lebesgue measure, which gives P(w⊤Y ∈ A) = 0.

Lemma A.2 (Lipschitz CDF). Let n ∈ N, ν ∈ Rn/{0} and b ∈ R. Let also Y be an absolutely
continuous random variable with values in Rn, with probability density function fY . Then the CDF
of Z = ⟨ν, Y ⟩+ b, namely FZ , is Lipschitz continuous. More specifically

|FZ(r)−FZ(r′)| ≤M ′|r − r′| ∀r, r′ ∈ R ,

where M ′ = maxz∈R fZ(z).
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Proof. Since ν ̸= 0 and Y is absolutely continuous, Z is also absolutely continuous with probability
density fZ (see Lemma A.1). Furthermore, if r′ ≤ r, we can write

FZ(r)−FZ(r′) =
∫ r

−∞
fZ(t) dt−

∫ r′

−∞
fZ(t) dt =

∫ r

r′
fZ(t) dt ≤M ′(r − r′).

Applying the same reasoning to the case when r ≤ r′ concludes the proof.

Lemma A.3. Let {Xa}Ka=1 be K random variables with values in Rd and such that they are all 0
with probability strictly less than one. Define Σ = K−1

∑K
a=1 E[XaX

⊤
a ] and let Σ = USU⊤ be

its compact eigenvalue decomposition with U ∈ Rd×r, S ∈ Rr×r with 1 ≤ r ≤ d. Assume that S
is invertible. Then, for any y ∈ ∪Ka=1Supp(Xa), we have UU⊤y = y and λ+min(Σ)∥y∥22 ≤ y⊤Σy,
where λ+min(Σ) is the smallest non-zero eigenvalue of the matrix Σ.

Proof. Let X be a random variable with the distribution P(X) = K−1
∑K
a=1 P(Xa). It is straight-

forward to check that Σ = E[XX⊤], and y ∈ Supp(X). We can also write y = y1 + y2 where
y2 ∈ Ker(Σ) := {z ∈ Rd : Σz = 0} and y1 ∈ Ker(Σ)⊥ := {z ∈ Rd : ⟨z, x⟩ = 0,∀x ∈ Ker(Σ)}.
This implies that

y⊤2 Σy2 = E[y⊤2 XX⊤y2] = 0 . (5)

Now, let f(x) = (y⊤2 x)
2. Then, f(x) ≥ 0, for any x ∈ Rd and f(y) = ∥y2∥42. Furthermore,

since, f(x) is a continuous function there exists ϵ > 0, such that for any z ∈ B(y, ϵ) = {x ∈ Rd :

∥x− y∥2 < ϵ}, f(z) ≥ ∥y2∥4
2

2 . On the other hand, since y ∈ Supp(X), P(X ∈ B(y, ϵ)) > 0. Hence,
we can write

0 = y⊤2 Σy2 = E[f(X)] ≥ E[f(X)1 {X ∈ B(y, ϵ)}] ≥ ∥y2∥42
2

P(X ∈ B(y, ϵ)) ,

therefore y2 = 0 which implies that y ∈ Ker(Σ)⊥. Since UU⊤y is the orthogonal projection of y
onto Ker(Σ)⊥ we conclude that y = UU⊤y, y⊤ = y⊤UU⊤ and

y⊤Σy = y⊤USU⊤y ≥ λ+min(Σ)y
⊤UU⊤y = λ+min(Σ)∥y∥

2
2 .

B Proof of Lemma 4.1

Proof. If t < 3 then µt̃ = 0 and at ∼ U [[K]] and the statement follows. If t ≥ 3, Let µ ∈ S :=
{µ′ ∈ Rd : µ′⊤Ba ̸= 0∀a ∈ [K]}, r̂i,a = ⟨µ,Xi,a⟩ and t′ = t− t̃− 1. Then by Lemma A.1 r̂i,a is
absolutely continuous. Given a permutation of indices j = (j1, . . . , jt′) where ji ∈ {t̃+ 1, . . . , t},
for i ∈ [t′]. Let Ωa be the set of the events of {Xi,a}ti=t̃+1

and P be the set of all permutations of the
indices {t̃+ 1, . . . , t}. Consider the event

Ea,j = {ω ∈ Ωa : r̂j1,a < · · · < r̂jt′ ,a } .

Since {r̂i,a}ti=t̃+1
are absolutely continuous, we have for all k ̸= i, P(r̂ji,a = r̂jk,a) = 0 and this

yields Ωa = ∪j∈PEa,j and Ea,j ∩ Ea,j′ = ∅ for all j ̸= j′. Furthermore, since {r̂i,a}ti=t̃+1
are

i.i.d. we have that pa := P(Ea,j) = P(Ea,j′) for all j ̸= j′. In particular, since |P | = t′! we have
pa = 1/(t′!).

Let ϕa = (t′ − 1)−1
∑t−1
i=t̃+1 1 {r̂i,a < r̂t,a}. Let b ∈ {0, . . . , t− 1} and let Pb = {j ∈ P : jb+1 =

t}. We have that |Pb| = (t′ − 1)! and

P(ϕa = b/(t′ − 1)) =
∑
j∈Pb

P(Ea,j) = (t′ − 1)!pa =
1

t′
.

As a consequence, for all a ∈ [K], ϕa is uniform over {0, 1/(t′−1), . . . , 1}. Since {ri,a}i∈[t+1],a∈[K]

are mutually independent we have that {ϕa}a∈[K] are i.i.d. discrete uniform random variables. As a
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consequence, let â = U
[
argmaxa′∈[K] ϕ̂a

]
we have that P(â = a) = 1/K. Using the definition of

â we have

P(at = a) =
1

K
P(µt̃ ∈ S) + P(at = a |µt̃ ∈ Sc)P(µt̃ ∈ Sc) = 1

K
,

where the last equality is derived by the fact that by the construction of µt̃, P(µt̃ ∈ S) = 1.

C Proofs of Results in Sec. 5

The following result is used in the Proof of Lemma 5.2. Its proof is obtained by using the
Dvoretzky–Kiefer–Wolfowitz-Massart inequality [15, 30] combined with a union bound.

Lemma C.1. Let Assumption A(ii) hold and F̂t,a(r), and µt̃ to be generated by Alg. 1. Let Za :=
⟨µt̃, Xa⟩ and denote with FZa

its CDF, conditioned on µt̃. Then, with probability at least 1− δ we
have that for all 3 ≤ t ≤ T

sup
a∈[K],r∈R

|F̂t,a(r)−FZa(r)| ≤
√

log(2KT/δ)

t− 1
.

Proof. Let 3 ≤ t ∈ T and recall that t̃ = ⌊(t − 1)/2⌋. Note that from Assumption A(ii), for all
a ∈ [K], {⟨µt̃, Xi,a⟩}t−1

i=t̃+1
are i.i.d copies of Za, conditioned on µt̃. Since F̂t,a(r) is the empirical

CDF of Za conditioned on µt̃, we can apply the Dvoretzky–Kiefer–Wolfowitz-Massart inequality
[15, 30] to obtain

P

(
sup
r∈R

|F̂t,a(r)−FZa(r)| ≥

√
log(2/δ′)

2(t− 1− t̃)

)
≤ δ′ .

Therefore, since t̃ ≤ (t− 1)/2 we deduce that P [Et,a] ≤ δ′ , where

Et,a =

{
{Xi,a}t−1

i=t̃+1
, µt̃ : sup

r∈R
|F̂t,a(r)−FZa

(r)| ≥
√

log(2/δ)

t− 1

}
.

Consequently, by applying a union bound we obtain

P
[
∪Ti=1 ∪Ka=1 Et,a

]
≤

T∑
i=1

K∑
a=1

P(Et,a) ≤ KTδ′ ,

Finally, by substituting δ′ = δ/(KT ) and computing the probability of the complement of ∪Ti=1∪Ka=1
Et,a, we obtain the desired result.

C.1 Proof of Lemma 5.1

Proof. For every a ∈ [K], by Assumption A(iv), we have that Xa = BaYa + ca where Ya ∈ Rda is
absolutely continuous with density fa. Let ν∗ := µ∗⊤Ba, ν := µ⊤Ba, b∗ := ⟨µ∗, ca⟩, b := ⟨µ, ca⟩.
Then we have

Za = ⟨µ∗, Xa⟩ = ⟨ν∗, Ya⟩+ b∗ , and Z̃a = ⟨µ,Xa⟩ = ⟨ν, Ya⟩+ b .

From Assumption A(iv) we also have that ν∗ ̸= 0, hence, by applying Lemma A.2 with ν = ν∗ and
Y = Ya and by taking the maximum over a ∈ [K], the statement (i) follows.

We now prove (ii). Since Ya is absolutely continuous we can write for any r ∈ R

|Fa(r)−FZ̃a
(r)| = |F⟨ν∗,Ya⟩+b∗(r)−F⟨ν,Ya⟩+b(r)|

≤
∫
y∈Rda

∣∣∣∣1 {⟨ν∗, y⟩+ b∗ ≤ r} − 1 {⟨ν, y⟩+ b ≤ r}
∣∣∣∣fa(y) dy .
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Now, by adding and subtracting q(y) := ⟨ν∗ − ν, y⟩+ b∗ − b and letting r′ := r − b∗ we have

|Fa(r)−FZ̃a
(r)| ≤

∫
y∈Rda

∣∣∣∣1 {⟨ν∗, y⟩ ≤ r′} − 1 {⟨ν∗, y⟩ ≤ r′ + q(y)}
∣∣∣∣fa(y) dy

≤
∫
y∈Rda

1 {r′ − |q(y)| ≤ ⟨ν∗, y⟩ ≤ r′ + |q(y)|} fa(y) dy .

By Cauchy-Schwarz inequality, for any y ∈ Supp(Ya), we get

|q(y)| ≤ |⟨ν∗ − ν, y⟩+ b∗ − b| ≤ |⟨µ∗ − µ,Bay + ca⟩| ≤ ∥µ∗ − µ∥∥xmax∥∗ ,

where we defined ∥xmax∥∗ := maxx∈∪K
a=1Supp(Xa)∥x∥∗ = maxy∈∪K

a=1Supp(Ya)∥Bay + ca∥∗. We
now let κ = ∥µ∗ − µ∥∥xmax∥∗, and note that

|Fa(r)−FZ̃a
(r)| ≤

∫
y∈Rda

1 {r′ − κ ≤ ⟨ν∗, y⟩ ≤ r′ + κ} fa(y) dy .

To control the above integral, we provide a proper change of variables. To this end, since by the
assumption ν∗ ̸= 0, we let {v1, . . . , vda} be an orthonormal basis of Rda , with v1 = ν∗/∥ν∗∥2.
Moreover, let R = (v1, . . . , vda) to be the corresponding change of basis matrix. Then, for all
y ∈ Rda , we can always write y = Rŷ, where ŷi = ⟨y, vi⟩, with ŷ1 = ⟨ν∗,y⟩

∥ν∗∥2
. Hence we denote

with Ŷa = R⊤Ya which now has the first coordinate parallel to ν∗. Using the change of variables
formula for multivariate integrals and noting that we are applying a rotation and hence |det(R)| = 1
and fRŶa

(Rŷ) = fŶa
(ŷ)/|det(R)| = fŶa

(ŷ) we get

|Fa(r)−FZ̃a
(r)| ≤

∫
ŷ∈Rda

1

{
r′ − κ

∥ν∗∥2
≤ ŷ1 ≤ r′ + κ

∥ν∗∥2

}
fŶa

(ŷ) dŷ .

Let z = (ŷ2, . . . , ŷda). By Fubini’s Theorem, and with the convention that fŶa
(ŷ1, z) =

fŶ (ŷ1, z1, . . . , zda−1) we have

|Fa(r)−FZ̃a
(r)| ≤

∫
ŷ1∈R

1

{
r′ − κ

∥ν∗∥2
≤ ŷ1 ≤ r′ + κ

∥ν∗∥2

}∫
z∈Rda−1

fŶa
(ŷ1, z) dz dŷ1

=

∫
ŷ1∈R

1

{
r′ − κ

∥ν∗∥2
≤ ŷ1 ≤ r′ + κ

∥ν∗∥2

}
fŶ1

(ŷ1) dŷ1 ,

where fŶ1
(ŷ1) :=

∫
z∈Rda−1 fŶ (ŷ1, z1, . . . , zda−1) dz is the marginal density of Ŷ1 = ⟨ν∗,Ya⟩

∥ν∗∥2
, and

we highlight that Ŷ1 = (Za − b∗)/∥ν∗∥2. Finally note that

max
y1∈R

fŶ1
(y1) = ∥ν∗∥2 max

y1∈R
fZa

(y1) = ∥ν∗∥2M ,

which yields

|Fa(r)−FZ̃a
(r)| ≤ 2κM ,

and (ii) follows by substituting the definition of κ.

C.2 Proof of Proposition 5.1

Proof. Recall the definition of Alg. 1. For any a ∈ [K] let r̂t,a = µ⊤
t̃
Xt,a, which is the estimated

reward for arm a, at round t. Note that µt̃ and Xt,a are independent random variables. Furthermore,
denote with Fr̂t,a the CDF of r̂t,a conditioned on µt̃, and let

ϕt,a := Fr̂t,a(r̂t,a) , and ϕ̂t,a := F̂t,a(r̂t,a) .

Now, by the definition of the algorithm, we have

P(at = a |H−
t−1) =

K∑
m=1

1

m
P(a ∈ Ct, |Ct| = m |H−

t−1) ,
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where we introduced Ct := argmaxa∈[K] ϕ̂t,a. Let ϵt > 0 and continue the analysis conditioning on
the events where supa∈[K] |ϕt,a − ϕ̂t,a| ≤ ϵt. Then, we can write

P(at = a |H−
t−1) ≥ P(ϕ̂t,a > ϕ̂t,a′ , ∀a′ ̸= a |H−

t−1) ≥ P(ϕt,a > ϕt,a′ + 2ϵt , ∀ a′ ̸= a |H−
t−1) ,

where in the first inequality we considered the case when a ∈ Ct and |Ct| = 1. In the second
inequality we considered the worst case scenario where ϕ̂t,a = ϕt,a − ϵt and ϕ̂t,a′ = ϕt,a′ + ϵt.
Recall that by the construction of the algorithm µt̃ = V −1

t̃
X⊤

1:t̃
r1:t̃ + (1/

√
dt̃) · γt̃. for all a ∈ [K],

the additive noise (1/
√
dt̃)γt̃ assures that µ⊤

t̃
Ba ̸= 0, almost surely. Therefore, by Lemma A.1

r̂t,a = ⟨µt̃, Xt,a⟩ conditioned on µt̃ is absolutely continuous.

Assumption A(iii) and [9, Theorem 2.1.10] yield that {ϕt,a}a∈[K] are independent and uniformly
distributed on [0, 1] and in turn that

P(at = a |H−
t−1) ≥

∫ 1

0

(P(ϕt,a′ < µ−2ϵt))
K−1

dµ =

∫ 1

2ϵt

(µ−2ϵt)
K−1 dµ =

(1−2ϵt)
K

K
. (6)

We continue by computing an ϵt for which supa∈[K] |ϕt,a − ϕ̂t,a| ≤ ϵt holds with high proba-
bility. Observing that, conditioned on µt̃, F̂t,a is the empirical CDF of Fr̂t,a , we can use the
Dvoretzky–Kiefer–Wolfowitz-Massart inequality to obtain, for any a ∈ [K], t ≥ 3, and s ≥ 0

P
(
|ϕt,a − ϕ̂t,a| ≥ s

)
≤ 2 exp

(
−2s2(t− t̃− 1)

)
.

Now, let τ0 := 3 + 8 log3/2
(
5K e/δ

)
/
(
1− K

√
c
)3

. By applying the union bound, we can write

P

(
sup

t≥τ0,a∈[K]

|ϕt,a − ϕ̂t,a| ≥ s

)
≤ K

∞∑
t=τ0

P
(
|ϕt,a − ϕ̂t,a| ≥ s

)
≤ 2K

∞∑
t=τ0

exp
(
−2s2(t− t̃− 1)

)
.

Since t̃ = ⌊ t−1
2 ⌋, it is straightforward to check that

P

(
sup

t≥τ0,a∈[K]

|ϕt,a − ϕ̂t,a| ≥ s

)
≤ 2K

∫ ∞

t=τ0−1

exp
(
−s2t

)
dt ≤ 2Ks−2 exp

(
−s2(τ0 − 1)

)
.

Now, for any δ ∈ (0, 1), by assigning s =
√

log(4K(τ0−1)/δ)
τ0−1 , we get

P

 sup
t≥τ0,a∈[K]

|ϕt,a − ϕ̂t,a| ≥

√
log(4K(τ0 − 1)/δ)

τ0 − 1

 ≤ δ

2 log (4K(τ0 − 1)/δ)
≤ δ

4
, (7)

where from τ0 ≥ 3, δ < 1 =⇒ 4K(τ0 − 1)/δ ≥ 8 ≥ e2 =⇒ log (4K(τ0 − 1)/δ) ≥ 2 we obtain
the last inequality. From (6), it follows that

inf
t≥τ0,a∈[K]

P
(
at = a|H−

t−1

)
≥

(1− 2 supt≥τ ϵt)
K

K
.

Moreover, form (7), by letting ϵt =
√

log(4K(τ0−1)/δ)
τ0−1 , with probability at least 1− δ

4 , we have

inf
t≥τ,a∈[K]

P
(
at = a|H−

t−1

)
≥ 1

K

1− 2

√√√√√ log(4K(τ0 − 1)/δ)

τ0 − 1︸ ︷︷ ︸
(I)


K

. (8)

For the term (I) in the above, using log(x) ≤ log(5 e/4)x1/3 and x ≥ x2/3 for any x ≥ 1 we deduce
that

(I) =
log(4K/δ) + log(τ0 − 1)

τ0 − 1
≤ log(4K/δ) + log(5 e/4)

(τ0 − 1)2/3
=

log(5K e/δ)

(τ0 − 1)2/3
.

Now, by substituting τ0 = 3 + 8 log3/2
(
5K e/δ

)
/
(
1− K

√
c
)3

, we get that (I) ≤ 1
4 (1− K

√
c)

2 and
conclude the proof by plugging this inequality in (8).
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C.3 Proof of Lemma 5.3

We start by establishing some required lemmas.
Lemma C.2. Let Σ, τ1, τ2 be defined in Lemma 5.3, τ3 = max (τ1, τ2), Σ = USU⊤ be the compact
eigenvalue decomposition of Σ, with U ∈ Rd×r, S ∈ Rr×r is a diagonal matrix with non-zero
diagonal elements, and U⊤U = Ir. Denote Ŝt0 =

∑t̃
i=1 U

⊤Xi,aiX
⊤
i,ai

U, where for i ∈ [t̃], ai is
given by Alg. 1. Then with probability at least 1− δ

2 , for any t ≥ 2τ3 + 3 we have

λmin

(
Ŝt0

)
≥ (t̃− τ3)λ

+
min(Σ)

4
.

Proof. Let S̃t0 :=
∑t̃
i=1 E

[
U⊤Xi,aiX

⊤
i,ai

U |H−
i−1

]
. First, note that for any τ3 ≤ i ≤ t̃, we can

write

E
[
U⊤Xi,aiX

⊤
i,aiU |H−

i−1

]
=

K∑
a=1

E
[
U⊤Xi,aiX

⊤
i,aiU |H−

i−1, ai = a
]
P
(
ai = a |H−

i−1

)
=

K∑
a=1

E
[
U⊤Xi,aX

⊤
i,aU

]
P
(
ai = a |H−

i−1

)
,

where the last equality holds based on the fact that Xi,aiX
⊤
i,ai

conditioned on ai, is independent
from H−

i−1. Then, since t ≥ 3 + 64K3 log3/2
(
5K e/δ

)
, by utilizing Proposition 5.1 with c = 1

2

and noting that 1/(1 − K
√
1/2) ≤ 2K for all K ≥ 1, with probability at least 1 − δ

4 , we have
P(ai = a |H−

i−1) ≥ 1
2K . Therefore, with probability at least 1− δ

4 , we obtain

λmin

(
E
[
U⊤Xi,aiX

⊤
i,aiU |H−

i−1

])
≥ 1

2
λmin

(
K−1

K∑
a=1

U⊤E
[
XaX

⊤
a

]
U

)
=
λ+min (Σ)

2
,

and consequently, with probability at least 1− δ
4 we have

λmin(S̃t̃) ≥
t̃∑
i=1

λmin(U
⊤E[Xi,aiX

⊤
i,ai |H

−
i−1]U) ≥ (t̃− τ3) ·

λ+min(Σ)

2
, (9)

where in the last two displays we used the concavity attribute of the function λmin(·). Note that
{Xi,ai}

∞
i=1, is an adaptive sequence with respect to the filtration

{
H−
i

}∞
i=0

, with

∥U⊤Xi,aiX
⊤
i,aiU∥op ≤ ∥Xi,ai∥22 ≤ L2 ,

for any i ∈ [t̃]. Let ι = t̃− τ3. Now, by invoking [33, Theorem 3.1] (with δ = 1
2 and µ = λ+min(Σ)/2,

where δ, µ are constants that appear in the latter theorem), we have

P
(
λmin

(
Ŝt0

)
≤ ιλ+min(Σ)

4
and λmin

(
S̃t0

)
≥ ιλ+min(Σ)

2

)
≤ d ·

e− 1
2

1
2

1
2


ιλ

+
min

(Σ)

4L2

≤ q ,

where we introduced q = d · exp(− ιλ+
min(Σ)

27L2 ), and we used the inequality e−
1
2 · 1

2

− 1
2 ≤ e−

4
27 . Note

that since t̃ ≥ τ3 = 54L2

λ+
min(Σ)

log( 4dδ ), we have q ≤ δ
4 . Let p = P[λmin(S̃t0) ≥

ιλ+
min(Σ)

2 ], then we can
write

P
(
λmin

(
Ŝt0

)
≤ ιλ+min(Σ)

4

∣∣∣∣λmin

(
S̃t0

)
≥ ιλ+min(Σ)

2

)
≤ δ

4p
,

and accordingly

P
(
λmin

(
Ŝt0

)
≥ ιλ+min(Σ)

4
and λmin

(
S̃t0

)
≥ ιλ+min(Σ)

2

)
≥ 1− δ

2
,

where we used p ≥ 1− δ
4 , which follows from (9). Substituting ι = t̃− τ3 gives the final result.
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Lemma C.3. Let x ∈ ∪Ka=1Supp(Xa) and τ3 be defined in Lemma C.2, then with probability at
least 1− δ

2 , for all t ≥ 2τ3 + 3 we have

∥x∥V −1

t̃

≤ 2L√
λ+min(Σ)(t̃− τ3)

.

Proof. Note that if x = 0 it is straightforward to check that the statement holds. So without loss
of generality we assume that x ∈ S, where S = ∪Ka=1Supp(Xt,a) − {0}. Consider the compact
singular value decomposition Σ = USU⊤ where U ∈ Rd×r, S ∈ Rr×r is a diagonal matrix with
non-zero diagonal elements (due to Assumption A(iv)) and U⊤U = Ir. Denote Ŝt̃ = U⊤Σ̂t̃U . For
any x ∈ S we have from Lemma A.3 that UU⊤x = x, and x⊤UU⊤ = x⊤. First, we claim that

U⊤(Σ̂t̃ + λId)
−1U = (Ŝt̃ + λIr)

−1 .

To prove the above claim, it is enough to show that

(Ŝt̃ + λIr)U
⊤(Σ̂t̃ + λId)

−1U = U⊤(Σ̂t̃ + λId)
−1U(Ŝt̃ + λIr) = Ir .

Note that

(Ŝt̃ + λIr)U
⊤(Σ̂t̃ + λId)

−1U =
(
U⊤Σ̂t̃U + λIr

)
U⊤(Σ̂t̃ + λId)

−1U

= U⊤(Σ̂t̃UU⊤ + λId
)(
Σ̂t̃ + λId

)−1
U

= U⊤(Σ̂t̃ + λId
)(
Σ̂t̃ + λId

)−1
U = Ir .

With similar steps one can show that U⊤(Σ̂t̃ + λId)
−1U(Ŝt̃ + λIr) = Ir, and therefore U⊤(Σ̂t̃ +

λId)
−1U = (Ŝt̃ + λIr)

−1. By exploiting this fact, we can write

∥x∥2
V −1

t̃

= ∥x∥22
(

x

∥x∥2
⊤
(Σ̂t̃ + λId)

−1 x

∥x∥2

)
= ∥x∥22

(
x

∥x∥2
⊤
UU⊤(Σ̂t̃ + λId)

−1UU⊤ x

∥x∥2

)
= ∥x∥22

(
x

∥x∥2
⊤
U(Ŝt̃ + λIr)

−1U⊤ x

∥x∥2

)
= ∥x∥22

(
x⊤U

∥x⊤U∥2
(Ŝt̃ + λIr)

−1 U⊤x

∥U⊤x∥2

)
,

where the second and last equations are results of Lemma A.3, and consequently

∥x∥2
V −1

t̃

≤ L2

λmin(Ŝt̃)
. (10)

On the other hand, from Lemma C.2, with probability at least 1− δ
2 , we have

λmin

(
Ŝt0

)
≥ (t̃− τ3)λ

+
min(Σ)

4
. (11)

Finally, by combining (10) and (11) with probability at least 1− δ
2 we have

∥x∥2
V −1

t̃

≤ 4L2

λ+min(Σ)(t̃− τ3)
.

Lemma C.4. With probability at least 1− δ
4 , for all t ≥ 3 we have

∥µ∗ − µt̃∥Vt̃
≤ (λ

1
2 +R+ L)

√
d log((8 + 8t̃max(L2/λ, 1))/δ) + λ

1
2 ∥µ∗∥2 .
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Proof. Recall that by the definition of Alg. 1, we have µt̃ = V −1
t̃
X⊤

1:t̃
r1:t̃ + (1/d

√
t̃) · γt̃. Therefore,

we can write

∥µ∗ − µt̃∥Vt̃
≤ ∥µ∗ − V −1

t̃
X⊤

1:t̃r1:t̃∥Vt̃︸ ︷︷ ︸
(I)

+
ρ

d
√
t̃
∥γt̃∥Vt̃︸ ︷︷ ︸
(II)

.

We proceed the proof by providing upper bounds for (I) and (II). For (I), by invoking [1, Theroem 2],
with probability at least 1− δ

8 , for all t ≥ 3, which implies t̃ ≥ 1 we have

(I) ≤ R

√
d log((8 + 8t̃L2/λ)/δ) + λ

1
2 ∥µ∗∥2

≤ R

√
d log((8 + 8t̃max(L2/λ, 1))/δ) + λ

1
2 ∥µ∗∥2 .

On the other hand, since ρ ≤ 1, for term (II) we have

(II) ≤ 1

d
√
t̃
∥Vt̃∥

1
2
op∥γt̃∥2 ≤ L+ λ

1
2

d
∥γt̃∥2 .

P
(
(II) ≥ (L+ λ

1
2 )
√
log(8d/δ)

)
≤ P

(
∥γt̃∥2 ≥ d

√
log(8d/δ)

)
≤ dP

(
|γ1,t̃| ≥

√
log(8d/δ)

)
≤ δ

8
.

Thus, by applying the union bound with probability at least 1− δ
8 , for all t ≥ 3 we have

(II) ≤ (L+ λ
1
2 )

√
log(8t̃d/δ) ≤ (L+ λ

1
2 )

√
d log((8 + 8t̃max(L2/λ, 1))/δ) .

Proof of Lemma 5.3. Recall that τ3 = max(τ1, τ2). From Lemma C.3, with probability at least 1− δ
2

for all t ≥ 2τ3 + 3 we have

∥x∥V −1

t̃

≤ 2L√
λ+min(Σ)(t̃− τ3)

.

From Lemma C.4, with probability at least 1− δ
4 for all t ≥ 3

∥µ∗ − µt̃∥Vt̃
≤ (λ

1
2 +R+ L)

√
d log((8 + 8t̃max(L2/λ, 1))/δ) + λ

1
2 ∥µ∗∥2 .

Thus, combining Lemmas C.3 and C.4, with probability at least 1− 3δ
4 for all t ≥ 2τ3 + 3 we have

∥µ∗ − µt̃∥Vt̃
∥x∥V −1

t
≤

2L√
λ+min(Σ)(t̃− τ3)

(
(λ

1
2 +R+ L)

√
d log((8 + 8t̃max(L2/λ, 1))/δ) + λ

1
2 ∥µ∗∥2

)
.

By the fact that t ≥ 4τ3 + 3, we have t̃ ≥ 2τ3, which implies 1√
t̃−τ3

≤
√

2
t̃
. We conclude the proof

by using the inequality t̃ ≥ t−3
2 ≥ t

8 , for all t ≥ 4.

C.4 Proof of Theorem 1

Proof. Combining Lemma 5.2 with Lemma 5.3 and using 1/(t−1) ≤ 3/(4t) for all t ≥ 4 we obtain,
with probability at least 1− δ and for all τ ≤ t ≤ T

Fa∗t (⟨µ
∗, Xt,a∗t

⟩)−Fat(⟨µ∗, Xt,at⟩) ≤ 4

√
log(8KT/δ)

3t

+
48ML√
λ+min(Σ)t

(
(λ

1
2 +R+ L)

√
d log((8 + 4tmax(L2/λ, 1))/δ) + λ

1
2 ∥µ∗∥2

)
.
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By summing up the last inequality, with probability at least 1− δ we get

T∑
t=τ

[
Fa∗t (⟨µ

∗, Xt,a∗t
⟩)−Fat(⟨µ∗, Xt,at⟩)

]
≤ 8

√
T log(8KT/δ)

3

+
96ML√
λ+min(Σ)

(
(λ

1
2 +R+ L)

√
dT log((8 + 4T max(L2/λ, 1))/δ) +

√
λT∥µ∗∥2

)
.

(12)
where the last display is obtained by the inequality

∑T
t=1 t

− 1
2 ≤ 2T

1
2 . On the other hand, for t ∈ [T ],

Fa∗t (⟨µ
∗, Xt,a∗t

⟩)−Fat(⟨µ∗, Xt,at⟩) ≤ 1, and we can write

τ∑
t=1

[
Fa∗t (⟨µ

∗, Xt,a∗t
⟩)−Fat(⟨µ∗, Xt,at⟩)

]
≤ τ . (13)

By combining (12) and (13), we conclude the proof.

D Experiments

In this section we include additional details on the simulation experiments in Sec. 6 and an experiment
on the US census data.

D.1 Additional Details on the Simulation

We use the following value for the underlying linear model used in Fig. 1.

µ∗ = ( 4, 3, 7, 0︸ ︷︷ ︸
Group 1

, 8, 0, 0, 0︸ ︷︷ ︸
Group 2

, 5, 5, 0, 0︸ ︷︷ ︸
Group 3

, 2, 2, 2, 2︸ ︷︷ ︸
Group 4

, 1) .

Each slice of 4 coordinates of µ∗ affects a different group. Furthermore, since each coordinate of
Ya follows a standard uniform distribution, the resulting reward distributions for each group follow
weighted variants of the Irwin-Hall distribution [18].

D.2 Experiments on US Census data

In this section, we present an experiment performed using the US Census data and the FalkTables
library4 [13]. In particular we construct a dataset with features similar to the UCI Adult dataset but
where the target is the person’s income instead of the binary variable indicating if the income is more
or less than 50K dollars. We use this target as a possibly inaccurate proxy for how well a candidate
will perform on the job, hence it is used as the noisy reward for the bandit problem.

Setup and Preprocessing. To setup the bandit problem, we construct 2 datasets, namely D1 and
D2, by selecting 500K males and 500K females random samples first from the 2017 US Census
Survey, to assemble D1, and then from the 2018 survey to assemble D2. We use D1 to find mean and
standard deviation for each feature and also for the target. After that we normalize features and target
from D2 by subtracting the mean and dividing by the standard deviation previously computed on D1.
We then construct µ∗ as a ridge regression estimate on the samples from D2 with the regularization
parameter equal to 10−8. The regression vector µ∗ will be used to compute the (true) rewards for
the samples. We construct the bandit problem with K = 2 arms/groups which correspond to the
gender identities male and female. At each round, the context vectors of one male and one female
candidate are sampled from D2 and after one of the two is selected by the policy, its corresponding
noisy reward (i.e. its income) is received by the agent.

Baselines. We compare our method, namely Fair-greedy (Alg. 1), with the following baselines.

• Uniform Random, which selects an arm uniformly at random at each round.

• OFUL [1], with exploration parameter set to 0.1.

4https://github.com/zykls/folktables
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Figure 3: US Census Results. Top two images are density and CDF plots of the reward distributions while the
bottom two plots are the standard and fair pseudo-regrets, with mean (solid lines) ± standard deviation (shaded
region) over 10 runs. To compute the reward PDF and CDF for each group we use the empirical CDF on all
500K samples from D2.

• Greedy, which computes the ridge regression estimate for the reward vector using all the
selected contexts and noisy rewards in the history and then selects the arm maximising the
estimated reward.

• Fair-greedy (Oracle CDF), which is a variant of Fair-greedy where all the selected contexts
and noisy rewards in the history are used to compute the ridge regression estimate and the
empirical CDF of each group is replaced by the true CDF.

• Fair-greedy (Oracle rewards), which is another variant of Fair-greedy where the ridge
regression estimate is replaced by the true reward model µ∗ and all contexts in the history
are used to compute the empirical CDF for each group.

Note that the last two methods are oracle methods because they rely either on the true CDF of
the rewards for each group or on µ∗, which are unknown to the agent. All methods using a ridge
regression estimate have the regularization parameter set to 0.1. We observed that varying this
parameter did not affect much the relative performance of the methods.

Results. The results and the reward distributions are illustrated in Fig. 3. We note that in this case,
Greedy performs much better than OFUL, which appears to be too conservative for this problem. In
particular, the standard pseudo-regret of Greedy is unrivaled after 1000 rounds. Furthermore, since
there is a large overlap in the distributions of rewards, our Fair-greedy policy performs much better
than the Uniform Random policy even in terms of standard pseudo-regret, while it outperforms all
non-oracle methods in terms of fair pseudo-regret. As expected, the oracle methods both achieve a
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lower fair pseudo-regret than Fair-greedy, and we note that knowing only the underlying model µ∗ is
significantly more advantageous than knowing only the CDF for each group.

E Multiple Candidates for Each Group

This section contains a rigorous treatement of the content in Sec. 7. We consider the more realistic
case where contexts from a given arm do not necessarily belong to the same group. In particular,
we assume that at each round t, the agent receives tuples {(Xt,a, st,a)}Ka=1, where st,a ∈ [G] is the
sensitive group of the context Xt,a ∈ Rd and G is the total number of groups. After that the agent
selects action at and subsequently receives the noisy reward ⟨µ∗, Xt,a⟩+ ηt

Note that we recover the original setting discussed in Sec. 3 when G = K and st,a = a for every
a ∈ [K], t ∈ N. A more realistic scenario is when {(Xt,a, st,a)}Ka=1 are i.i.d., and the distribution
represents e.g. the underlying population of candidates, where P(st,a = i) is the same for all a ∈ [K]
and can be small when the group i is a minority. The following analysis applies to both cases.

We impose the following assumption, which is a natural extension of Assumption A.
Assumption B. Let µ∗ ∈ Rd be the underlying reward model. We assume that:

(i) The noise random variable ηt is zero mean R-subgaussian, conditioned on Ht−1.

(ii) For any a ∈ [K], let (Xa, sa) be a random variable with values in Rd× [G] and ∥Xa∥2 ≤ L
almost surely. {(Xt,a, st,a)}Tt=1 are i.i.d. copies of (Xa, sa). Xa conditioned to sa = i is a
copy of the random variable X̂i which is independent on the arm, for every a ∈ [K].

(iii) For every a ∈ [K] Xa conditioned to sa is independent from (Xa′ , sa′) for any a′ ̸= a.

(iv) For every i ∈ [G], then there exist di ≥ 1, an absolutely continuous random variable Yi
with values in Rdi admitting a density fi, Bi ∈ Rd×di and ci ∈ Rd such that B⊤

i Bi = Idi ,

X̂i = BiYi + ci and µ∗⊤Bi ̸= 0 .

We define F(r, i) = P(⟨µ∗, X̂i⟩ ≤ r) = P(⟨µ∗, Xa⟩ ≤ r | sa = i) for any r ∈ R, i ∈ G. Hence we
can extend the definition of group meritocratic fairness as follows.
Definition E.1 (GMF policy). a policy {a∗t }∞t=1 is group meritocratic fair (GMF) if for all t ∈ N, a ∈
[K] it satisfies

F(⟨µ∗, Xt,a∗t
⟩, sa∗t ) ≥ F(⟨µ∗, Xt,a⟩, st,at) .

The fair pseudo-regret is now defined as

RF (T ) =

T∑
t=1

F(⟨µ∗, Xt,a∗t
⟩, sa∗t )−F(⟨µ∗, Xt,at⟩, sat) (14)

We can adapt Proposition 3.1 to this setting as follows.
Proposition E.1 (GMF policy satisfies history-agnostic demographic parity). Let {⟨µ∗, Xa⟩}Ka=1
conditioned to {sa}Ka=1 be independent and absolutely continuous and for every a ∈ [K], t ∈ N, let
(Xt,a, st,a) be an i.i.d. copy of (Xa, sa). Then for every t ∈ N, {F(⟨µ∗, Xt,a⟩, st,a)}Ka=1 conditioned
to {st,a}Ka=1 are i.i.d. uniform on [0, 1] and

P(a∗t = a | st,a,H−
t−1) = 1/K ∀a ∈ [K], (15)

for any GMF policy {a∗t }∞t=1.

Proof. Let ψa := F(⟨µ∗, Xt,a⟩, st,a). From the assumptions {ψa}Ka=1 conditioned to {st,a}Ka=1

are i.i.d random variables, independent from H−
t−1, with uniform distribution on [0, 1] (see [9,

Theorem 2.1.10]). Let P̃ = P(· | {st,a}Ka=1,H−
t−1), we have that ∀a1, a2 ∈ [K]: P̃(ψa1 = ψa2) = 0,

P̃(a∗t = a |H−
t−1) = P̃(a∗t = a) and

P̃(a∗t = a1) = P̃(ψa1 > ψa′ , ∀a′ ̸= a1) = P̃(ψa2 > ψa′ , ∀a′ ̸= a2) = P̃(a∗t = a2) = 1/K .

24



Let St,̸a = {st,a : a ∈ [K]/a}, then the statement follows from

P(a∗t = a | st,a,H−
t−1) = ESt, ̸a [P̃(a∗t = a)] .

Proposition E.1 states that the probability of selecting an arm does not change based on group
membership. Fair-Greedy V2 in Alg. 2 is the extension of the fair-greedy policy to this new setting.

Algorithm 2 Fair-Greedy V2

1: Requires regularization parameter λ > 0, and noise magnitude ρ ∈ (0, 1]
2: for t = 1 . . . T do
3: Receive {(Xt,a, st,a)}Ka=1

4: Set t̃ = ⌊(t− 1)/2⌋, X1:t̃ = (X1,a1 , . . . , Xt̃,at̃
)⊤, r1:t̃ = (r1,a1 , . . . , rt̃,at̃).

5: If t̃ = 0 set µt̃ = 0, else let Vt̃ := X⊤
1:t̃
X1:t̃ + λId, generate γt̃ ∼ N (0, Id) and compute

µt̃ := V −1
t̃
X⊤

1:t̃r1:t̃ +
ρ

d
√
t̃
· γt̃ .

6: For each a ∈ [K], let i := st,a and Nt,i =
∑t−1
j=t̃+1

∑K
a′=1 1 {sj,a′ = i}, compute

F̂t(⟨µt̃, Xt,a⟩, i) := N−1
t,i

t−1∑
j=t̃+1

K∑
a′=1

1 {⟨µt̃, Xj,a′⟩ ≤ ⟨µt̃, Xt,a⟩}1 {sj,a′ = i} .

7: Sample action
at ∼ U

[
argmax
a∈[K]

F̂t(⟨µt̃, Xt,a⟩, st,a)
]
.

8: Observe noisy reward rt,at = ⟨µ,Xt,at⟩+ ηt.
9: end for

Notice that the number of contexts used for the CDF approximation for group i ∈ [G] is now the
random variable Nt,i. Furthermore, we are now using contexts from all the arms to estimate the
CDFs, which as we will see it can improve the dependency on K in the fair pseudo-regret bound. We
observe that the information averaged demographic parity property of Lemma 4.1 does not transfer
directly to Fair-Greedy V2, because at each round, there can be a different number of candidates for
each group. However, as we will see, the regret is still similar to the original case.

The following Lemma establishes an high probability lower bound on Nt,i.

Lemma E.1. Let qK := mini∈[G]

∑K
a=1 P(sa = i) and let

R = 1 {∃a ∈ [K] such that ∀i ∈ [G]P(sa = i) < 1} .

R = 1 means that the sensitive attribute is random for at least one arm, while is deterministic if
R = 0. Then, let α = Rb+ (1−R) with b ∈ (0, 1) and tN := 3 +R⌈ 2

(1−α)2qK log(GT/δ)⌉, with
Nt,i defined at Line 6 of Alg. 2 and,without loss of generality, qK > 0. For simiplicity we let Rx = 0
when R = 0, x = ∞. We have that with probablity at least 1−Rδ, for every t ∈ {tN , . . . , T}

min
i∈[G]

Nt,i ≥ (t− 1− t̃)αqK

Proof. If R = 0, then P(sa = i) = 1 {sa = i} and the result follows.

If R = 1 instead, note that for every i ∈ [G] we have that

E[Nt,i] =
t−1∑
j=t̃−1

K∑
a=1

P(sa = i) ≥ (t− 1− t̃)qK .

Applying the Chernoff bound we have that with probability at least 1− δ, for all t > tN

Nt,i ≥ αE[Nt,i] ≥ (t− 1− t̃)αqK ,

and the statement follows
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Let ST (tN , α) :=
{
{{st,a}Ka=1}Tt=1 : miniNt,i ≥ (t− t̃−1)αqK for all tN ≤ t ≤ T

}
be the event

when Lemma E.1 is satisfied. We can then proceed the analysis assuming that ST (tN , α) holds.
Noticing that the maximum number of approximate CDFs to be computed at each round is G we can
adapt Lemma C.1 as follows.

Lemma E.2. Let Assumption B(ii) hold and F̂t(r, i), and µt̃ to be generated by Alg. 2. Let Zi :=
⟨µt̃, X̂i⟩ and denote with FZi

(·) its CDF, conditioned on µt̃. Then, if the event ST (tN , α) is satisfied,
with probability at least 1− δ we have that for all tN ≤ t ≤ T

sup
i∈[G],r∈R

|F̂t(r, i)−FZi
(r)| ≤

√
log(2GT/δ)

(t− 1)αqK
.

Then, following the steps in Lemma 5.2, we obtain the following bound on the instantaneous regret.

Lemma E.3 (Instant regret bound). Let Assumption B(ii)(iv) hold and at to be generated by Alg. 2.
Then, if the event ST (tN , α) is satisfied, with probability at least 1 − δ/4, for all t such that
tN ≤ t ≤ T we have

F(⟨µ∗, Xt,a∗t
⟩, sa∗t )−F(⟨µ∗, Xt,at⟩, sat) ≤ 6M∥µ∗ − µt̃∥Vt̃

∥xmax∥V −1

t̃

+ 2

√
log(16GT/δ)

(t− 1)αqK
,

where ∥xmax∥V −1

t̃

:= supx∈∪G
i=1Supp(X̂i)

∥x∥V −1

t̃

.

Proof sketch. Uses the decomposition in the proof of Lemma 5.2, then Lemma E.2 and a version of
Lemma 5.1 adapted to this more general setting.

We can bound ∥µ∗ − µt̃∥Vt̃
using the confidence bounds in OFUL [1]. To bound ∥xmax∥V −1

t̃

instead,
we first provide an adaptation of Proposition 5.1, which guarantees sufficient exploration of all arms.
The proof is very similar to that of Proposition 5.1 and we report it here for completeness.

Proposition E.2. Let Assumption A hold, at be generated by Alg. 1 and c ∈ [0, 1). Then, if
ST (tN , α) is satisfied, with probability at least 1− δ/4 , for all a ∈ [K] and all t ≥ max

(
tN , 3 +

8 log3/2
(
5G e/δ

)(
1− K

√
c
)−3

(qKα)
−3/2

)
we have

P(at = a | st,a,H−
t−1) ≥

c

K
,

where we recall that H−
t = ∪ti=1

{
{(Xi,a, si,a)}Ka=1, ri,ai , ai

}
.

Proof. Recall the definition of Alg. 2. For any a ∈ [K] let r̂t,a = µ⊤
t̃
Xt,a, which is the estimated

reward for arm a, at round t. Note that µt̃ and Xt,a are independent random variables. Furthermore,
denote with Fr̂t,a(·, st,a) the CDF of r̂t,a conditioned on µt̃ and st,a, and let

ϕt,a := Fr̂t,a(r̂t,a, st,a) , and ϕ̂t,a := F̂t(r̂t,a, st,a) .

Let Ct := argmaxa∈[K] ϕ̂t,a. Now, by the definition of the algorithm, we have

P(at = a | {st,a}Ka=1,H−
t−1) =

K∑
m=1

1

m
P(a ∈ Ct, |Ct| = m |H−

t−1) ,

Let ϵt > 0 and P̃(·) = P(· | {st,a}Ka=1,H−
t−1, supa∈[K] |ϕt,a − ϕ̂t,a| ≤ ϵt). Then, we can write

P̃(at = a) ≥ P̃(ϕ̂t,a > ϕ̂t,a′ , ∀a′ ̸= a) ≥ P̃(ϕt,a > ϕt,a′ + 2ϵt , ∀ a′ ̸= a) ,

where in the first inequality we considered the case when a ∈ Ct and |Ct| = 1. In the second
inequality we considered the worst case scenario where ϕ̂t,a = ϕt,a − ϵt and ϕ̂t,a′ = ϕt,a′ + ϵt.
Recall that by the construction of the algorithm µt̃ = V −1

t̃
X⊤

1:t̃
r1:t̃ + (1/

√
dt̃) · γt̃. for all i ∈ [G],
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the additive noise (1/
√
dt̃)γt̃ assures that µ⊤

t̃
Bi ̸= 0, almost surely. Therefore, by Lemma A.1

r̂t,a = ⟨µt̃, Xt,a⟩ conditioned on µt̃ is absolutely continuous.

Assumption A(iii) and [9, Theorem 2.1.10] yield that {ϕt,a}a∈[K] conditioned to {st,a}Ka=1 are
independent and uniformly distributed on [0, 1] and in turn that

P̃(at = a) ≥
∫ 1

0

(P(ϕt,a′ < µ−2ϵt))
K−1

dµ =

∫ 1

2ϵt

(µ−2ϵt)
K−1 dµ =

(1−2ϵt)
K

K
. (16)

We continue by computing an ϵt for which supa∈[K] |ϕt,a − ϕ̂t,a| ≤ ϵt holds with high probability.
Observing that, conditioned on µt̃ and {st,a}Ka=1, F̂t,a(·, st,a) is the empirical CDF of Fr̂t,a(, st,a),
we can use Lemma E.1 and the Dvoretzky–Kiefer–Wolfowitz-Massart inequality to obtain, for any
a ∈ [K], t ≥ tN , and s ≥ 0

P
(
|ϕt,a − ϕ̂t,a| ≥ s

)
≤ 2 exp

(
−2s2(t− t̃− 1)(αqK)

)
.

Now, let τ0 := max
(
tN , 3 + 8 log3/2

(
5G e/δ

)(
1 − K

√
c
)−3

(αqK)−3/2
)
. By applying the union

bound and noticing that we have max of G CDFs and approximate CDFs, we can write

P

(
sup

t≥τ0,a∈[K]

|ϕt,a − ϕ̂t,a| ≥ s

)
≤ G

∞∑
t=τ0

P
(
|ϕt,a − ϕ̂t,a| ≥ s

)
≤ 2G

∞∑
t=τ0

exp
(
−2s2(t− t̃− 1)(αqK)

)
.

Since t̃ = ⌊ t−1
2 ⌋, it is straightforward to check that

P

(
sup

t≥τ0,a∈[K]

|ϕt,a − ϕ̂t,a| ≥ s

)
≤ 2G

∫ ∞

t=τ0−1

exp
(
−s2αqKt

)
dt

≤ 2G

αqKs2
exp

(
−s2αqK(τ0 − 1)

)
.

Now, for any δ ∈ (0, 1), by assigning s =
√

log(4G(τ0−1)/δ)
(τ0−1)αqK

, we get

P

(
sup

t≥τ0,a∈[K]

|ϕt,a − ϕ̂t,a| ≥

√
log(4G(τ0 − 1)/δ)

(τ0 − 1)αqK

)
≤ δ

2 log (4G(τ0 − 1)/δ)
≤ δ

4
, (17)

where from τ0 ≥ 3, δ < 1 =⇒ 4G(τ0 − 1)/δ ≥ 8 ≥ e2 =⇒ log (4G(τ0 − 1)/δ) ≥ 2 we obtain
the last inequality. From (16), it follows that

inf
t≥τ0,a∈[K]

P
(
at = a|{st,a}Ka=1,H−

t−1

)
≥

(1− 2 supt≥τ ϵt)
K

K
.

Moreover, form (17), by letting ϵt =
√

log(4G(τ0−1)/δ)
(τ0−1)αqK

, with probability at least 1− δ
4 , we have

inf
t≥τ,a∈[K]

P
(
at = a|{st,a}Ka=1,H−

t−1

)
≥ 1

K

1− 2

√√√√√ log(4G(τ0 − 1)/δ)

(τ0 − 1)αqK︸ ︷︷ ︸
(I)


K

. (18)

For the term (I) in the above, using log(x) ≤ log(5 e/4)x1/3 and x ≥ x2/3 for any x ≥ 1 we deduce
that

(I) =
log(4G/δ) + log(τ0 − 1)

(τ0 − 1)αqK
≤ log(4G/δ) + log(5 e/4)

(τ0 − 1)2/3αqK
=

log(5G e/δ)

(τ0 − 1)2/3αqK
.

Now, since τ0 ≥ 3 + 8 log3/2
(
5G e/δ

)(
1− K

√
c
)−3

(αqK)−3/2, we get that (I) ≤ 1
4 (1− K

√
c)

2 and
conclude the proof by plugging this inequality in (18).
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Furthermore, for fixed t, let Ẽ = E[· |H−
t−1] and P̃ = P[· |H−

t−1]. Note that if the assumptions of
Proposition E.2 are satisfied, then

Ẽ[Xt,atX
⊤
t,at ] =

G∑
i=1

E[X̂iX̂
⊤
i ]P̃(st,at = i)

=

G∑
i=1

E[X̂iX̂
⊤
i ]

K∑
a=1

P̃(at = a | st,a = i)P̃(st,a = i)

≥ cK−1
G∑
i=1

E[X̂iX̂
⊤
i ]qK = c

qKG

K

1

G

G∑
i=1

E[X̂iX̂
⊤
i ] (19)

where we applied Proposition E.2 in the last line. We can bound ∥xmax∥V −1

t̃

in Lemma E.3 in the
same way as in Lemma C.3 using (19) with c = 1/2 when needed in the proof of Lemma C.2.
Combining the previous results we obtain the following regret bound.

Theorem 2. Let Assumption B hold, at be generated by Alg. 2 and Σ := G−1
∑G
i=1 E[X̂iX̂

⊤
i ] Then,

with probability at least 1− δ, for any T ≥ 1 we have

RF(T ) ≤
96ML

√
K√

λ+min(Σ)qKG

[
(λ

1
2 +R+ L)

√
dT log((8 + 4T max(L2/λ, 1))/δ1) +

√
λT∥µ∗∥2

]

+ 8

√
T log(8GT/δ1)

3αqK
+ τ ,

where δ = δ1 +Rδ2, τ = 4max(τ1, τ2,Rτ3) + 3 and

τ1 =
32K3

(αqK)3/2
log3/2

(
5G e/δ1

)
, τ2 =

54L2

λ+min(Σ)
log(4d/δ1), τ3 =

2

(1− α)2qK
log(GT/δ2),

where qK , R and α are defined in Lemma E.1 and we use the convention Rτ3 = 0 if R = 0, τ3 = ∞.
Hence

RF(T ) = O

(
R log(GT/δ2)

qK
+
K3 log3/2(G/δ1)

q
3/2
K

+

√
dT log (GT/δ1)

(1 +G/K)qK)

)
.

Proof Sketch. First, assume ST (tN , α) holds and use a similar strategy of Thm. 1 to get a bound w.p.
at least 1− δ1. Then combine this result with Lemma E.1.

Notice that in the case where each arm corresponds to a different sensitive group, i.e. when G = K,
sa = a and therefore qK = 1, R = 0 and α = 1, we recover Thm. 1. Moreover, we have the
following corollary which shows an advantage for higher number of arms compared to the bound in
Thm. 1 when {(Xa, sa)}Ka=1 are i.i.d..
Corollary E.1. Let {(Xa, sa)}Ka=1 be i.i.d. and qmin := mini∈[G] P(sa = i)G. If Assumption B
holds and at is generated via Alg. 2 we have that with probability at least 1− δ, for any T ≥ 1 and
α ∈ (0, 1) we have that

RF(T ) ≤
96ML√

λ+min(Σ)qmin

[
(λ

1
2 +R+ L)

√
dT log((8 + 4T max(L2/λ, 1))/δ1) +

√
λT∥µ∗∥2

]

+ 8

√
TG log(8GT/δ1)

3Kαqmin
+ τ ,

where δ = δ1 + δ2, τ = 4max(τ1, τ2, τ3) + 3 and

τ1 =
32(KG)3/2

(αqmin)3/2
log3/2

(
5G e

δ1

)
, τ2 =

54L2

λ+min(Σ)
log

(
4d

δ1

)
, τ3 =

2G

(1− α)2Kqmin
log

(
GT

δ2

)
.
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Figure 4: US Census Results. Group = Ethnicity. First image is the density plots of the reward distributions,
the second image is the number candidates (in log scale) from each group which are selected by each policy
(mean and std over 10 runs), while the bottom two plots are the standard and fair pseudo-regrets, with mean
(solid lines) ± standard deviation (shaded region) over 10 runs. To compute the reward CDF for each group we
use the empirical CDF on 5K samples from D2.

Hence

RF(T ) = O

(
G log(GT/δ)

Kqmin
+

(KG)3/2 log3/2(G/δ)

q
3/2
min

+

√
dT log (GT/δ)

(1 +K/G)qmin)

)

Note that in Cor. E.1, qmin > 0 without loss of generality and qmin = 1 if and only if each group has
the same probability of being sampled. Furthermore qmin/G is the probability that a context belongs
to the less common group, which depends on the problem at hand. Note that there is an advantage
compared to Thm. 1 in terms of number of arms when K > G. This is because context coming from
all arms can be use to estimate the CDF of a given group.

E.1 Additional Details on the US Census Experiments

This experiment is introduced in Sec. 7 and similarly to that of Appendix D.2, is performed using
the US Census data. However, candidates are sampled from the original dataset at random together
with their sensitive group (their ethnicity). Hence, we use Fair-greedy V2 (Alg. 2). Differently from
Appendix D.2 where we use the target income as noisy reward, here we add artificial noise with
standard deviation 0.2 directly to the true reward.

Setup and Preprocessing. To setup the bandit problem, we construct two datasets: D1 and D2.
We first load all the data from the 2017 US Census Survey to assemble D1, and then from the 2018
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survey to assemble D2. Then we retain only candidates from 6 ethnic groups containing at least
5 × 103 candidates, in order to accurately compute the true CDF for each group. We use D1 to
find mean and standard deviation for each feature and also for the target. After that we normalize
features and target of D2 by subtracting the mean and dividing by the standard deviation previously
computed on D1. We then construct µ∗ as a ridge regression estimate on the samples from D2 with
the regularization parameter equal to 10−8. The regression vector µ∗ will be used to compute the
(true) rewards for the samples. We construct the bandit problem as follows. At each round, the
context vectors of K = 10 individual are sampled from D2 and after one is selected by the policy, its
corresponding noisy reward, obtained by adding gaussian noise with standard deviation 0.2 to the
true reward, is received by the agent.

Baselines. We compare our method with the same baselines as in Appendix D.2, where the two
oracle policies are now variants of Fair-Greedy V2. Moreover, we set the regularization parameter
for all policies using a ridge estimate to 0.1 and the exploration parameter of OFUL to 0.01.

Results (Fig. 4). We draw similar conclusions as in Appendix D.2. In particular, Greedy performing
better than OFUL and the Fair-Greedy policy achieving sublinear fair pseudo-regret, but worse than
Oracle methods. Additionaly we can see that knowing µ∗ plays a more important role than knowing
the true reward CDFs. In this case, the gap between the Uniform random policy and the others
is even larger since K = 10. Moreover, as expected, Fair-greedy selects more candidates from
underperforming (in terms of reward) minority groups, when compared with OFUL and Greedy.

F Trade off between Fairness and Reward Maximization

In this section, we show for which problems the GMF policy and the optimal policy have competing
goals. in particular, for the case of K = 2, when the rewards are absolutely continuous and
independent across arms, whenever they are not identically distributed, the GMF policy achieves
linear standard pseudo-regret with nonzero probability. The following theorem proves this result.

Theorem 3. Let Assumption A hold with K = 2, and assume that F1 ̸= F2. Let r̄t,a := ⟨µ∗, Xt,a⟩,
{a∗t }Tt=1 be the GMF policy (see Definition 3.1) and {aopt

t }Tt=1 be the optimal policy (see Remark 3.1).
Then, there exists ϵ > 0, such that

p =

∫ 1

0

[
max(F1(F−1

2 (y)− ϵ)− y, 0) + max(y −F1(F−1
2 (y) + ϵ), 0)

]
dy > 0 .

Furthermore with probability at least ϵp
4L∥µ∗∥ , for any T > 0, we have

T · ϵp
2

≤
T∑
t=1

[
r̄t,aopt

t
− r̄t,a∗t

]
. (20)

Proof. Let r̄a := ⟨µ∗, Xa⟩, qa = Fa(ra) be the CDF value of ra and F−1
a be the quantile function,

i.e. such that F−1
a (x) = inf{y ∈ R : x ≤ Fa(y)}. For ϵ > 0 consider the set Eϵ := Eϵ1 ∪ Eϵ2 where

Eϵ1 := {(x, y) ∈ [0, 1]2 : x > y,F−1
1 (x) < F−1

2 (y)− ϵ} ,

Eϵ2 := {(x, y) ∈ [0, 1]2 : x < y,F−1
1 (x) > F−1

2 (y) + ϵ} .

Note that we can write

Eϵ1 = {(x, y) ∈ [0, 1]2 : y < x < F1(F−1
2 (y)− ϵ)} ,

Eϵ2 = {(x, y) ∈ [0, 1]2 : F1(F−1
2 (y) + ϵ) < x < y} .
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Now, let g1,2(y, ϵ) = F1(F−1
2 (y) + ϵ). Since from Assumption A(ii)(iv), q1 an q2 are i.i.d uniform

on [0, 1] we have that

P((q1, q2) ∈ Eϵ) = P((q1, q2) ∈ Eϵ1) + P((q1, q2) ∈ Eϵ2)

=

∫ 1

0

∫ g1,2(y,−ϵ)

y

dxdy +
∫ 1

0

∫ y

g1,2(y,ϵ)

dxdy

=

∫ 1

0

max(g1,2(y,−ϵ)− y, 0)dy +
∫ 1

0

max(y − gϵ1,2(y, ϵ), 0)dy

=

∫ 1

0

[
max(F1(F−1

2 (y)− ϵ)− y, 0) + max(y −F1(F−1
2 (y) + ϵ), 0)

]
dy .

(21)
Since F1 ̸= F2, and F1,F2 are absolutely continuous, there exists ϵ′ > 0, such that F−1

2 (y) −
F−1

1 (y) > ϵ′, or F−1
2 (y) − F−1

1 (y) < ϵ′ for y inside a closed interval, and hence P((q1, q2) ∈
Eϵ

′
) > 0. This yields (20) by letting ϵ = ϵ′, and p = P((q1, q2) ∈ Eϵ).

Now, let qt,a = Fa(r̄t,a), then for the expected value of the instantaneous standard regret, at round t,
we can write

E
[
r̄t,aopt

t
− r̄t,a∗t

]
≥
∫
(x,y)∈Eϵ

|F−1
2 (y)−F−1

1 (x)|dx dy ≥ ϵP((qt,1, qt,2) ∈ Eϵ) = ϵp > 0 ,

and for the standard regret, we have

T∑
t=1

E
[
r̄t,aopt

t
− r̄t,a∗t

]
≥ T · ϵp > 0 .

Finally, let Ω be the event that 1
2 ·
∑T
t=1 E

[
r̄t,aopt

t
− r̄t,a∗t

]
≤
∑T
t=1[r̄t,aopt

t
− r̄t,a∗t ]. Considering the

fact that
∑T
t=1[r̄t,aopt

t
− r̄t,a∗t ] ≤ 2L∥µ∗∥T , we deduce

T∑
t=1

E[raopt
t
− r̄t,a∗t ] =

T∑
t=1

[
E[r̄t,aopt

t
− r̄t,a∗t |Ω]P(Ω) + E[r̄t,aopt

t
− r̄t,a∗t |Ω

c]P(Ωc)
]

≤ 2L∥µ∗∥TP(Ω) +
T∑
t=1

E[r̄t,aopt
t
− r̄t,a∗t ]/2 ,

and we get ϵp
4L∥µ∗∥ ≤

∑T
t=1 E[r̄t,aopt

t
− r̄t,a∗t ]/(4L∥µ

∗∥T ) ≤ P(Ω), which finishes the proof.

Remark F.1. In Thm. 3, ϵ ≤ 2L∥µ∗∥, otherwise p = 0. On the other hand, by the definition p ≤ 1,
and accordingly ϵp

4L∥µ∗∥ ≤ 1/2.

Remark F.2. With similar reasoning as in the proof of Thm. 3, we can show that if F1 ̸= F2

the optimal policy (see Remark 3.1) has linear fair pseudo-regret with positive probability, that
is independent of T . In particular, there exist c, c′ > 0, such that for any T > 0, P(T · c′ ≤∑T
t=1[Fa∗t (r̄t,a∗t )−Faopt

t
(r̄t,aopt

t
)]) > c.

Example 1 (Disjoint supports). As an example consider the case whenK = 2 and r̄t,1− r̄t,2 ≥ ϵ > 0,
for all t ≥ 1, almost surely. Then, F1(F−1

2 (y) − ϵ) = F1(F−1
2 (y) + ϵ) = 0 for every y ∈ [0, 1].

Hence we have

p =

∫ 1

0

[
max(F1(F−1

2 (y)− ϵ)− y, 0) + max(y −F1(F−1
2 (y) + ϵ), 0)

]
dy = 1/2 .

Then by Thm. 3, with probability at least ϵ
8L∥µ∗∥ , for any T > 0, we have

∑T
t=1[r̄t,aopt

t
− r̄t,a∗t ] ≥

Tϵ
4 .
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