
A Appendix

A.1 Additional Explanation to PartialFed-Adaptive

This section provides a more detailed explanation for our PratialFed-Adaptive. At the beginning
of FL, each client will choose a granularity for its searching. Take stage-level as an example, the
network parameters are grouped by stages in ResNet (see Figure 1). Then the client will build its
own sampling logits at stage-level to control the loading strategy. A single forward pass is depicted
in the figure, which is repeated in every batch of the training. Compared to reinforcement learning
algorithms, this implementation has the advantage of differentiability, which ease the training of
strategy parameters. But there are still some drawbacks: while the logits of each stage should be
considered as equal important, they are in fact weighted by the norm of gradients computed at each
feature map. The result is that the training speed of each logit varies from each other. How to give a
fair training to all logits is a challenging problem in this framework.

Figure 1: Computational flow of stage-level PartialFed-Adaptive: The sampling strategy consists
of four steps: 1. sample from a Gumbel Distribution; 2. add the sampled values to unnormalized
strategy logits, which controls the probability of loading global and local parameters; 3. a soft
strategy is obtained by softmax with temperature; 4. hard sample trick is used to discretize the soft
strategy. The sampled strategy is then used to mix global and local parameters. Finally, the combined
parameters are used for the ResNet-18 forward pass. The whole process is differentiable, enabling
end-to-end training.

B Experiments

B.1 Comparison on Existing Settings

To validate our algorithm more thoroughly, we additionally compare our algorithm in the experimental
settings in FedBN [3]. To be more specific, Office-Caltech10 [1] and DomainNet [5] dataset are
adopted for comparison. These two datasets contains 4 domains (Amazon, Caltech, DSLR and
WebCam) and 6 domains (Clipart, Infograph, Painting, Quickdraw, Real, Sketch), respectively. For
Office-Caltech10, all of the ten classes are used for training while for DomainNet, only the top
ten common classes are used for experiment. The overall settings are exactly the same as in the
open-sourced code published by FedBN. AlexNet with BN layers is used for these experiments. Since
there is no stage or block in AlexNet, we only report PartialFed-Adaptive searching at layer-level.

The results are shown in Table 1. Due to the reason that there are relatively less data in each domain,
encouraging more parameters to be shared can greatly reduce underfitting of model parameters.
FedBN use a very small fraction of domain-specific parameters and share most of them, which makes

1



it a very strong competitor in this setting. It beats our PartialFed-Fix (wo BN&fc) in the DomainNet
experiment, which rarely happens in larger datasets (see Appendix B.2 for a comparison with full
DomainNet experiments, the w/o BN strategy is equivalent to FedBN). But our PartialFed-Adaptive
still beats it and gets the best performance.

Table 1: Results on Offce-Caltech10 and DomainNet.

Method Caltech-10 DomainNet
A C D W Mean C I P Q R S Mean

SingleSet 54.9 40.2 78.7 86.4 65.1 41.0 23.8 36.2 73.1 48.5 34.0 42.8±1.5 ±1.6 ±1.3 ±2.4 ±0.9 ±1.2 ±2.7 ±0.9 ±1.9 ±1.1

FedAvg 54.1 44.8 66.9 85.1 62.7 48.8 24.9 36.5 56.1 46.3 36.6 41.5±1.1 ±1.0± ±1.5 ±2.9 ±1.9 ±0.7 ±1.1 ±1.6 ±1.4 ±2.5

FedProx 54.2 44.5 65.0 84.4 62.0 48.9 24.9 36.6 54.4 47.8 36.9 41.6±2.5 ±0.5 ±3.6 ±1.7 ±0.8 ±1.0 ±1.8 ±3.1 ±0.8 ±2.1

FedBN 63.0 45.3 83.1 90.5 70.5 51.2 26.8 41.5 71.3 54.8 42.1 48.0±1.6 ±1.5 ±2.5 ±2.3 ±1.4 ±0.5 ±1.4 ±0.7 ±0.8 ±1.3

PartialFed-Fix 58.3 44.9 88.1 91.2 70.6 48.0 25.5 40.7 71.5 56.8 38.2 46.8±1.4 ±1.5 ±1.2 ±3.1 ±1.3 ±0.6 ±1.4 ±0.7 ±0.6 ±0.5

PartialFed-Adaptive 63.4 45.4 85.6 90.5 71.3 52.7 27.4 40.3 71.4 55.7 42.7 48.4±1.5 ±1.9 ±3.2 ±1.7 ±0.9 ±1.1 ±1.2 ±0.9 ±0.3 ±0.9

B.2 Further Experiments on DomainNet
In section 2, we only include experiments with Office-Home dataset for clear explanation. To further
validate the generality of PartialFed, we use DomainNet for further experiments. Different from the
settings in Appendix B.1, we use the full training data with 345 classes for our experiments. Table 2
lists all of the results in DomainNet.

"Bottom-up v.s. Top-down" The experimental results are very similar to those in Office-Home.
Firstly, all the partially loaded strategies outperforms vanilla FedAvg. Secondly, additionally loading
fc on the basis of s1-s4 greatly harms the accuracy. Thirdly, although there is a slight drop, the
performance from s1 to s1-s4 is close. Given the large gap between domains, the drop seems
reasonable. On the other hand, there is a almost linearly decline in the "top-down" strategies (from
fc to s2-fc). We hypothesis that the "top-down" strategies is not a good strategy for cross-domain
federate learning.

Batch Normalization Similarly, the w/o BN and w/o BN&fc improve the FedAvg by a large
margin. We are surprising for the consistent improvements of these two simple strategies. But it
can be observed that they do not get higher performance than the single domain training in this
experiment. With the increase of domain gap and dataset cardinality, more parameters should be
made client-specific to fit custom data.

Skip Loading The rule of skip loading also works in DomainNet. We see that ABCD still works
the best and even outperforms w/o BN&fc in this experiment. This further proves the hypothesis that
client needs to learn client-specific knowledge at all levels of the network instead of only a part of
them. And with the increase of task complexity and domain gap, the skip loading strategy is better
than BN strategies, due to its higher degree of freedom. This is also proved in our UODB experiment,
where the fb strategy works best among all PartialFed-Fix strategies.

Adaptive The adaptive methods also proves its strength in this dataset. The block-level and layer-
level PartialFed-Adaptive gets superior performance than the single domain models on mean accuracy.
Note that the conflict between domains is severe in DomainNet, where even the All model gets
inferior performance than the single domain models. It is a tough task for the federated learning to
get higher performance than the single domain training.

B.3 Error Bar
We includes the error bar of the main results in Office-Home in this section. All the experiments are
ran by 5 times and compute the mean and standard deviation. See Table 3.

2



Table 2: Additional Results on DomainNet: ResNet18 is used as the backbone network. The first
line is the single domain result while the second and third lines represents performance of All model
trained with all data and vanilla FedAvg. The three kinds of PartialFed-Fix strategies in section 2
is followed by the baselines. The final block displays the results of PartialFed-Adaptive at three
granularity. We emphasize the best two results of each domain with red and orange.

Method Clipart Infograph Painting Quickdraw Real Sketch Mean

Single 70.96 36.74 65.40 71.07 79.36 63.91 64.57
All 72.53 37.02 64.29 69.91 78.08 64.09 64.27
FedAvg 67.23 31.90 62.32 68.06 78.65 59.31 61.24

PartialFed-Fix "Bottom-Up" v.s. "Top-Down"

s1 70.62 36.16 64.19 71.20 78.79 63.59 64.09
s1-s2 70.50 35.61 64.46 70.82 78.83 63.32 63.92
s1-s3 70.53 35.17 64.33 70.38 78.93 62.58 63.65
s1-s4 70.07 34.02 64.36 68.99 79.25 61.51 63.03
Full 67.23 31.90 62.32 68.06 78.65 59.31 61.24

fc 71.10 36.64 64.44 71.22 78.72 64.03 64.36
s4-fc 68.74 35.02 62.61 69.71 78.27 61.23 62.60
s3-fc 68.38 33.70 62.55 68.85 78.62 60.51 62.10
s2-fc 67.41 32.59 62.41 68.27 78.57 60.00 61.54
Full 67.23 31.90 62.32 68.06 78.65 59.31 61.24

PartialFed-Fix with BN strategies

w/o BN 68.19 33.94 63.09 68.46 78.71 60.49 62.15
w/o BN&fc 70.78 35.49 64.63 69.18 79.26 62.23 63.60

PartialFed-Fix with Skip strategies

AaBb 70.95 36.26 63.93 70.64 78.77 63.84 64.06
AaCc 71.26 36.76 64.71 70.78 78.97 63.80 64.38
BbCc 71.22 36.07 64.60 70.49 79.01 63.45 64.14
BbDd 68.72 34.57 62.42 69.43 78.30 61.17 62.43
CcDd 68.07 33.70 62.57 68.87 78.57 60.43 62.03
abcd (Skip) 70.19 35.18 63.12 69.87 78.42 63.16 63.32
ABCD (Skip) 71.75 37.46 65.57 70.66 79.27 64.07 64.80

PartialFed-Adaptive

stage 71.47 36.28 64.45 70.50 79.13 63.44 64.21
block 72.22 36.90 65.19 70.61 79.42 63.89 64.70
layer 72.26 37.07 65.49 70.53 79.30 64.04 64.78

C Training Details

C.1 Classification

Office-Home For the Office-Home baseline training, the initial learning rate is set as 0.01 and
decay 10 times at epoch 15 and 25. The total epoch is set as 30 epoch. Weight decay and batch
size are 5e-4 and 512 for all experiments of this dataset. For all federated experiments, including
vanilla FedAvg, FedProx, pFedMe, FedBN and PartialFed-Fix, we train the network for 100 global
iteration and each client train their model for 1 epoch in each iteration. We have also tested training
the baseline for 100 epoch, but it gets inferior performance due to overfitting. The learning rate decay
epoch is 50 and 75 in the 100 global iteration.
For PartialFed-Adaptive, the global iteration is set as 60. Since the size of the dataset is relative small
and there are very few steps in each epoch, we set the EM frequency fm and fs to 1 full epoch for
each client. The local epoch is set as 2. Another epoch of finetuning is also followed after the soft
parameter sampling. The initial un-normalized logits for global and local parameters is set as [0.5, 0]
to encourage model sharing and the learning rate for this parameter is fixed as 0.3.

3



Table 3: Office-Home Results with Variance

Method P A C R mean

Single 91.59 70.22 73.77 80.42 79.00±0.63 ±0.68 ±0.35 ±0.59

All 89.29 71.99 76.71 81.63 79.90±0.41 ±0.69 ±0.64 ±0.26

FedAvg[4] 87.99 68.70 65.85 79.22 75.44±0.23 ±0.36 ±0.67 ±0.76

FedProx[2] 87.55 67.52 67.19 79.89 75.54±0.28 ±0.42 ±0.67 ±0.27

pFedMe[6] 86.24 70.28 68.19 79.56 76.07±0.32 ±0.26 ±0.53 ±0.30

FedBN[3] 88.37 72.46 71.99 82.30 78.78±0.22 ±0.29 ±0.50 ±0.35

PartialFed-Fix

s1-s4 90.22 70.51 71.21 83.52 78.86±0.31 ±0.22 ±0.50 ±0.66

w/o BN&fc 90.43 73.44 74.33 83.08 80.32±0.33 ±0.24 ±0.41 ±0.43

ABCD (skip) 90.00 73.05 72.21 81.79 79.31±0.21 ±0.38 ±0.37 ±0.44

PartialFed-Adaptive

stage 91.96 73.44 74.89 81.53 80.46±0.40 ±0.19 ±0.39 ±0.51

block 91.74 73.54 74.28 82.30 80.46±0.39 ±0.28 ±0.32 ±0.53

layer 92.16 74.02 75.26 82.05 80.87±0.34 ±0.32 ±0.62 ±0.67

DomainNet For DomainNet baseline training, the hyper parameters are the same as in Office-Home.
For federated experiments, we set the global iteration at 30 and decays the initial learning rate 0.1 at
global iteration 25 with a factor 10. For PartialFed-Adaptive, EM frequency fm and fs are both set as
10 steps. 2 local epoch is used to do EM iteration and an additional finetune epoch is followed. All the
experiments are trained with one machine with 8 NVIDIA Tesla V100 GPUs. PartialFed-Fix takes an
average of 4 hours and PartialFed-Adaptive takes an average of 6 hours for a single experiment.

C.2 Detection
UODB We use Detectron2 to implement our detection algorithms. The domain specific hyper
parameters are given in Table 4, Table 5 and Table 6. The initial learning rate is 0.02 and decays
two times with a factor or 10. Batch size is 16 for all experiments. For federated learning, the max
training steps is doubled for all domain for better convergence. The total federated iteration is set as
30, each domain will communicate at every bmax_steps/30c steps. For the PartialFed-Adaptive,
EM frequency fm and fs are both set as 10 steps. The learning rate for strategy parameters is fixed as
0.3 for the whole training. In each global iteration, 80% of the local steps are used to do EM update
and 20% steps are used to do the finetuning after soft parameter sampling. There are several different
settings compared to the original paper: 1. except for the COCO, we use PASCAL VOC 2012 metric
to compute AP50 for all datasets; 2. we train on KITTI train and test on val because KITTI test is not
included in the published version of UODB. All the experiments are trained with one machine with 8
NVIDIA Tesla V100 GPUs. PartialFed-Fix takes an average of 63 hours and PartialFed-Adaptive
takes an average of 102 hours for one experiment.

4



Table 4: Resize Type: this table gives the used types of resize augmentations. For example, R3
denotes randomly resize the image to 480, 512, 544, 576 or 608.

Resize Type Min Size Augmentation

R1 [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800]
R2 [640, 672, 704, 736, 768, 800]
R3 [480, 512, 544, 576, 608]

Table 5: Anchor Type: The left table denotes anchor sizes types while the right table denotes the
anchor aspect ratios types.

Type Anchor Sizes Type Anchor Aspect Ratios

AS1 [32, 64, 128, 256, 512] AR1 [0.5, 1.0, 2.0]
AS2 [6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 240] AR2 [1.0]

Table 6: Domain Specific Hyper-Parameters: This table displays the domain specific hyerparameters.
The parameters are selected according to dataset sizes and suggestions given by Detectron2 and
UODB benchmark.

Dataset Max Steps Decay Steps Resize Type Test Size Anchor Size Ratio Type

KITTI 18000 12000,16000 R1 600 AS2 AR1
WiderFace 26000 18000,24000 R1 576 AS2 AR2
PascalVOC 18000 12000,16000 R1 800 AS1 AR1
LISA 18000 12000,16000 R1 800 AS1 AR1
DOTA 26000 18000,24000 R1 600 AS2 AR1
COCO 45000 30000,40000 R2 800 AS1 AR1
Watercolor 2250 1500,2000 R1 600 AS1 AR1
Clipart 2250 1500,2000 R1 600 AS1 AR1
Comic 2250 1500,2000 R1 600 AS1 AR1
Kitchen 13500 9000,12000 R1 800 AS2 AR1
DeepLesion 40000 25000,36000 R3 512 AS2 AR1

References
[1] B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised domain

adaptation. In Conference on Computer Vision and Pattern Recognition, CVPR, 2012.

[2] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. Federated optimization in
heterogeneous networks. In Proceedings of Machine Learning and Systems, MLSys, 2020.

[3] X. Li, M. Jiang, X. Zhang, M. Kamp, and Q. Dou. Fed{bn}: Federated learning on non-{iid}
features via local batch normalization. In International Conference on Learning Representations,
ICLR, 2021.

[4] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient
learning of deep networks from decentralized data. In AISTATS, 2017.

[5] X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, and B. Wang. Moment matching for multi-source
domain adaptation. In Proceedings of the IEEE International Conference on Computer Vision,
ICCV, 2019.

[6] C. T. Dinh, N. Tran, and J. Nguyen. Personalized federated learning with moreau envelopes. In
Advances in Neural Information Processing Systems, NeurIPS, 2020.

5


	Appendix
	Additional Explanation to PartialFed-Adaptive

	Experiments
	Comparison on Existing Settings
	Further Experiments on DomainNet
	Error Bar

	Training Details
	Classification
	Detection


