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Figure 1: JOG3R creates realistic videos of stationary scenes while simultaneously generating the
associated camera pose for each frame. Please refer to the supplementary page for video results.

ABSTRACT

Diffusion-based video generators are now a reality. Being trained on a large corpus
of real videos, such models can generate diverse yet realistic videos (Brooks et al.,
2024; Zheng et al., 2024). Given that the videos appear visually coherent across
camera changes, we ask, do the underlying generators implicitly learn camera
registrations? Hence, we propose a novel adaptation to repurpose the intermediate
features of the generator for camera pose estimation by linking them to the SoTA
camera calibration decoder of DUSt3R (Wang et al., 2024a). This effectively
unifies the video generation and camera estimation into a single framework. On
top of unifying two different networks into one, our architecture can directly be
trained on real video and simultaneously produces correspondence, with respect
to the first frame, for all the video frames. Our final model, named JOG3R can
be used in text-to-video mode, and additionally it produces camera pose estimates
at a quality on par with the SoTA model DUSt3R, which was trained exclusively
for camera pose estimation. We report that the synergy between video generation
and 3D camera reconstruction tasks leads to around 25% better FVD scores with
JOG3R against pretrained OpenSora.

1 INTRODUCTION

Video diffusion models have rapidly improved over the last two years, leading to the emergence
of many commercial and open-sourced models (Guo et al., 2024; Zheng et al., 2024; Brooks et al.,
2024; Menapace et al., 2024a; Blattmann et al., 2023a). They are trained on very large-scale datasets,
e.g., WebVid10M (Bain et al., 2021) or Panda-70M (Chen et al., 2024), and produce realistic, di-
verse, and temporally smooth videos, simply based on text or image prompts.

In another recent breakthrough, DUSt3R (Wang et al., 2024a) demonstrated that the long-standing
optimization-based structure-from-motion framework for camera estimation can be directly replaced
by the forward pass of a dedicated network that has been trained to establish correspondence be-
tween any given pair of video frames. This is in contrast to the current SoTA in optimization-based
approach for structure-from-motion GLOMAP (Pan et al., 2024a).
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Text to video (T2V) Video to camera (V2C) Text to video & camera (T2V+C)

“a hallway leading to a 
staircase in a house”

“a hallway leading to a 
staircase in a house”

relative camera pose estimation

Figure 2: JOG3R is a versatile model that can (a) generate a video from text, (b) reconstruct 3D
camera motion given a video, and (c) generate a video and the corresponding camera motion simul-
taneously. The camera trajectories obtained in (b) and (c) are consistent.

Inspired by the emergent behavior of intermediate features of large-scale image generators towards
other tasks (e.g., correspondence, semantic segmentation, etc. Tang et al. (2023); Dutt et al. (2024)),
we ask if the pretrained video generator features have similar emergent behavior. In particular, we
investigate whether the pretrained features can be repurposed towards DUSt3R-like camera pose
estimation. Surprisingly, we find that the video generator features, OpenSora in our setting, do not
natively have emergency behavior and cannot be used directly for camera tracking.

Instead, we investigate whether the video generator features can be adapted towards camera pose
estimation. In particular, we test if with a limited amount of fine-tuning, one can produce video
generator features that also can be reused for camera tracking, without sacrificing video generation
quality (see Figure 1). We present a JOint Generation and 3d camera Reconstruction network, in
short JOG3R, that combines video generation with camera pose estimation into a single network,
and can be supervised with generation and 3D reconstruction losses. We demonstrate that this does
not lead to a loss in video quality while setting a new SoTA with respect to camera tracking on
real video using a feedforward network (see Figure 2). In fact, we find that training with camera
reconstruction leads to improved video generation, leading to a notable improved FVD score on the
RealEstate10K-test.

In summary, the paper makes the following contributions:

• The first model that can both generate videos and estimate 3D cameras;

• Extensive experiment and study on how well the video features can be used for 3D camera
estimation and ablating the various design choices; and

• Reporting SoTA video-based camera tracking results on both RealEstate10k-test and
DL3DV10K datasets.

2 RELATED WORK

2.1 DIFFUSION-BASED VIDEO GENERATION

Building on the success of diffusion models (Ho et al., 2020; Song et al., 2020) in image synthesis
(Dhariwal & Nichol, 2021; Rombach et al., 2021), the research community has extended diffusion-
based methods to video generation. Early works (Ho et al., 2022a;b) adapted image diffusion archi-
tectures by incorporating a temporal dimension, enabling the model to be trained on both image and
video data. Typically, U-Net-based architectures incorporate temporal attention blocks after spatial
attention blocks and 2D convolution layers are expanded to 3D convolution layers by altering ker-
nels (Ho et al., 2022b; Wu et al., 2023). Latent video diffusion models (Blattmann et al., 2023b;
He et al., 2022; Wang et al., 2023b; Blattmann et al., 2023a) have been introduced to avoid exces-
sive computing demands, implementing the diffusion process in a lower-dimensional latent space.
Seeking to generate spatially and temporally high-resolution videos, another line of research adopts
cascaded pipelines (Ho et al., 2022a; Singer et al., 2022; Zhang et al., 2023a; Wang et al., 2023c;
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Bar-Tal et al., 2024), incorporating low-resolution keyframe generation, frame interpolation, and
super-resolution modules. To maximize computational scalability, recent waves in video generation
(Chen et al., 2023; Ma et al., 2024; Menapace et al., 2024b; Brooks et al., 2024; Zheng et al., 2024)
diverge from U-Net-based architecture and employ Diffusion Transformer (DiT) (Peebles & Xie,
2023) backbone that processes space-time patches of video and image latent codes. Following this
direction, we build our method on OpenSora (Zheng et al., 2024), a publicly available DiT-based
latent video diffusion model.

2.2 3D RECONSTRUCTION

The fundamental principles of multiview geometry Wrobel (2001) including feature extraction Lowe
(2004); Brown et al. (2011), matching Agarwal et al. (2009); Lou et al. (2012); Wu (2013a);
Havlena & Schindler (2014), and triangulation with epipolar constraints are well known to pro-
duce highly accurate (yet spare) 3D point clouds with precise camera pose estimation from mul-
tiview images Schonberger & Frahm (2016). The efficiency of 3D reconstruction has been im-
proved with linear-time incremental structure-from-motion Wu (2013b) and coarse-to-fine hybrid
approaches Crandall et al. (2012); Cui et al. (2017). To improve robustness to outliers, researchers
proposed global camera rotation averaging Cui et al. (2017), camera optimization techniques based
on features of points vanishing with oriented planes Holynski et al. (2020) or from a learned neural
network Lindenberger et al. (2021) to prevent rotation and scale drift issues in the process of the
structure-from-motion. Global camera pose registration and approximation with geometric linear-
ity Jiang et al. (2013); Cai et al. (2021) or joint 3D point position estimation Pan et al. (2024a)
are designed to further push the scalability and efficiency of the 3D reconstruction as well as the
robustness particularly to the image sequence with small baselines.

Given estimated camera poses and sparse 3D point clouds, multiview stereo can then produce a dense
3D surface using hand-created visual features Schönberger et al. (2016) or neural features with a cost
volume Ma et al. (2022); Ummenhofer & Koltun (2021); Ma et al. (2022); Zhang et al. (2023c); Ye
et al. (2023) to predict globally coherent depth estimates. Existing neural rendering methods re-
construct such a dense surface by modeling the implicit or explicit cost volume and differentiable
rendering of the scene for photometric supervision from multiview images Li et al. (2023b); Sun
et al. (2022); Peng et al. (2023); Guo et al. (2022); Yu et al. (2022); Wang et al. (2022); Oechsle
et al. (2021); Wang et al. (2021); Murez et al. (2020) or monocular depth estimation Sayed et al.
(2022). Some pose-free methods further erase the requirement of camera calibration: test time opti-
mization produces globally consistent depth map under unknown scale and poses using frozen depth
prediction model Xu et al. (2023); the unsupervised signals from dense correspondences such as op-
tical flow is integrated to learn from unlabeled data Yin & Shi (2018); Teed & Deng (2018); Zhou
et al. (2019). Recent works proposed a direct regression framework for dense surface reconstruction
from pairwise images by learning to predict globally coherent depths and camera parameters Um-
menhofer et al. (2016) or to directly predict per-pixel 3D point clouds from two views Wang et al.
(2024b); Leroy et al. (2024) using a vision transformer with dense tokenization techniques Ranftl
et al. (2021).

2.3 DIFFUSION MODEL AS FEATURES FOR 3D RECONSTRUCTION

A generative diffusion model is often trained on millions of paired image and text prompts and in
the process develops a semantically meaningful visual prior. Naturally, researchers are interested
in using this strong prior for many downstream 3D vision tasks. Injecting 3D awareness into the
diffusion prior greatly improves the accuracy and generalizability of the monocular depth estima-
tion and correspondence search tasks El Banani et al. (2024); Yue et al. (2024). The latent features
from the frozen pretrained diffusion model are often used as a backbone, and a task-specific decoder
with cross attention is newly trained for semantic correspondences Tang et al. (2023); Zhang et al.
(2023b); Hedlin et al. (2024); Zhang et al. (2024); Hedlin et al. (2024); Jiang et al. (2024), 3D cor-
respondences Dutt et al. (2024), semantic segmentation and monocular depth estimation Zhao et al.
(2023), material and shadow prediction Zhan et al. (2023), general object 3D pose estimation Örnek
et al. (2023); Cai et al. (2024). However, such image diffusion features do not inherently consider
the temporal relation between the frames, leading to temporally unstable 3D prediction results from
videos. In contrast, we propose to utilize the video diffusion features as a backbone for the multi-
tasking prediction of video generation and 3D camera poses estimation.
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3 METHOD

3.1 MODEL AND PRELIMINARIES.

Video diffusion model. We consider OpenSora (Zheng et al., 2024) as our base video generation
model, which is a DiT-based video generator inspired by the impressive success of Sora (Brooks
et al., 2024). OpenSora performs the diffusion process in a lower-dimensional latent space defined
by a pre-trained VAE encoder E . Each frame x of the input video is first projected into this latent
space, z0 = E(x). Given a diffusion time step t, the forward process incrementally adds Gaussian
noise to the latent code z0 via a Markov chain and obtains noisy latent zt. The denoising model ϵθ
takes the noisy latents of all frames, the time step t, and the text prompt y as input to predict the
added noise: ϵθ({zft }Ff=1, t, y), where F is the total number of frames and θ denotes the parameter
of the DiT network (Peebles & Xie, 2023). The network consists of m+1 spatial-temporal diffusion
transformer (STDiT) blocks {b0, . . . , bm}, similar to Ma et al. (2024). The iterative process of noise
prediction and noise removal is referred to as the backward process.

Camera pose estimation module. We employ the state-of-the-art multi-view stereo reconstruction
(MVS) framework DUSt3R (Wang et al., 2024a) as our downstream camera tracking branch. Given
a pair of images, DUSt3R first encodes each one individually with a ViT encoder (Dosovitskiy
et al., 2021; Weinzaepfel et al., 2022). A pair of decoders take both features as input for cross-
view information sharing, followed by two separate heads estimating point maps X ∈ RH×W×3

represented in the coordinate of the first view, denoted as X1,1 and X2,1, respectively. The relative
camera pose is then estimated by aligning X1,1 and X1,2 (or, equivalently X2,1 and X2,2) using
Procrustes alignment (Luo & Hancock, 1999) with PnP-RANSAC (Lepetit et al., 2009; Fischler &
Bolles, 1981).

... ...

є

predicted 
paired 

point map 
�

єΘ
�

ground truth paired 
point map � L��� L���

������������

������
��������
������

_

���������������� ����������������� ���������������

�
 �	 �� ��

Figure 3: JOG3R repurposes the intermediate features from a video generation model for camera
pose estimation by routing them to the SoTA camera calibration decoder of DUSt3R. We train both
the temporal layers of the generation model as well as the DUSt3R decoders using a combination of
generation and reconstruction losses.

3.2 JOINT GENERATION AND RECONSTRUCTION DIT NETWORK

We propose a unified network that is able to do both video denoising and camera tracking. We ob-
serve that ViT and DiT actually share many architectural designs in common since they both belong
to the broad transformer family. Hence, our key insight is to replace the image-based ViT encoder
in DUSt3R with the video DiT backbone in OpenSora. In other words, we provide the features of
the denoising DiT network ϵθ to DUSt3R decoders and heads, see Figure 3 for illustration.

Specifically, we extract the output of the intermediate STDiT block bn at a particular time step t
during the backward process. Following Tang et al. (2023), we consider small t where the fea-
ture focuses more on low-level details, making it useful as a geometric feature descriptor to build
correspondence across frames.

Our modification of DUSt3R. The features extracted from the video generator encode a sequence
of F frames and are provided to the DUSt3R decoders. During training, we sample a pair of frames
{(1, f)}Ff=2 to predict the 3D point maps between the first frame and any other frame f in the
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sequence. At inference time, we first predict the point maps between all pairs (1, f) and perform a
global camera registration to obtain the camera pose estimation for the whole sequence.

Training objectives. During training, our model is supervised by two objectives: generation loss
Lgen and reconstruction loss Lrec. The generation loss Lgen is the common objective in training
diffusion models that aims to match the added noise ϵ. The reconstruction loss Lrec, following the
definition in DUSt3R, is the sum of confidence-weighted Euclidean distance L2(f, i) between the
regressed point maps X and the ground truth point maps X̄ over all valid pixels i and all frames f .
Formally,

Lgen =
∥∥∥ϵ− ϵθ

(
{zft }Ff=1, t, y

)∥∥∥2
2

(1)

Lrec =
∑

f∈{2,..,F}

∑
i

Cf,1
i L2(f, i)− α logCf,1

i (2)

L2(f, i) =

∥∥∥∥1sXf,1
i − 1

s̄
X̄f,1

i

∥∥∥∥
2

where the scaling factors s and s̄ handles the scale ambiguity between prediction and ground-truth
by bringing them to a normalized scale, Cf,1

i is the confidence score for pixel i which encourages
network to extrapolate in harder areas, and α is a hyper-parameter controlling the regularization
term (Wan et al., 2018). We refer interested readers to Wang et al. (2024a) for more details. The
final loss is defined as Ltotal = Lgen + λLrec, and we empirically set λ = 1.
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Figure 4: JOG3R supports text-to-video (T2V), video to camera estimation (V2C), and joint video
generation and camera estimation (T2V+C) at inference time.

Inference. Once trained, JOG3R naturally supports three ways of inference (see Figure 2 and sup-
plemental video): (i) Text-to-video (T2V): the input is sampled Gaussian noise and we iteratively
denoise it with the text guidance to generate a video. (ii) Video-to-camera (V2C): we add noise to
the input video based on a sampled time step t, denoise it for one time step, route the feature maps
to DUSt3R decoders and heads, followed by registration of point maps X to obtain camera poses.

Given the two inference modes above, a straightforward combination is using the generated video
of T2V as the input of V2C, which we denote as T2V→V2C, essentially chaining the two networks.
However, thanks to our novel network design, we can provide the feature map directly to the re-
construction module at the desired time step, without the overhead of adding noise and passing it
through the network again. As a result, cameras are generated alongside the video in one go. We
term such a tightly coupled joint inference mode as (iii) Text-to-Video+Camera (T2V+C). Fig. 4
illustrates the pipeline of these three inference modes.

Implementation Details. We adopt OpenSora 1.0 as our video generator, which uses 2D VAE (from
Stability-AI) Rombach et al. (2022), T5 text encoder (Raffel et al., 2020), and an STDiT (ST stands
for spatial-temporal) architecture similar to variant 3 in Ma et al. (2024) as the denoising network.
Among the 28 STDiT blocks, we empirically set the first 4 frozen and update only the weights of
the temporal attention layers for the remaining 24 blocks. We extract the output of the 26th block b25
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as feature maps for DUSt3R decoders. The final two blocks behave as a “generation” branch whose
weights are only updated by the gradient of generation loss Lgen.

We adopt the linear prediction head of DUSt3R for final pointmap estimation. DUSt3R originally
uses a decoder with 12 transformer blocks that is duplicated for each of the pair of frames. How-
ever, information sharing is enabled between the two decoders. In our experiments, we find that a
decoder structure with six transformer blocks provides similar performance and report our results
accordingly. Furthermore, since the features we get from the generator encode all the frames in a
video sequence, we also experiment with replacing the duplicate decoder architecture with a single
decoder consisting of 6 transformer blocks that perform full 3D attention across all the frames. We
empirically find that this performs on par with duplicate decoders (see Table 1), and hence we use
the latter to provide a more fair comparison to DUSt3R.

During training, we sample the time step t ∈ [0, 10] (corresponding to 10% of noise level) and
consider the empty prompt for computing the reconstruction loss Lrec, while for the generation loss
Lgen we sample the full range of time steps and use the captions of the videos. At test time, we
sample t ∈ [0, 5] to add noise to the input video for camera estimation (V2C). To perform joint
camera estimation and video generation (T2V+C), we run the standard T2V pipeline of OpenSora
and when the time step hits the sampled t ∈ [0, 5], we provide the output of block b25 to DUSt3R
for camera estimation.

4 EXPERIMENTS

In this section, we evaluate the proposed method in three aspects. We follow standard approaches to
assess the generated video quality (T2V). Since there is no ground truth camera trajectories for the
videos generated from T2V+C, we focus on validating the accuracy of camera pose estimation on
real videos (V2C) and report self-consistency for T2V+C.

4.1 SETUP

Data. We choose RealEstate10K Zhou et al. (2018) as the dataset, which has around 65K video clips
paired with camera parameter annotations. We use the captions of RealEstate10K provided in He
et al. (2024) and also follow their train/test split. As pre-processing, we pre-compute the VAE latents
of the video frames and the T5 text embeddings of the captions. To obtain point map annotation X̄ ,
we first estimate metric depth with ZoeDepth (Bhat et al., 2023), un-project it to 3D and transform
to the coordinate of the first frame using the camera parameters provided in RealEstate10K. All
camera extrinsic parameters are expressed with respect to the first frame.

In addition, we consider DL3DV10K (Ling et al., 2024), which also provides camera annotations,
as a failed test set. We choose a random set of 70 videos for testing and caption the first frame of
each video using Li et al. (2023a). We prepare point map annotations using ZoeDepth (Bhat et al.,
2023), similar to the RealEstate10K dataset.

Baselines. We compare with a pair-wise method DUSt3R Wang et al., 2024a with linear head and
a video-based SfM method GLOMAP (Pan et al., 2024b). For DUSt3R we consider two variants:
(i) off-the-shelf pretrained weights (DUSt3R†) and (ii) trained from scratch with the same data as
ours (DUSt3R*). For GLOMAP we report the results before the global bundle adjustment part.

Metric. We validate the quality of camera tracking on real videos (V2C) by comparing the estimated
camera poses (R, t) with the ground truth poses (R̄, t̄). For rotation, we compute the relative error
angle between two rotation matrices. Since the estimated and ground truth translation can differ in
scale, we follow Wang et al. (2023a) to compute the angle between the two normalized translation
vectors, i.e., arccos(t⊤ t̄/(∥t∥∥̄t∥)). Besides reporting the average of the two errors, we also follow
Wang et al. (2024a) to report Relative Rotation Accuracy (RRA) and Relative Translation Accuracy
(RTA), i.e., the percentage of camera pairs with rotation/translation error below a threshold. Due
to limit of the number of frames, hence small rotation variations, we select a threshold 5◦ to report
RTA@5 and RRA@5. Additionally, we calculate the mean Average Accuracy (mAA@30), defined
as the area under the curve accuracy of the angular differences at min(RRA@30, RTA@30). We
also use FID (Heusel et al., 2017) and FVD (Unterthiner et al., 2019) to measure image and video
quality respectively, ensuring that our method maintains high generation quality.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Method Rot. err. (◦) ↓ Transl. err. (◦) ↓ RRA@5 ↑ RTA@5 ↑ mAA@30 ↑

(0) ours w/ 3D attn 0.38 36.86 99.49% 9.17% 32.15%

(1a) ours w/o Lgen 0.36 33.09 99.71% 12.18% 34.55%
(1b) JOG3R (ours) 0.37 32.66 99.77% 13.16% 35.62%

(2a) DUSt3R† 0.77 36.61 97.56% 7.54% 30.13%
(2b) DUSt3R* 0.33 30.51 99.71% 12.76% 37.88%
(3) GLOMAP 0.96 19.55 96.86% 25.92% 55.82%

Table 1: V2C error comparison on RealEstate10K-test. DUSt3R† indicates pretrained DUSt3R
weights, whereas DUSt3R* is trained with the same training set as our method – RealEstate10K-
train.

Method Rot. err. (◦) ↓ Transl. err. (◦) ↓ RRA@5 ↑ RTA@5 ↑ mAA@30 ↑

(1a) ours w/o Lgen 8.77 59.04 48.31% 0.37% 3.54%
(1b) JOG3R (ours) 9.01 58.82 47.73% 0.24% 3.86%

(2a) DUSt3R† 10.27 61.91 46.82% 0.33% 2.91%
(2b) DUSt3R* 8.38 58.70 49.78% 0.33% 3.93%
(3) GLOMAP 10.57 62.97 46.62% 0.21% 2.60%

Table 2: V2C error comparison on DL3DV10K.

4.2 RECONSTRUCTION EVALUATION

In Table 1, we compare the camera pose estimation (V2C) errors on RealEstate10K-test and report
the errors of withheld DL3DV10K in Table 2. Comparing (1a) and (1b) of two tables, we see that
removing generation loss Lgen leads to overall worse results than our full model, confirming the
hypothesis that retaining generation ability helps reconstruction.

Our full method – JOG3R, performs overall better than pretrained DUSt3R on both datasets, cf., (1b)
and (2a). When trained with the same RealEstate10K-train, JOG3R still has on-par reconstruction
quality compared with the DUSt3R counterpart DUSt3R*. When we replace the original DUSt3R
decoders with full 3D attention blocks (0), we obtain on-par results with a marginal drop in accuracy.

We also report the results of GLOMAP (Pan et al., 2024b) before the final bundle adjustment step.
It is the state-of-the-art method in a well studied SfM problem, which can be treated as a role of the
upper bound to indicate how far we are. In Table 1 row (3), we observe it does surpass other methods
in RealEstate10K, where videos often contain smaller motion and hence smaller baselines for each
stereo pair. When the overlap between consecutive frames gets smaller, like in DL3DV10K, such a
video-based method struggles and our method actually yields lower errors than GLOMAP.

Figure 5 shows the qualitative comparison of our method and baselines. Since camera poses are
estimated through registration, which builds 3D correspondences along the way, we visualize the
final camera trajectories as well as the correspondence between the first and the last frame. One
can see that our method produces good camera trajectories similar to DUSt3R, which is a method
tailored for reconstruction only, but no generation. In the last row we show a failure case where both
our method and DUSt3R fail to estimate reasonable camera poses. We hypothesize this is due to
the infinite depth in the sky region which could cause inconsistent scale normalization across each
stereo pair.

4.3 GENERATION EVALUATION

For each method, we generate 180 videos using the captions in RealEstate10K-test and report the
FID/FVD against the real images/videos in RealEstate10K-test. Table 3 suggests that our full model
generates more realistic images/videos than pretrained OpenSora ((1c) vs. (2)). When ablating the
generation loss Lgen, the quality slightly degrades compared to our full model ((1c) vs. (1a)). This
is intuitive because without the generation loss, there is nothing to enforce the model to retain its

7
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Method FID ↓ FVD ↓

(1a) ours w/o Lgen 110.40 1898.72
(1b) ours w/o Lrec 88.02 1440.92
(1c) JOG3R (ours) 94.75 1339.74

(2) pretrained OpenSora 115.36 1872.41

Table 3: Generation quality comparison. We compute the FID and FVD with RealEstate10K-test.

full generation capability. See also supplemental videos. It is worth noting that (1b) corresponds
to a baseline where Lrec is disabled by removing DUSt3R decoders/heads, i.e., it is equivalent to
standard video diffusion model finetuning except only the weights of the temporal attention layers
are updated. We see removing Lrec leads to different impacts on FID and FVD. Since our method
aims to generate videos, we argue FVD is a more important metric to measure the quality. As a
result, the lower FVD of our full methdod (1c) suggests learning camera pose estimation positively
impacts the quality of video generation. Figure 6 shows that our method generate realistic videos
and the qualitative comparison also confirms the benefit of reconstruction loss Lrec.

4.4 DISCUSSION

Synergy of two tasks. Our full model JOG3R is trained with two losses, generation loss Lgen and
reconstruction loss Lrec. In both Table 1 and 2, (1a) and (1b), we show that keeping the generation
loss Lgen helps the reconstruction branch attain better camera poses estimation. On the other hand,
Table 3 (1b) and (1c) also suggest that introducing the reconstruction task results in better video
generation quality. Empirically, we demonstrate a synergy between two tasks – learning to generate
helps reconstruction; learning to reconstruct also helps generation. It shares the same spirit with the
known “analysis and synthesis” analogy, but our architectural design tightly couples them in one
network and allow end-to-end training.

Self consistency of T2V→V2C and T2V+C. Since one can use JOG3R to generate camera tra-
jectories in two ways: cascading T2V and V2C or the tightly coupled T2V+C pipeline, it is worth
comparing how much the two results differ. We run the two pipelines with 100 prompts and report
0.45◦ average difference in rotation and 19.20◦ in translation, both of which are low errors com-
pared with the corresponding numbers in Table 1 and 2, indicating that the camera poses from joint
T2V+C pipeline is consistent with T2V→V2C. The qualitative results in Figure 7 also confirm this
conclusion.

5 CONCLUSIONS AND FUTURE WORK

We have presented the first framework to enable joint video generation and 3D camera reconstruc-
tion. Our method utilizes intermediate features of a pre-trained video generation model for predict-
ing relative 3D point maps and hence enabling camera registration. Specifically, by providing the
intermediate generation features to task specific decoders and prediction heads, we present a unified
framework for text-to-video generation (T2V), joint generation and camera estimation (T2V+C),
and camera estimation for real videos (V2C).

While being first of its kind, our method is not without limitations. First of all, since it is not
trivial to obtain accurate camera annotations for dynamic scenes, our method is currently trained
and applicable for videos of static scenes only. The length of the video sequences our method
can handle is currently limited by the number of frames the generator can synthesize. Handling
longer sequences may require extending our method to operate in a sliding window manner. As the
video generators continue to improve to enable generation of longer sequences, our method will also
naturally extend to handling longer videos with larger baseline.
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correspondences between frame 1 & F
from registration (ours)

camera paths
(ours)

camera paths
(pretrained Dust3r)

Figure 5: Qualitative camera pose estimation (V2C) results. The last row indicates a failure case.
Please see suppmat. for videos and more analysis.
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Figure 6: Qualitative generation T2V results. Please see suppmat. for videos.
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Figure 7: Qualitative generation T2V+C results. Please see suppmat. for videos.
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A APPENDIX

You may include other additional sections here.
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