
Published as a conference paper at ICLR 2025

NV-EMBED: IMPROVED TECHNIQUES FOR TRAINING
LLMS AS GENERALIST EMBEDDING MODELS

Chankyu Lee ∗1 Rajarshi Roy 1 Mengyao Xu 1 Jonathan Raiman 1

Mohammad Shoeybi 1 Bryan Catanzaro 1 Wei Ping ∗ 1

NVIDIA

ABSTRACT

Decoder-only large language model (LLM)-based embedding models are begin-
ning to outperform BERT or T5-based embedding models in general-purpose text
embedding tasks, including dense vector-based retrieval. In this work, we introduce
the NV-Embed model, incorporating architectural designs, training procedures,
and curated datasets to significantly enhance the performance of LLM as a versatile
embedding model, while maintaining its simplicity and reproducibility. For model
architecture, we propose a latent attention layer to obtain pooled embeddings,
which consistently improves retrieval and downstream task accuracy compared to
mean pooling or using the last <EOS> token embedding from LLMs. To enhance
representation learning, we remove the causal attention mask of LLMs during
contrastive training. For training algorithm, we introduce a two-stage contrastive
instruction-tuning method. It first applies contrastive training with instructions on
retrieval datasets, utilizing in-batch negatives and curated hard negative examples.
At stage-2, it blends various non-retrieval into instruction tuning, which not only
enhances non-retrieval task accuracy but also improves retrieval performance. For
training data, we utilize the hard-negative mining, synthetic data generation and
existing public available datasets to boost the performance of embedding model.
By combining these techniques, our NV-Embed-v1 and NV-Embed-v2 models
obtained the No.1 position on the Massive Text Embedding Benchmark (MTEB)
(as of May 24, 2024 and August 30, 2024, respectively) across 56 embedding tasks,
demonstrating the sustained effectiveness of the proposed methods over time. Also,
it achieved the highest scores in the Long Doc section and the second-highest scores
in the QA section of the AIR Benchmark, which covers a range of out-of-domain in-
formation retrieval topics beyond those in MTEB. We further provide the analysis of
model compression techniques for generalist embedding models. We open-source
the model at: https://huggingface.co/nvidia/NV-Embed-v2.

1 INTRODUCTION

Embedding or dense vector representation of text (Mikolov et al., 2013; Devlin et al., 2018) encodes its
semantic information and can be used for many downstream applications, including retrieval, rerank-
ing, classification, clustering, and semantic textual similarity tasks. The embedding-based retriever
is also a critical component for retrieval-augmented generation (RAG) (Lewis et al., 2020), which
allows LLMs to access the most up-to-date external or proprietary knowledge without modifying the
model parameters (Liu et al., 2024; Guu et al., 2020; Shi et al., 2023; Wang et al., 2023a).

The embedding models built on bidirectional language models (Devlin et al., 2018; Raffel et al.,
2020) have dominated the landscape for years (e.g., Reimers & Gurevych, 2019; Gao et al., 2021;
Wang et al., 2022; Izacard et al., 2021; Ni et al., 2021), although one notable exception is Neelakantan
et al. (2022). The recent work by Wang et al. (2023b) demonstrates that decoder-only LLMs can
outperform frontier bidirectional embedding models (Wang et al., 2022; Ni et al., 2021; Chen et al.,
2023) in retrieval and general-purpose embedding tasks.

∗Correspondence to: Chankyu Lee <chankyul@nvidia.com>, Wei Ping <wping@nvidia.com>.
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Table 1: Top MTEB leaderboard models as of ICLR submission date (2024-10-01). We use the original model
names on the leaderboard for clarity.

Embedding Task Retrieval (15) Rerank (4) Cluster. (11) PairClass. (3) Class. (12) STS (10) Summ.( 1) Avg. (56)
Mertric nDCG@10 MAP V-Meas. AP Acc. Spear. Spear.
NV-Embed-v2 62.65 60.65 58.46 88.67 90.37 84.31 30.7 72.31
Bge-en-icl (zero shot) 61.67 59.66 57.51 86.93 88.62 83.74 30.75 71.24
Stella-1.5B-v5 61.01 61.21 57.69 88.07 87.63 84.51 31.49 71.19
SFR-Embedding-2R 60.18 60.14 56.17 88.07 89.05 81.26 30.71 70.31
Gte-Qwen2-7B-instruct 60.25 61.42 56.92 85.79 86.58 83.04 31.35 70.24
NV-Embed-v1 59.36 60.59 52.80 86.91 87.35 82.84 31.2 69.32
Bge-multilingual-gemma2 59.24 59.72 54.65 85.84 88.08 83.88 31.2 69.88
Voyage-large-2-instruct 58.28 60.09 53.35 89.24 81.49 84.58 30.84 68.28
SFR-Embedding 59.00 60.64 51.67 88.54 78.33 85.05 31.16 67.56
GritLM-7B 57.41 60.49 50.61 87.16 79.46 83.35 30.37 66.76
E5-mistral-7b-instruct 56.9 60.21 50.26 88.34 78.47 84.66 31.4 66.63
Text-embed-3-large (OpenAI) 55.44 59.16 49.01 85.72 75.45 81.73 29.92 64.59

In this work, we introduce NV-Embed, a generalist embedding model that significantly enhances the
performance of decoder-only LLMs for embedding and retrieval tasks. Specifically, we make the
following contributions:

1. For model architecture, we propose a novel latent attention layer to obtain pooled embeddings for
a sequence of tokens. In contrast to the popular average pooling in bidirectional embedding mod-
els (e.g., Wang et al., 2022) and last <EOS> token embedding in decoder-only LLMs (Neelakantan
et al., 2022; Wang et al., 2023b), our proposed pooling technique consistently improves accuracy of
retrieval and other downstream tasks. To further enhance representation learning, we remove causal
attention mask during contrastive training of decoder-only LLM, resulting in solid improvements.
Our design is simpler yet more effective compared to related work (BehnamGhader et al., 2024;
Muennighoff et al., 2024), which involves an additional training phase with masked token prediction
or a mixed training objective.

2. For model training, we introduce a two-stage contrastive instruction-tuning method, starting with
the pretrained Mistral-7B (Jiang et al., 2023). In the first stage, we apply contrastive training with
instructions on retrieval datasets, utilizing in-batch negative and curated hard-negative examples. In
the second stage, we blend carefully curated non-retrieval datasets into the stage-one training data.
Since in-batch negative samples are misleading for non-retrieval tasks in some cases, we disable
in-batch negative training in stage two. This design not only improves the accuracy of classification,
clustering, and semantic textual similarity tasks, but also surprisingly enhances retrieval performance.
Note, our model is also not fine-tuned from existing embedding models1.

3. Training data is one of the most crucial factors in achieving state-of-the-art results. We provide
a detailed recipe on the curation of training datasets, including dataset-specific information, the
positive-aware hard-negative mining technique to enhance contrastive training, the synthetic data
generation and example-based multi-class labeling. This enables the community to easily reproduce
and even surpass our model, ultimately advancing the development of the embedding models.

4. Our NV-Embed-v1 model obtained the No.1 position on the Massive Text Embedding Benchmark
(MTEB) (as of May 24, 2024) (Muennighoff et al., 2022) across 56 embedding tasks. By improving
the curation of the training data, NV-Embed-v2 model set a new record high score of 72.31 and
reclaimed the No. 1 spot (as of Aug 30, 2024) on the highly competitive MTEB leaderboard,
further demonstrating the sustained effectiveness of our approach. Note that our model also attains
the highest scores in 15 retrieval tasks (commonly referred to as BEIR (Thakur et al., 2021)), 11
clustering tasks, and 12 classification tasks in the MTEB benchmark. See Table 1 for detailed
information. Additionally, it secured the highest scores in Long Doc section and the second scores
in QA section on the AIR-Benchmark which covers a range of out-of-domain information retrieval
topics beyond those in MTEB.

5. We study the model compression techniques, including pruning, quantization and knowledge-
distillation, for LLM-based embedding models. Through the comparison with smaller embedding
models directly built on Llama3.2-3B, Qwen2.5-3B, and Minitron-4B, we demonstrate that our
model compression approach achieves superior accuracy and quantization robustness.

We organize the rest of the paper in the following. In § 2, we discuss the related work. We present
the architectural and training method in § 3. We provide detailed recipe of training data curation in
§ 4. We present the experiment results in § 5 and conclude the paper in § 6. Model compression
techniques and results are presented in § A due to the page limit. AIR-bench results are shown in § B.

1For example, SFR-Embedding and Linq-Embed are fine-tuned from E5-mistral-7b-instruct.
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2 RELATED WORK

2.1 BIDIRECTIONAL EMBEDDING MODELS

BERT (Devlin et al., 2018) or T5 (Raffel et al., 2020)-based embedding models have long been
the dominant approaches for general-purpose embedding tasks. Early examples include Sentence-
BERT (Reimers & Gurevych, 2019) and SimCSE (Gao et al., 2021), which finetune BERT on natural
language inference (NLI) datasets. In general, these embedding models are first initialized from
pre-trained BERT (Wang et al., 2022; Izacard et al., 2021) or T5 encoders (Ni et al., 2021). Then,
they are further pre-trained with contrastive learning on curated unsupervised (Izacard et al., 2021)
or weakly-supervised text pairs (Wang et al., 2022). Finally, the embedding models (Li et al., 2023;
Wang et al., 2022; Ni et al., 2021; Chen et al., 2023) are fine-tuned on a variety of supervised data,
including MS MARCO (Nguyen et al., 2016), for retrieval and other downstream tasks. Note that
all the state-of-the-art embedding models are trained in this supervised manner. Some of the most
recent frontier models in this category include mxbai-embed-large-v1 (Lee et al., 2024b) (MTEB:
64.68), UAE-Large-V1 (Li & Li, 2023) (MTEB: 64.64), and voyage-large-2-instruct (Voyage-AI,
2024) (MTEB: 68.28).

2.2 DECODER-ONLY LLM-BASED EMBEDDING MODELS

Decoder-only LLMs (Brown et al., 2020) were believed to underperform bidirectional models on
general-purpose embedding tasks for years, because: i) unidirectional attention limits the representa-
tion learning capability, and ii) the scaling of LLMs leads to very high-dimension embeddings, which
may suffer from the curse of dimensionality.

The early work by Neelakantan et al. (2022) initializes embedding models using pre-trained, decoder-
only GPT-3 models (Brown et al., 2020) and applies continued contrastive training. The hidden state
from the final layer, corresponding to the special token <EOS> at the end of the sequence, is used
as the embedding for the input sequence. Its latest successor, text-embedding-3-large, achieves an
MTEB score of 64.59 (OpenAI, 2024). Most recently, E5-Mistral (Wang et al., 2023b) (MTEB:
66.63) applies contrastive learning with task-specific instructions on Mistral 7B (Jiang et al., 2023).
It begins to outperform the state-of-the-art bidirectional models on comprehensive embedding
benchmarks (Muennighoff et al., 2022) by utilizing a massive amount of synthetic data from the
proprietary GPT-4 model. LLM2Vec (BehnamGhader et al., 2024) (MTEB score: 65.01) tries to
build the embedding model from LLMs while only using public available data, but it is still worse
than E5-Mistral.

Given the success of E5-Mistral, SFR-Embedding-Mistral (Meng et al., 2024b) (MTEB: 67.56) and
SFR-Embedding-2R (Meng et al., 2024a) (MTEB: 70.31) further fine-tunes this model on the blend
of non-retrieval and retrieval datasets for improved accuracy on both tasks, which is closely related
to our NV-Embed. However, there are the following key differences: 1) NV-Embed is trained
from scratch on Mistral 7B LLM directly using public available data, and not dependent on other
embedding model or proprietary synthetic data. Consequently, we introduce a new architecture that
eliminates unnecessary causal attention mask and further improves the sequence pooling mechanism
with latent attention layer. 2) SFR-Embedding-Mistral uses task-homogeneous batching, which
constructs batches consisting exclusively of samples from a single task. In contrast, our NV-Embed
uses well-blended batches consisting samples from all tasks to avoid potential “zigzag” gradient
updates, which leads to a new record high score on both full MTEB and retrieval tasks compared to
SFR-Embedding-Mistral.

Over the past year, MTEB has become one of the most competitive leaderboards across all AI
categories, leading to significantly increased competition among participants. Many of the recent
top-performing models (e.g., stella-1.5B-v5, gte-Qwen2-7B-instruct, bge-multilingual-gemma2,
voyage-large-2-instruct, and text-embed-3-large) have not disclosed key technical details necessary
for reproduction, particularly the blend of training data used. Among the recently disclosed works,
GritLM (Muennighoff et al., 2024) (MTEB: 65.66) unifies text embedding and generation into a single
LLM model. In addition, bge-en-icl (Li et al., 2024) (MTEB: 71.24) enhances query embeddings by
introducing few-shot examples on the query side, utilizing the in-context learning (ICL) capabilities
in text embedding tasks. This approach introduces an overhead by supplying task-relevant examples
to the query during the training process. To maintain zero-shot evaluation accuracy, both zero-shot
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Figure 1: Proposed architecture design comprising of decoder-only LLM followed by latent attention
layer. Latent attention layer functions as a form of cross-attention where the decoder-only LLM
output serves as queries (Q) and trainable latent array passes through the key-value inputs, followed
by MLP. Blue dotted lines indicate the two matrix multiplications involved in QKV-attentions.

and few-shot samples are included during training. In our paper, we focus on comparing the zero-shot
evaluation accuracy of the bge-en-icl model to ensure the fair comparisons during the evaluation
phase.

Another area of research focuses on improving data curation processes to enhance the accuracy of
fine-tuning retrieval embedding models. Gecko (Lee et al., 2024a) (MTEB: 66.31) attempts to distill a
smaller bidirectional embedding model from a decoder-only LLM (Gemini et al., 2023) by generating
synthetic paired data. It refines the data quality by retrieving a set of candidate passages for each query
and relabeling the positive and hard negative passages using the LLM. Linq-embed-mistral (Kim
et al., 2024) utilized LLMs to refine data by generating, filtering, and mining negative samples.
Meanwhile, NV-Retriever (Moreira et al., 2024) introduced a positive-aware hard-negative mining
technique that considers positive relevance scores to more effectively eliminate false negatives. In
this work, we apply this positive-aware hard-negative technique to curate the samples and enhance
the contrastive training.

3 METHODS

In this section, we describe our architecture designs and two-stage instruction-tuning method.

3.1 BIDIRECTIONAL ATTENTION

The causal attention mask in decoder-only LLMs is introduced for next-token prediction task (Vaswani
et al., 2017). In principle, causal mask in decoder blocks prevents information leakage by allowing
the decoder to attend only to previous positions during auto-regressive text generation. However, it
is observed that unidirectional attention limits the model’s representation power, as evidenced by
the poor performance of GPT models compared to similarly sized BERT or T5 models on natural
language understanding benchmarks (e.g., Wang et al., 2019). In recent, LLM2Vec (BehnamGhader
et al., 2024) introduces additional training phase with a specially designed masked token prediction
to warm-up the bidirectional attention. GRIT (Muennighoff et al., 2024) utilizes a hybrid objective
with both bidirectional representation learning and causal generative training. In contrast, we simply
remove the causal attention mask of decoder-only LLM during the contrastive learning and find it
works compellingly well as demonstrated by our results. As a result, we go with simple solution.
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3.2 LATENT ATTENTION LAYER

There are two popular methods to obtain the embedding for a sequence of tokens: i) mean pooling,
and ii) the last <EOS> token embedding. Previous bidirectional embedding models typically use
mean pooling (Wang et al., 2022; Izacard et al., 2021), while the last <EOS> token embedding is
more popular for decoder-only LLM based embedding models. However, both methods have certain
limitations. Mean pooling simply takes the average of token embeddings and may dilute the important
information from key phrases, meanwhile the last <EOS> token embedding may suffer from recency
bias, relying heavily on the output embedding of last token.

In this work, we propose a latent attention layer inspired by Jaegle et al. (2021) to achieve more
expressive pooling of the sequences for general-purpose embedding tasks. Specifically, we denote
the last layer hidden from decoder as the query Q ∈ Rl×d, where l is the length of sequence, and d is
the hidden dimension. They are sent to attend the latent array K = V ∈ Rr×d, which are trainable
“dictionary” used to obtain better representation, where r is the number of latents in the dictionary.
The output of this cross-attention is O ∈ Rl×d,

O = softmax(QKT )V (1)

which is followed by a regular MLP consists of two linear transformations with a GELU activation
in between. Our model uses latent attention layer with r of 512 and the number of heads as 8 for
multi-head attention. Finally, we apply mean pooling after MLP layers to obtain the embedding of
whole sequences. See Figure 1 for an illustration. It is worth mentioning here that our approach
follows the spirit of dictionary learning to obtain better representation (e.g., Wang et al., 2018), which
is different from the Perceiver IO architecture. We compare the proposed latent attention layer with
normal self-attention and find consistent improvements in our ablation study.

3.3 TWO-STAGE INSTRUCTION-TUNING

Instruction-tuning has been widely applied for training LLM to follow instructions (Wei et al., 2021;
Ouyang et al., 2022) and to perform retrieval-augmented generation (Wang et al., 2023a; Liu et al.,
2024). It has also been recently applied for training retrievers and general-purpose embedding models
that can adapt their output embeddings with different instructions and task types (Asai et al., 2022;
Wang et al., 2023b).

To obtain a generalist embedding model that can appropriately perform on retrieval and non-retrieval
tasks (e.g., classification, clustering), we need take the characteristics of different tasks into account.
For example, the use of in-batch negatives has been demonstrated to be highly efficient for training
dense-embedding-based retrievers (e.g., Karpukhin et al., 2020), because it allows to reuse the
computation and effectively train on B2 question/passage pairs for each mini-batch with only B
questions and corresponding positive passages. However, applying in-batch negatives trick can
mislead the embedding model for classification or clustering task, as the “passages” in the mini-batch
may come from the the class and are not negatives.

Given these considerations, we introduce a two-stage instruction tuning method which first conducts
contrastive training with instructions on a variety of retrieval datasets (details are in section 4.1),
utilizing in-batch negatives and curated hard-negative examples. In the second stage, we perform
contrastive instruction-tuning on a combination of retrieval and non-retrieval datasets (details are in
section 4.2) without applying the trick of in-batch negatives. It is worth mentioning here that retrieval
task presents greater difficulty compared to the other tasks so that our training strategy focuses on
fine-tuning the model for retrieval initially. In second stage, we blend the remaining embedding tasks
into the instruction-tuning.

4 TRAINING DATA

For training data, we employ public retrieval and non-retrieval datasets and synthetically generated
samples to demonstrate our model’s capability in embedding tasks. Our training procedure incorpo-
rates both retrieval and non-retrieval tasks including classification, clustering, and semantic textual
similarity datasets.
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Given a relevant query-document pair, the instructed query follows the instruction template as follows:

q+inst = Instruct : {task_definition} Query : q+ (2)

The instruction templates for each {task_definition} are provided in Table 12 for training and
Table 13 for evaluation. Note, we mask out the instruction tokens in the output embeddings during
both training and evaluation, although they still impact the output due to self-attention. We do not
add any instruction prefix to document corpus.

4.1 PUBLIC RETRIEVAL DATASETS

We adopt the retrieval datasets as follows: MSMARCO (Bajaj et al., 2016), HotpotQA (Yang et al.,
2018), Natural Question (Kwiatkowski et al., 2019), PAQ (Lewis et al., 2021), Stack Exchange (Stack-
Exchange-Community, 2023), Natural Language Inference (Group et al., 2022), SQuAD (Rajpurkar
et al., 2016), ArguAna (Wachsmuth et al., 2018), BioASQ (Tsatsaronis et al., 2015), FiQA (Maia
et al., 2018), FEVER (Thorne et al., 2018), HoVer (Jiang et al., 2020), SciFact (Wadden et al., 2022),
NFCorpus, MIRACL (Zhang et al., 2023) and Mr.TyDi (Zhang et al., 2021).

It is important to note that certain datasets (e.g., MSMARCO) are training splits of the MTEB
Benchmark, which we follow the existing practices established by leading generalist embedding
models (Meng et al., 2024b; Wang et al., 2023b; BehnamGhader et al., 2024; Muennighoff et al.,
2024). Table 12 further provides the number of samples used for training. We demonstrate the
zero-shot generalization capability of NV-Embed on AIR-bench in B.

4.1.1 HARDNEGATIVE MINING TECHNIQUE

Embedding models are trained using contrastive learning (Gao et al., 2021), aiming to increase the
similarity between the embeddings of a query and its relevant passages (positives) while reducing
the similarity with irrelevant passages (negatives). Public retrieval datasets typically only contains
the positive query-passage pairs but do not contain its own hardnegatives, making it necessary
to mine of such negative examples. To address this, we apply the recently proposed positive-
aware hard-negative technique (Moreira et al., 2024) that considers the positive relevance scores
for better false negatives removal. Following the ablation studies in Moreira et al. (2024), we use
E5-mistral-7b-instruct (Wang et al., 2023b) as a teacher retrieval model to identify the optimal
hardnegative passages relevant to the query. We set the maximum threshold for negative scores based
on a percentage of the positive score (TopKPercPos) with a 95% margin, described as follows:
max_negative_score_threshold = pos_score * percentage_margin.

4.2 PUBLIC NON-RETRIEVAL DATASETS

Besides retrieval datasets, we utilize public non-retrieval datasets mainly from three sub-tasks in
MTEB benchmark: classification, clustering and semantic similarity (STS). We pre-process the
format of these datasets to become the compatible with retrieval datasets for contrastive training:
query q+, positive document d+ and hard negative documents {d−0 , ..., d

−
n }.

For classification, we utilize the English training splits of various datasets from MTEB Huggingface
datasets (Muennighoff et al., 2022; Lhoest et al., 2021). The classification datasets that we use
are as follows: AmazonReviews (McAuley & Leskovec, 2013a), AmazonCounterfactual (O’Neill
et al., 2021), Banking77 (Casanueva et al., 2020), Emotion (Saravia et al., 2018), IMDB (Maas
et al., 2011), MTOPDomain/MTOPIntent (Li et al., 2021), ToxicConversations (Adams et al., 2019),
TweetSentimentExtraction (Maggie, 2020), AmazonPolarity (McAuley & Leskovec, 2013b), Mas-
siveScenario/MassiveIntent (FitzGerald et al., 2022). For the Emotion and AmazonCounterfactual
classification datasets we use BM25 (Robertson et al., 2009) similarity thresholds to filter out training
data that is similar to the MTEB evaluation set.

For clustering datasets, we utilize the raw_arxiv, raw_biorxiv and raw_medrxiv datasets from MTEB
Huggingface datasets, TwentyNewsgroups (Lang, 1995), Reddit (Geigle et al., 2021), StackEx-
change (Geigle et al., 2021), RedditP2P (Reimers, 2021b) and StackExchangeP2P (Reimers, 2021a)
We filter out any training data that match the MTEB evaluation set.

The classification and clustering datasets provide examples and corresponding class/cluster labels.
The example texts extracted from the appropriate text/title/abstract field are used for the query
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q+. For binary classification tasks the label texts are used as documents d+, d−. For multi-class
classification and clustering tasks, a randomly sampled example from the ground-truth class/cluster is
used for the positive document d+ and randomly sampled examples from other classes/clusters are
used for negative documents d−k . We will present ablation experiments supporting this approach in
section 5.2.4.

For semantic textual similarity datasets, we use the training splits of three semantic similarity datasets
STS12 (Agirre et al., 2012), STS22 (Chen et al., 2022), STS-Benchmark (Cer et al., 2017) from
MTEB Huggingface datasets. For any pair of texts with associated relevance scores (ta, tb, score),
we create two examples (q+ = ta, d

+ = tb) and (q+ = tb, d
+ = ta) if score ≥ 4. We mine the hard

negatives d−k from the pool of other texts using the same technique as section 4.1.1. Task instructions
are appended to d+, d− since they are symmmetric with the query.

4.3 SYNTHETIC TASKS DATASET

Due to the limited variety of subjects and tasks in public training datasets, the available instruction
templates for training are also restricted. To enhance task-wise generalization, we employ the
Mixtral-8x22B-Instruct-v0.1 model (MistralAI) to create a dataset consisting of 120,000 synthetic
examples across 60,000 synthetic tasks. Following a two-step prompting approach proposed by
E5-mistral-7b-instruct (Wang et al., 2023b), we adjust the prompts for Mixtral-8x22B-Instruct-v0.1
and English text. We generate only the short-long, long-short, and short-short examples (40,000 of
each), as we use public STS datasets and do not assess bitext retrieval tasks. Example prompts for
synthetic data generation can be found in Appendix 15 and 16.

5 EXPERIMENTS

Training and inference experiment details are illustrated in Appendix C.

5.1 MTEB RESULTS

We evaluate the proposed NV-Embed model on the full MTEB benchmark (Muennighoff et al., 2022)
across 56 tasks. Table 1 summarizes averaged MTEB scores for seven sub-category tasks compared
to frontier models on MTEB leaderboard2. Our initial model, namely NV-Embed-v1 get the score of
69.32 and obtain the No.1 position on the MTEB as of May 24, 2024 (detailed benchmark scores
available in Table 2). We then further improve the model through the curation of training dataset,
including adding more retrieval datasets, applying positive-aware hard-negative mining technique,
using synthetic data generation process and constructing example-based multi-class labels. As a
result, our NV-Embed-v2 model sets a new record high score of 72.31 and reclaimed No.1 (as of Aug
30, 2024) on highly competitive MTEB leaderboard, further highlighting the sustained effectiveness
of the proposed methods. In following sub-section 5.2, we will present ablation studies on design
choices regarding the model architecture, training algorithm and the curation of training data.

Based on quantitative leaderboard results, we compare our NV-Embed with the recent frontier
embedding models. The e5-mistral-7b-instruct (Wang et al., 2023b) and google-gecko (Lee et al.,
2024a) utilize proprietary synthetic data to train their model in a single stage manner. In contrast,
we recognize that retrieval task presents greater difficulty compared to the other embedding tasks
and prioritizes our training strategy on fine-tuning the model for retrieval first, followed by blending
the remaining sub-tasks into instruction-tuning, leading to substantially improved BEIR and overall
MTEB results.

SFR-Embedding-2R (Meng et al., 2024b) demonstrates competitive scores on the MTEB (70.31) and
BEIR (60.18) benchmarks by continuing to finetune the e5-mistral-7b-instruct model (Wang et al.,
2023b). However, it remains largely constrained by the architectural limitations of its parent model,
such as the causal attention mask and the last token pooling method. In contrast, our NV-Embed
model is trained starting from the Mistral 7B LLM (Jiang et al., 2023) rather than finetuning e5-
mistral-7b-instruct (Wang et al., 2023b). It features a new architecture that removes the unnecessary
causal attention mask and further improves the sequence pooling mechanism with a latent attention
layer. Table 3 and 14 provides a detailed scores of BEIR and MTEB benchmarks.

2https://github.com/embeddings-benchmark/mteb
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Table 2: Averaged MTEB scores on seven tasks after first and second stage training using only the
publically available data and before applying the positive-aware hardnegative mining, synthetic data
and example-based multi-class labeling. The averaged score 69.32 corresponds to NV-Embed-v1.

First stage training
Pool Type EOS Mean Latent-attention Self-attention
Mask Type bidirect causal bidirect causal bidirect causal bidirect causal

Retrieval(15) 57.70 56.42 58.42 57.55 59.00 57.65 57.89 57.21
Rerank (4) 59.76 57.21 60.02 59.35 59.59 59.72 59.73 59.51

Clustering (11) 44.75 40.83 45.97 45.42 45.44 45.61 45.19 45.07
PairClass. (3) 86.17 83.63 87.45 84.46 87.59 82.02 86.51 85.74

Classification (12) 73.17 69.22 74.62 72.48 73.93 72.74 73.54 73.32
STS (10) 74.96 73.45 77.47 73.60 79.07 78.65 76.89 77.55

Summar. (1) 29.28 28.4 29.72 30.89 30.16 30.94 30.22 31.59
Average (56) 62.68 60.06 64.00 62.32 64.18 63.39 63.27 63.11

Second stage training
Pool Type EOS Mean Latent-attention Self-attention
Mask Type bidirect causal bidirect causal bidirect causal bidirect causal

Retrieval (15) 58.39 56.59 58.71 57.88 59.36 58.33 58.64 57.71
Rerank (4) 60.37 59.23 60.77 60.27 60.54 60.57 60.5 60.38

Clustering (11) 51.43 49.81 52.80 51.58 52.80 51.7 53.34 51.51
PairClass. (3) 84.06 80.99 87.45 82.89 86.91 83.45 86.12 84.44

Classification (12) 85.85 85.04 87.06 86.08 87.35 86.58 86.76 86.25
STS (10) 79.55 79.12 82.53 81.74 82.84 81.94 82.38 81.52

Summar. (1) 30.36 29.12 30.49 31.82 31.20 31.87 30.105 31.4
Average (56) 67.85 66.50 68.97 68.13 69.32 68.47 69.10 68.16

Table 3: Averaged MTEB scores on seven embedding tasks after two stage training after applying the
positive-aware hardnegative mining, synthetic data and example-based multi-class labeling. Note, the
averaged score 72.31 corresponds to NV-Embed-v2.

Pool Type EOS Mean Latent-attention Self-attention
Mask Type bidirect causal bidirect causal bidirect causal bidirect causal

Retrieval (15) 62.13 60.30 61.81 61.01 62.65 61.15 61.17 60.53
Rerank (4) 60.02 59.13 60.65 59.10 60.65 59.36 60.67 59.67

Clustering (11) 58.24 57.11 57.44 57.34 58.46 57.80 58.24 57.11
PairClass. (3) 87.69 85.05 87.35 87.35 88.67 87.22 87.69 85.05

Classification (12) 90.10 90.01 89.49 89.85 90.37 90.49 90.10 90.01
STS (10) 82.27 81.65 84.35 84.35 84.31 84.13 84.22 83.81

Summar. (1) 30.25 32.75 30.75 30.88 30.70 30.90 30.93 31.36
Average (56) 71.63 70.85 71.71 71.38 72.31 71.61 71.61 70.6

5.2 ABLATION STUDY

We conduct ablation studies to compare several training, architecture and data curation design
choices: two-stage training, bidirectional attention, latent-attention pooling method, synthetic data
and example-based multi-class labeling.

5.2.1 TWO-STAGE TRAINING

We compare the two-stage and single-stage training with and without the use of the in-batch negative
technique, as shown in Table 4. We observe that our proposed two-stage training surpasses single-
stage training because it allows the use of beneficial in-batch negatives for retrieval tasks in the
first stage, while disabling the in-batch technique for non-retrieval tasks in the second stage. In
contrast, single-stage training with in-batch negatives leads to significantly lower MTEB performance,
especially in the classification sub-task. This accuracy degradation occurs because many classification
tasks involve few-class labels (such as binary labels like True/False), meaning that the inbatch negative
labels in the batch can actually be the positive label. While single-stage training without in-batch
negatives produces more comparable results (MTEB scores: 72.31 for two-stage training vs. 71.94 for
single-stage without in-batch), two-stage training significantly outperforms in the retrieval sub-tasks
(BEIR scores: 62.65 for two-stage training vs. 61.37 for single-stage without in-batch). It is worth

8



Published as a conference paper at ICLR 2025

Table 4: Averaged MTEB scores on ablation studies for NV-Embed-v2: two stage training, multi-
class data labeling, positive-aware hardnegative mining and synthetically generated dataset. In the
third part of the table, HN represents hardnegative mining technique, AD means adding public
retrieval datasets and SD refers to adding synthetically generated data. In the fourth part of the
table, we also include NV-Embed-v1, which omits HN, AD, and SD in stage-one training and uses a
label-based approach in stage-two training.

Section 5.3.1 Two stage training
Embedding Task Retrieval Rerank Cluster. PairClass. Class. STS Summ. Avg.

Single Stage (Inbatch Enabled) 61.25 60.64 57.67 87.82 86.6 83.7 30.75 70.83
Single Stage (Inbatch Disabled) 61.37 60.81 58.31 88.3 90.2 84.5 30.96 71.94
Two Stage Training 62.65 60.65 58.46 88.67 90.37 84.31 30.70 72.31
Reversed Two Stage 61.91 60.98 58.22 88.59 90.26 83.07 31.28 71.85

Section 5.3.4 Multi-class Classification and Clustering Labels in stage-two training
Embedding Task Retrieval Rerank Cluster. PairClass. Class. STS Summ. Avg.

Label-based approach 62.40 59.7 53.04 88.04 89.17 84.25 30.77 70.82
Example-based approach 62.65 60.65 58.46 88.67 90.37 84.31 30.70 72.31

Section 5.3.5 Hard-negative mining and Synthetically Generated Dataset in stage-one training
Embedding Task Retrieval Rerank Cluster. PairClass. Class. STS Summ. Avg.

[S0] Without HN, Without AD, Without SD 59.22 59.85 57.95 85.79 90.71 81.98 29.87 70.73
[S1] With HN, Without AD, Without SD 61.52 59.80 58.01 88.56 90.31 84.26 30.36 71.83
[S2] With HN, With AD, Without SD 62.28 60.45 58.16 88.38 90.34 84.11 29.95 72.07
[S3] With HN, With AD, With SD 62.65 60.65 58.46 88.67 90.37 84.31 30.70 72.31

NV-Embed-v1
Label-based approach + [S0] 59.36 60.59 52.80 86.91 87.35 82.84 31.2 69.32

highlighting here that the retrieval is considered the most crucial sub-category for the advancement of
RAG technology across the MTEB embedding tasks.

Lastly, we explore another research question: what happens if the order of two-stage training is
reversed? To examine this, we further finetune the Single Stage (Inbatch disabled) model using only
the retrieval datasets with enabling the inbatch negative technique and present the MTEB results
in Table 4. While the retrieval score increased from 61.37 to 61.91 after the reversed two-staged
training, it remains lower than the retrieval score of 62.65 achieved with our proposed two-stage
training method. Furthermore, the scores on other embedding tasks, such as Clustering and STS,
declined compared to the Single Stage (Inbatch disabled) approach. Consequently, the overall MTEB
score for Reversed Two Stage (score: 71.85) is lower than our proposed Two-Stage Training (score:
72.31) as well as the Single Stage with Inbatch disabled (score: 71.94).

5.2.2 CAUSAL ATTENTION VS. BIDIRECTIONAL ATTENTION

To examine the impact of self-attention masks in decoder-only LLM models for embedding applica-
tions, we conducted experiments comparing bidirectional and causal mask types. As illustrated in
Tables 2 and 3, the bidirectional mask consistently outperforms the causal mask based on the average
MTEB scores across 56 tasks for all pooling types. This indicates that embeddings generated with
causal attention masks are significantly less effective than those produced with bidirectional attention
masks.

5.2.3 POOLING METHODS

To examine the impact of different pooling methods on embedding models, we conducted experiments
comparing <EOS>-last, mean, latent-attention, and self-attention pooling types. As depicted in Tables
2 and 3, mean pooling consistently outperforms <EOS>-last token embedding based on the average
MTEB scores across 56 tasks. This difference may be due to the last <EOS> token embedding being
influenced by recency bias, showing an excessive dependence on the output of the final token.

To enhance performance beyond mean pooling, we experimented with adding the proposed latent-
attention or self-attention layer (both followed by MLP) before mean pooling to address the issue of
important information from key phrases being diluted. According to Tables 2, self-attention does
not provide additional accuracy improvements for the embedding capabilities of decoder-only LLMs
(i.e., mean pooling 68.97 vs. self-attention 69.10 on MTEB tasks). It even slightly reduces accuracy
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on 15 retrieval tasks (i.e., mean pooling 58.71 vs. self-attention 58.64). Table 3 also shows the similar
trends of NV-Embed-v2. This is not surprising, as the LLM already has many self-attention layers
to learn the representation, and adding an additional one does not bring significant additive value.

In contrast, the latent-attention layer proved beneficial for majority of embedding tasks, as shown
in Table 2 and 3. Specifically, the nDCG@10 accuracy of the more challenging 15 retrieval tasks
improved (i.e., mean pooling 61.82 vs. latent-attention 62.65) in Table 3. We hypothesize that
this is due to the "dictionary learning" provided by the latent array, which offers more expressive
representation. The latent-attention layer effectively learns output embedding representations from
decoder-only LLMs, mitigating the information dilution caused by averaging the output embeddings.

5.2.4 MULTI-CLASS CLASSIFICATION AND CLUSTERING LABELS

Table 5: Ablation study on using class/cluster
labels vs. sampled class/cluster examples as
positive and negative documents for multi-class
classification and clustering tasks.

+/- Document Format Labels Examples
Emotion-Classification 90.83 93.38
MassiveIntent-Classification 84.94 86.10
MassiveScenario-Classification 90.18 92.17
MTOPDomain-Classification 98.84 99.25
MTOPIntent-Classification 88.55 94.37
Arxiv-Clustering-P2P 53.01 55.80
Arxiv-Clustering-S2S 49.19 51.26
Biorxiv-Clustering-P2P 45.38 54.09
Biorxiv-Clustering-S2S 42.67 49.60
Medrxiv-Clustering-P2P 37.58 46.09
Medrxiv-Clustering-S2S 36.82 44.86
Reddit-Clustering 59.83 71.10
Reddit-Clustering-P2P 72.58 74.94
StackExchange-Clustering 79.37 82.10
StackExchange-Clustering-P2P 48.59 48.36
TwentyNewsgroups-Clustering 58.41 64.82
Average (16) 64.80 69.27

We compare the effect of using two possible tech-
niques for constructing positive and negative docu-
ments for multi-class classification and clustering
tasks. In label-based approach, the ground-truth
class/cluster label corresponding to the example
in the query is used as the positive document, and
other class/cluster labels are sampled for negative
documents. In example-based approach, another
example from the same class/cluster as the exam-
ple in the query is used as the positive document,
and examples from other clusters are sampled for
negative documents. We use random sampling
to get a broad coverage across labels and exam-
ples. In this work, all 11 clustering datasets and 5
muti-class classification datasets are constructed
as example-based approach. As shown in Table 4,
the example-based approach leads to significant
improvements over the label-based approach for
both classification and clustering. Table 5 further
shows the detailed ablation study of label-based
and example-based labels for classification and
clustering multi-class samples.

5.2.5 HARDNEGATIVE MINING AND SYNTHETICALLY GENERATED DATASET

We provide a step-by-step curation of training dataset, incorporating the hard negative mining
technique (S1), additional public retrieval data (S2), and synthetically generated data (S3). As
shown in Table 4, the first step of adding the hard negative mining technique significantly boosted
retrieval accuracy, with the BEIR score increasing from 59.22 to 61.52. In the next step (S2), we
included more public retrieval datasets (HoVer, SciFact, Nfcorpus, MIRACL, Mr.Tydi) followed by
synthetically generated data. Adding the public retrieval datasets further increased the retrieval score
by 0.7 points. Finally, incorporating the synthetic dataset (S3) leads to a modest improvement in the
overall MTEB scores, raising them by 0.24 points.

6 CONCLUSION

We introduced the NV-Embed model, a decoder-only LLM designed to outperform existing bidi-
rectional models in general-purpose text embedding tasks. For model architecture, we propose a
latent attention layer to obtain expressive pooled embeddings and remove the unnecessary causal
attention mask of decoder-only LLMs. For training algorithm, we introduce a two-stage contrastive
instruction-tuning scheme to sequentially improve the embedding tasks. By leveraging carefully
curated datasets, hard-negative mining, synthetic data generation and example-based multi-class
labeling, our approach achieve the superior accuracy across diverse embedding tasks. As a result, the
series of NV-Embed models achieved and maintained the No.1 ranking on the MTEB leaderboard
and also demonstrated superior accuracy in out-of-domain tasks in AIR Benchmark.
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A COMPREHENSIVE STUDY OF MODEL COMPRESSION TECHNIQUES FOR
NV-EMBED

Increasing computational and memory demands of LLM-based embedding model present the chal-
lenges for the deployment, limiting their scalability and accessibility. In this appendix section, we
provide the analysis of post-training model compression techniques (i.e., pruning and quantization)
for generalist embedding models. Our analysis demonstrates that these compression methods en-
hance the accuracy and robustness of LLM-based embedding models, surpassing the performance of
smaller-sized embedding models based on Llama3.2-3B, Qwen2.5-3B and Minitron-4B.

In model compression process, we first perform pruning the NV-Embed-v2 model, reducing its size
from 8 billion parameters to 3.5 billion (i.e., pruning the main decoder-only blocks and removing the
latent attention block). Next, we apply quantization to lower its precision to 8-bit weights including
integer and floating (E4M3, E5M2) formats. Finally, we perform continual re-training using fine-
tuning (PEFT) method known as low-rank adaptation (LoRA) to restore the model’s accuracy. For
evaluation, we evaluate our model on MTEB benchmark (Muennighoff et al., 2022).

A.1 PRUNING

In order to find better pruning techniques, we apply three methods (magnitude-based, WANDA(Sun
et al., 2023), SparseGPT(Frantar & Alistarh, 2023)) for semi-structured (2:4 and 4:8) and unstructured
approaches. Note, unstructured pruning strategy removes the network elements from individual
weights, while the structured strategy removes the blocks of nonzero weights in higher granularity
ways such as row/columns of weight metrics. Semi-structured is the hardware friendly way (N:M
sparsity), ensuring that N weights remain non-zero within every group of M weights. For example,
4:8 semi-structured pruning prunes four out of every eight elements in a weight tensor. This semi-
structured sparsity reduces the size of the weight matrices and computational cost, while maintaining
certain regularity for efficient hardware utilization. The literature presents various criteria for deter-
mining which weights to prune. The simplest approach is magnitude-based pruning, which retains
weights with higher absolute values and removes the rest. Another approach is WANDA (Sun et al.,
2023) which introduces a pruning technique that considers both weights and activations. SparseGPT
(Frantar & Alistarh, 2023) identifies the non-critical connections by utilizing the approximate hessian
based optimization method.

Table 6 summarizes the averaged MTEB scores for different model pruning, respectively. Among
these techniques, SparseGPT generally delivers the best results, while magnitude-based and WANDA
methods produce comparable performance both during pruning and after retraining as shown in Table
6. Notably, semi-structured (2:4) pruning yields the lowest scores but demonstrates the greatest
accuracy recovery following retraining for MTEB benchmarks. Based on these findings, we focus on
SparseGPT pruning for subsequent ablation studies.

Table 6: Pruning - MTEB benchmark
Pruning Criterion Semi-structured Unstructured2:4 4:8

Magnitude Pruning 64.62 67.6 69.18
Re-train 69.96 70.46 70.84

Wanda Pruning 64.26 67.87 70.19
Re-train 69.74 70.42 70.81

SparseGPT Pruning 68.48 70.11 71.33
Re-train 70.41 70.9 71.18

A.2 KNOWLEDGE DISTILLATION

In traditional accuracy recovery approaches after model compression, ground truth labels are utilized
for continual retraining. To improve this retraining process, we leverage a knowledge distillation loss
term, where the uncompressed model serves as the teacher, transfering the knowledge of the more
advanced teacher model to a smaller and simpler student model. To enable the student model mimic
the teacher’s behavior, we introduce mean-squared error losses for both the output state (So) and the
intermediate states (S1 − So−1).
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For this knowledge distillation process, we use the the uncompressed embedding model serves as the
teacher, while the compressed version acts as the student. We remove the latent attention block and
compensate the accuracy degradation with knowledge distillation. The knowledge distillation loss is
defined as Lkd =

∑O−2
n=1 [MSE(Sn

s , S
n
t )] +MSE(SO−1

s , SO
t ) where Lkd is knowledge distillation

loss, O is the number of layers, n is layer number, MSE represents the mean-squared function, Ss is
student state and St is the teacher state. Based on this, the total loss function is sum of contrastive
and knowledge distillation loss as: Ltotal = Lcontrastive + α× Lkd where α is weight term.

As presented in Table 7, incorporating knowledge distillation ("GT+KD") consistently outperforms
using only ground truth labels ("GT") across different approaches for MTEB benchmarks. Among the
methods, 2:4 semi-structured pruning yields the worst results but benefits the most from knowledge
distillation, achieving improvements of 0.76 on the MTEB benchmark.

Table 7: Knowledge Distillation - MTEB benchmark

Label Types Semi-structured Unstructured2:4 4:8
GT 70.41 70.90 71.18

GT+KD 71.17 71.22 71.48

A.3 QUANTIZATION

For weight quantization stage, we adopt GPTQ (Frantar et al., 2022), a post-training weight quantiza-
tion method that utilizes approximate Hessian information to reduce the precision of the weights. To
evaluate our compressed embedding models, we compare them against three smaller LLM-based
embedding models—Llama3.2-3B, Qwen2.5-3B, and Minitron-4B—which have varying numbers of
weight parameters. Table 8 provides the averaged MTEB scores for compressed models (pruning and
quantization), respectively.

A key observation is that our compressed models demonstrates superior robustness in low precision
settings compared to their smaller counter parts.For example, NV-Embed quantized to INT8 maintains
nearly identical MTEB scores (0.0% for 2:4 semi-structured, 0.01% for 4:8 semi-structured, and
0.01% for unstructured) compared to the performance drops observed in smaller models such as
Llama-3B (-0.47%), Qwen-3B (-0.14%), and Minitron-4B (-0.84%). This trend remains consistent
across different 8 bit precision cases as well.

Compared to integer format which has an uniform numerical distribution, floating point format can
also represent the same number of discrete points, covering larger numerical range and non-uniform
distributions (high precision for small values and lower precision for large values). There are two
primary FP8 format: E4M3 (4-bit exponent, 3-bit mantissa), E5M2 (5-bit exponent, 2-bit mantissa)
where 1 bit represents the signed bit. Table 8 shows that 8 bit floating point (E4M3 and E5M2)
achieve comparable MTEB scores to the INT8 format.

Table 8: Quantization - MTEB benchmark
Precision 16bit INT8 FP8 (E4M3) FP8 (E5M2)

NV-Embed (2:4) Score 71.17 71.17 70.94 71.14
Diff (%) - 0.00% -0.34% 0.03%

NV-Embed (4:8) Score 71.22 71.23 71.28 71.48
Diff (%) - 0.01% 0.08% 0.37%

NV-Embed (Unstr) Score 71.48 71.49 71.55 71.75
Diff (%) - 0.01% 0.09% 0.37%

Llama3.2-3b Score 70.31 69.98 70.05 70.06
Diff (%) - -0.47% -0.36% -0.35%

Qwen2.5-3b Score 69.77 69.70 69.70 69.67
Diff (%) - -0.1% -0.1% -0.14%

Minitron-4b Score 70.68 70.09 69.97 69.97
Diff (%) - -0.84% -1.0% -1.02%
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B AIR BENCHMARK

In this appendix section, we present AIR-Bench3 (version of 24.04) that is newly released information
retrieval benchmark, incorporating the diverse and comprehensive domains such as healthcare, law,
news, book, arxiv, finance and synthetically generated samples using diverse LLMs. Importantly,
AIR-Bench can help us to understand the generalization capability of the embedding/retrieval model,
because the majority of different domain samples do not appear in MTEB benchmarks. Moreover,
the AIR-Bench is designed as a closed-book benchmark whose ground truth is kept confidential. As
a result, the benchmark score can be only obtained through the HuggingFace Hub platform.

In AIR-Benchmark 24.04 version, there are two tasks: QA and Long-Doc. We run evaluations on
8 English datasets in QA task and 15 English datasets on the Long-Doc task. As shown in Table 9,
our NV-Embed-v2 achieves the second highest scores in QA section. As described in Table 10,
our NV-Embed-v2 attained the highest scores of 74.78 on the Long-Doc section, surpassing the
Bge-en-icl model that requires overheads adding in-context examples to query during training. It
is important to highlight that the NV-Embed-v2 model, which achieved higher MTEB accuracy
scores, also demonstrates improved accuracy on both QA and Long-Doc tasks in the AIR-Bench
compared to NV-Embed-v1. Interestingly, this is not always observed in the literature, where
a model performing better on MTEB does not necessarily outperform on the AIR-Bench. For
example, while SFR-Embedding-2R substantially outperforms SFR-Embedding-Mistral in MTEB
scores (SFR-Embedding-2R: 70.31, SFR-Embedding-Mistral: 67.56), it falls short in AIR-Bench
performance both in QA (SFR-Embedding-2R: 49.47, SFR-Embedding-Mistral: 51.58) and Long-doc
(SFR-Embedding-2R: 67.45, SFR-Embedding-Mistral: 69.0).

Table 9: QA (nDCG@10 scores) on AIR benchmark 24.04

Domain Wiki Web News Healthcare Law Finance Arxiv Msmarco Avg (8)
Bge-en-icl (zero-shot) 64.61 54.40 55.11 57.25 25.10 54.81 48.46 63.71 52.93

NV-Embed-v2 65.19 52.58 53.13 59.56 25.00 53.04 48.94 60.8 52.28
SFR-Embedding-Mistral 63.46 51.27 52.21 58.76 23.27 56.94 47.75 58.99 51.58

Stella-1.5B-v5 61.99 50.88 53.87 58.81 23.22 57.26 44.81 61.38 51.53
Gte-Qwen2-7B-instruct 63.46 51.20 54.07 54.20 22.31 58.20 40.27 58.39 50.26

NV-Embed-v1 62.84 50.42 51.46 58.53 20.65 49.89 46.10 60.27 50.02
Linq-Embed-Mistral 61.04 48.41 49.44 60.18 20.34 50.04 47.56 60.50 49.69
SFR-Embedding-2R 63.72 48.77 51.14 55.86 20.98 54.78 42.84 57.66 49.47

E5-mistral-7b-instruct 61.67 44.41 48.18 56.32 19.32 54.79 44.78 59.03 48.56

Table 10: Long-document (Recall@10 scores) on AIR benchmark 24.04
Domain Arxiv (4) Book (2) Healthcare (5) Law (4) Avg. (15)

NV-Embed-v2 79.27 77.46 73.01 71.18 74.78
Bge-en-icl (zero-shot) 78.30 78.21 73.65 67.09 73.75

NV-Embed-v1 77.65 75.49 72.38 69.55 73.45
Bge-multilingual-gemma2 71.77 76.46 73.96 70.86 72.88

Linq-Embed-Mistral 75.46 73.81 71.58 68.58 72.11
Stella-1.5B-v5 73.17 74.38 70.02 69.32 71.25

SFR-Embedding-Mistral 72.79 72.41 67.94 64.83 69.0
Text-embed-3-large (OpenAI) 74.53 73.16 65.83 64.47 68.77

E5-mistral-7b-instruct 72.14 72.44 68.44 62.92 68.49
SFR-Embedding-2R 70.51 70.22 67.60 62.82 67.45

3https://github.com/AIR-Bench/AIR-Bench
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C EXPERIMENTAL DETAILS AND INSTRUCTION TEMPLATES FOR TRAINING
AND EVALUATION

In this section, we describe our detailed experimental setups. We use a parameter-efficient finetun-
ing (PEFT) method denoted as low-rank adaptation (LoRA) (Hu et al., 2021) to efficiently finetune
our proposed NV-Embed model. We chose Mistral 7B (Jiang et al., 2023) as the base decoder-only
LLM. We replace the attention mask from causal to bidirectional, and integrate the latent attention
layer with 512 latents, 4096 hidden dimension size, and 8 multi-head attentions.

We train Mistral 7B LLM model end-to-end with a contrastive loss using LoRA with rank 16, alpha
32 and dropout rate of 0.1. We use Adam optimizer with 50 warm-up steps and learning rate 2e-5 for
first stage and 1.5e-5 for second stage with linear decay. The optimizer hyperparameters are included
in Table 11. We restart the optimizer with the same 50 warm-up steps and lower learning rate for the
second stage. The model is finetuned with 128 batch size, where each batch is composed of a query
paired with 1 positive and 7 hard negative documents. Training samples from different datasets in
Table 12 are uniformly sampled. We train using Bfloat16, and set the maximum sequence length as
512 tokens. The special <BOS> and <EOS> tokens are appended at the start and end of given query
and documents. The whole training is conducted in two stages where the model is initially trained
on retrieval datasets utilizing in-batch negative technique. Subsequently, the model is trained with
blended datasets with both retrieval and non-retrieval embedding tasks.

For evaluation, we assess our model using a maximum length of 512 tokens to ensure fair comparisons
with prior work (Wang et al., 2023b), which also provides evaluation results based on 512 token
limits. Evaluation instructions templates are available in Table 13.

Table 11: Parameters used in the experiments

Parameter Value
Batchsize 128

Number of Hardnegatives 7
Warm-up Steps 50

Training Steps First stage - 20k
Second stage - 18k

Learning Rate First stage - 2e-5
Second stage - 1.5e-5

LoRA Params
Rank - 16
Alpha - 32
Dropout - 0.1

Weight Decay 0.03
Optimizer Adam

Padding Side right
Number of Latents (r) 512

Latent Width (d) 4096
Multi-Attention Heads 8
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Table 12: Instructions and number of samples used for each training dataset.

Task Name Instruction Template Number of Samples
ArguAna Given a claim, retrieve documents that support or refute the claim 16k

Natural Language Inference Retrieve semantically similar text
Given a premise, retrieve a hypothesis that is entailed by the premise 270k

PAQ, MSMARCO
Given a web search query, retrieve relevant passages that answer the query
Given a question, retrieve passages that answer the question
Given a question, retrieve documents that can help answer the question

500k, 500k

SQUAD Given a question, retrieve passages that answer the question 87k
StackExchange Given a web search query, retrieve relevant passages that answer the query 80k
Natural Question Given a question, retrieve passages that answer the question 100k
HotpotQA Given a multi-hop question, retrieve documents that can help answer the question 170k
FEVER Given a claim, retrieve documents that support or refute the claim 140k
FiQA2018 Given a financial question, retrieve relevant passages that answer the query 5k
BioASQ Given a query, retrieve documents that can help answer the question 2.4k
HoVer Given a claim, retrieve documents that support or refute the claim 17k
Nfcorpus Given a question, retrieve relevant documents that answer the question 3.6k
MIRACL Given a question, retrieve passages that answer the question 2k
Mr.TyDi Given a question, retrieve passages that answer the question 2k
SciFact Given a scientific claim, retrieve documents that support or refute the claim 0.9k
STS12, STS22, STSBenchmark Retrieve semantically similar text. 1.8k, 0.3k, 2.7k
AmazonCounterfactual-Classification Classify a given Amazon customer review text as either counterfactual or not-counterfactual 6k
AmazonPolarity-Classification Classify Amazon reviews into positive or negative sentiment 20k
AmazonReviews-Classification Classify the given Amazon review into its appropriate rating category 40k
Banking77-Classification Given a online banking query, find the corresponding intents 10k
Emotion-Classification Classify the emotion expressed in the given Twitter message into one of the six emotions:anger, 16k

fear, joy, love, sadness, and surprise
Imdb-Classification Classify the sentiment expressed in the given movie review text from the IMDB dataset 24k
MTOPIntent-Classification Classify the intent of the given utterance in task-oriented conversation 15k
MTOPDomain-Classification Classify the intent domain of the given utterance in task-oriented conversation 15k
MassiveIntent-Classification Given a user utterance as query, find the user intents 11k
MassiveScenario-Classification Given a user utterance as query, find the user scenarios 11k
ToxicConversationsClassification Classify the given comments as either toxic or not toxic 50k
TweetSentimentExtractionClassification Classify the sentiment of a given tweet as either positive, negative, or neutral 27k
Arxiv-Clustering-P2P Identify the main and secondary category of Arxiv papers based on the titles and abstracts 50k
Arxiv-Clustering-S2S Identify the main and secondary category of Arxiv papers based on the titles 50k
Biorxiv-Clustering-P2P Identify the main category of Biorxiv papers based on the titles and abstracts 15k
Biorxiv-Clustering-S2S Identify the main category of Biorxiv papers based on the titles 15k
Medrxiv-Clustering-P2P Identify the main category of Medrxiv papers based on the titles and abstracts 2.3k
Medrxiv-Clustering-S2S Identify the main category of Medrxiv papers based on the titles 2.3k
Reddit-Clustering Identify the main category of Medrxiv papers based on the titles and abstracts 50k
Reddit-Clustering-S2S Identify the main category of Medrxiv papers based on the titles and abstracts 40k
Stackexchange-Clustering Identify the main category of Medrxiv papers based on the titles and abstracts 50k
Stackexchange-Clustering-S2S Identify the main category of Medrxiv papers based on the titles and abstracts 40k
TwentyNewsgroups-Clustering Identify the topic or theme of the given news articles 1.7k

D LATENT-ATTENTION VISUALIZATION

Figure 2: Attention over 4096 latents across 8 heads (columns) are visualized for 10 positive and
10 negative reviews (rows) from the AmazonReviewsClassification dataset. The attention weights
are mean pooled across tokens. The attention weights reveal that the latents specialize in learning
features of queries. The latent indicated by the arrows specialized in learning the positivity of reviews.
It has high attention across the positive reviews and low attention across the negative reviews.
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Table 13: Instructions used for evaluation on the MTEB benchmark. “STS*” indicates we use the
same instructions for all the STS tasks.

Task Name Instruction Template
ArguAna Given a claim, retrieve documents that support or refute the claim
ClimateFEVER Given a claim about climate change, retrieve documents that support or refute the claim
DBPedia Given a query, retrieve relevant entity descriptions from DBPedia
FEVER Given a claim, retrieve documents that support or refute the claim
FiQA2018 Given a financial question, retrieve user replies that best answer the question
HotpotQA Given a multi-hop question, retrieve documents that can help answer the question
MSMARCO Given a web search query, retrieve relevant passages that answer the query
NFCorpus Given a question, retrieve relevant documents that answer the question
Natural Question Given a question, retrieve passages that answer the question
QuoraRetrieval Given a question, retrieve questions that are semantically equivalent to the given question
SCIDOCS Given a scientific paper title, retrieve paper abstracts that are cited by the given paper
SciFact Given a scientific claim, retrieve documents that support or refute the claim
Touche2020 Given a question, retrieve passages that answer the question
TREC-COVID Given a query on COVID-19, retrieve documents that answer the query
STS Retrieve semantically similar text.
SummEval Given a news summary, retrieve other semantically similar summaries
AmazonCounterfactualClassification Classify a given Amazon customer review text as either counterfactual or not-counterfactual
AmazonPolarityClassification Classify Amazon reviews into positive or negative sentiment
AmazonReviewsClassification Classify the given Amazon review into its appropriate rating category
Banking77Classification Given a online banking query, find the corresponding intents
EmotionClassification Classify the emotion expressed in the given Twitter message into one of the six emotions:anger,

fear, joy, love, sadness, and surprise
ImdbClassification Classify the sentiment expressed in the given movie review text from the IMDB dataset
MassiveIntentClassification Given a user utterance as query, find the user intents
MassiveScenarioClassification Given a user utterance as query, find the user scenarios
MTOPDomainClassification Classify the intent domain of the given utterance in task-oriented conversation
MTOPIntentClassification Classify the intent of the given utterance in task-oriented conversation
ToxicConversationsClassification Classify the given comments as either toxic or not toxic
TweetSentimentExtractionClassification Classify the sentiment of a given tweet as either positive, negative, or neutral
ArxivClusteringP2P Identify the main and secondary category of Arxiv papers based on the titles and abstracts
ArxivClusteringS2S Identify the main and secondary category of Arxiv papers based on the titles
BiorxivClusteringP2P Identify the main category of Biorxiv papers based on the titles and abstracts
BiorxivClusteringS2S Identify the main category of Biorxiv papers based on the titles
MedrxivClusteringP2P Identify the main category of Medrxiv papers based on the titles and abstracts
MedrxivClusteringS2S Identify the main category of Medrxiv papers based on the titles
RedditClustering Identify the topic or theme of Reddit posts based on the titles
RedditClusteringP2P Identify the topic or theme of Reddit posts based on the titles and posts
StackExchangeClustering Identify the topic or theme of StackExchange posts based on the titles
StackExchangeClusteringP2P Identify the topic or theme of StackExchange posts based on the given paragraphs
TwentyNewsgroupsClustering Identify the topic or theme of the given news articles
AskUbuntuDupQuestions Retrieve duplicate questions from AskUbuntu forum
MindSmallReranking Retrieve relevant news articles based on user browsing history
SciDocsRR Given a title of a scientific paper, retrieve the titles of other relevant papers
StackOverflowDupQuestions Retrieve duplicate questions from StackOverflow forum
SprintDuplicateQuestions Retrieve duplicate questions from Sprint forum
TwitterSemEval2015 Retrieve tweets that are semantically similar to the given tweet
TwitterURLCorpus Retrieve tweets that are semantically similar to the given tweet
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Table 14: Full BEIR and MTEB benchmark

Bge-multilin
gual-gemma2

Gte-Qwen2-
7B-instruct

SFR-Embe
dding-2R

Stella-en-
1.5B-v5

bge-en-icl
(zeroshot) NV-Embed-v1 NV-Embed-v2

ArguAna 77.37 64.27 62.34 65.27 82.76 68.21 70.07
ClimateFEVER 39.37 45.88 34.43 46.11 45.35 34.72 45.39
CQADupStack 47.94 46.43 46.11 47.75 47.23 50.51 50.24
DBPEDIA 51.37 52.42 51.21 52.28 50.42 48.29 53.50
FEVER 90.38 95.11 92.16 94.83 91.96 87.77 93.75
FiQA2018 60.04 62.03 61.77 60.48 58.77 63.1 65.73
HotpotQA 83.26 73.08 81.36 76.67 84.98 79.92 85.48
MSMARCO 45.71 45.98 42.18 45.22 46.72 46.49 45.63
NFCorpus 38.11 40.6 41.34 42 40.69 38.04 45.17
Natural 71.45 67 73.96 71.8 73.85 71.22 73.57
QuoraRetrieval 90.04 90.09 89.58 90.03 91.02 89.21 89.04
SCIDOCS 26.93 28.91 24.87 26.64 25.25 20.19 21.90
SciFact 72.05 79.06 85.91 80.09 78.33 78.43 80.13
Touche2020 30.26 30.57 28.18 29.94 29.67 28.38 31.78
TREC-COVID 64.27 82.26 87.28 85.98 78.11 85.88 88.44
BIOSSES 85.74 81.37 87.6 83.11 86.35 85.59 87.42
SICK-R 82.66 79.28 77.01 82.89 83.87 82.8 82.15
STS12 77.71 79.55 75.67 80.09 77.73 76.22 77.89
STS13 87.45 88.83 82.4 89.68 85.98 86.3 88.30
STS14 83.48 83.87 79.93 85.07 82.34 82.09 84.30
STS15 87.63 88.54 85.82 89.39 87.35 87.24 89.04
STS16 86.7 86.49 84.5 87.15 86.54 84.77 86.77
STS17 91.18 88.73 88.93 91.35 91.25 87.42 90.67
STS22 69.02 66.88 67.1 68.1 68.08 69.85 68.12
STSBenchmark 87.25 86.85 83.6 88.23 87.92 86.14 88.41
SummEval 31.2 31.35 30.71 31.49 30.75 31.2 30.70
SprintDuplicateQuestions 90.94 92.82 97.62 96.04 95.06 95.94 97.02
TwitterSemEval2015 79.64 77.96 78.57 80.58 78.54 78.73 81.11
TwitterURLCorpus 86.95 86.59 88.03 87.58 87.19 86.05 87.87
AmazonCounterfactual 89.48 91.31 92.72 92.87 92.88 95.12 94.28
AmazonPolarity 96.9 97.5 97.31 97.16 96.86 97.14 97.74
AmazonReviews 61.6 62.56 61.04 59.36 61.28 55.47 63.96
Banking77 92.53 87.57 90.02 89.79 91.42 90.34 92.42
Emotion 92.97 79.45 93.37 84.29 93.31 91.71 93.38
Imdb 96.66 96.75 96.8 96.66 96.91 97.06 97.14
MassiveIntent 82.05 85.41 85.97 85.83 82.26 80.07 86.10
MassiveScenario 84.4 89.77 90.61 90.2 83.92 81.74 92.17
MTOPDomain 98.61 99.04 98.58 99.01 97.99 96.51 99.25
MTOPIntent 95.51 91.88 91.3 92.78 93.56 89.77 94.37
ToxicConversations 87.34 85.12 91.14 88.76 93.16 92.6 92.74
TweetSentimentExtraction 78.86 72.58 79.7 74.84 79.9 80.6 80.87
Arxiv-P2P 54.91 54.46 54.02 55.44 54.42 53.76 55.80
Arxiv-S2S 50.28 51.74 48.82 50.66 49.17 49.59 51.26
Biorxiv-P2P 52.64 50.09 50.76 50.68 52.32 48.15 54.09
Biorxiv-S2S 49.2 46.65 46.57 46.87 48.38 44.74 49.60
Medrxiv-P2P 45.81 46.23 46.66 46.87 46.13 39.24 46.09
Medrxiv-S2S 44.11 44.13 44.18 44.65 44.2 36.98 44.86
Reddit 56.03 73.55 62.92 72.86 71.2 63.2 71.10
Reddit-P2P 65.83 74.13 72.74 75.27 72.17 68.01 74.94
StackExchange 66.21 79.86 76.48 80.29 81.29 74.99 82.10
StackExchange-P2P 45.74 49.41 48.29 49.57 45.53 42.04 48.36
TwentyNewsgroups 70.44 53.91 66.42 61.43 68.51 60.13 64.82
AskUbuntuDupQuestions 64.59 67.58 66.71 67.33 64.8 67.5 67.46
MindSmallRerank 31.79 33.36 31.26 33.05 30.6 30.82 31.76
SciDocsRR 87.6 89.09 87.29 89.2 86.9 87.26 87.59
StackOverflowDupQuestions 54.9 55.66 55.32 55.25 56.32 56.58 55.79
MTEB Average (56) 69.88 70.24 70.31 71.19 71.24 69.32 72.31
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Table 15: Prompt template for short-long matching subgroup.

Brainstorm a list of potentially useful text retrieval tasks.

Here are a few examples for your reference:
- Given a web search query, retrieve relevant passages that answer the query
- Given a claim about climate change, retrieve documents that support or refute the claim
- Given a job title, search for job descriptions that provide information about the role

Please adhere to the following guidelines:
- Specify the type of query and the type of desired texts.
- Each retrieval task should cover a wide range of queries, and should not be too specific.
- Cover a wide range of query types and desired text types.

Your output must always be a JSON list of strings only, with about 40 elements, and each element corresponds to
a distinct retrieval task in one sentence. Do not explain yourself or output anything else. Be creative!
You have been assigned a retrieval task: {task}

Your mission is to write one text retrieval example for this task in JSON format. The JSON object must
contain the following keys:
- "user_query": a string, a random example of what is provided as specified by the task description.
- "positive_document": a string, a relevant document for the user query.
- "hard_negative_document1": a string, a hard negative document that is irrelevant but appears relevant to the query.
- "hard_negative_document2": a string, another hard negative document that is irrelevant but appears relevant to the query.

Please adhere to the following guidelines:
- The "user_query" should be {query_type}, {query_length}, {clarity}, and diverse in topic. The "user_query" should
not restate the task and just contain what the task description says is provided.
- All documents must be created independent of the query. Avoid copying the query verbatim. It’s acceptable if
some parts of the "positive_document" are not topically related to the query.
- All documents should be at least {num_words} words long.
- The "hard_negative_document1" may contain little useful information, but it should be less useful or
comprehensive compared to the "positive_document".
- The "hard_negative_document2" may should be about a related but different topic.
- Do not provide any explanation in any document on why it is relevant or not relevant to the query.
- Both the query and documents require {difficulty} level education to understand.

Your output must always be a JSON object only, do not explain yourself or output anything else. Be creative!"""
Placeholders:
“{query_type}” ∈ {extremely long-tail, long-tail, common}
“{query_length}” ∈ {less than 5 words, 5 to 15 words, at least 10 words}
“{difficulty}” ∈ {high school, college, PhD}
“{clarity}” ∈ {clear, understandable with some effort, ambiguous}
“{num_words}” ∈ {50, 100, 200, 300, 400, 500}
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Table 16: Prompt template for long-short matching subgroup.

Brainstorm a list of potentially useful text classification tasks.

Please adhere to the following guidelines:
- Tasks should cover a diverse range of domains and task types.

Your output must always be a JSON list of strings only, with about 40 elements, and each element corresponds
to a distinct text classification task in one sentence. Do not explain yourself or output anything else. Be creative!
You have been assigned a text classification task: {task}

Your mission is to write one text classification example for this task in JSON format. The JSON object must
contain the following keys:
- "input_text": a string, the input text specified by the classification task.
- "label": a string, the correct
label of the input text.
- "misleading_label": a string, an incorrect label that is related to the task.

Please adhere to the following guidelines:
- The "input_text" should be {num_words} words and diverse in expression.
- The "misleading_label" must be a valid label for the given task, but not as appropriate as the "label" for the
"input_text".
- Avoid including the values of the "label" and "misleading_label" fields in the "input_text", that would make
the task too easy.
- The "input_text" is {clarity} and requires {difficulty} level education to comprehend.

Your output must always be a JSON object only, do not explain yourself or output anything else. Be creative!
Placeholders:
{num_words} ∈ {"less than 10","at least 10", "at least 50", "at least 100", "at least 200"}
{difficulty} ∈ {high school, college, PhD}
{clarity} ∈ {clear, understandable with some effort, ambiguous}
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