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1. Method Details014

1.1. Acoustic Beam Tracing Algorithm015

Figure 1. Acoustic beam tracing: in acoustic beam tracing the
source and listener are considered as two point, the sound is prop-
agate via a cone-shape beam in space. Acoustic beam tracing han-
dles reflection the same as ray tracing does. The key difference is
that acoustic beam tracing enumerate a reflection path if the lis-
tener is contatined in the beam volume but not necessarily being
hitted by the sampled ray

Given the source location xa and listener location xb, we016
adopt acoustic beam tracing [2, 4, 7, 12] to sample specu-017
lar beams in a source-to-listener manner. First we cast Nd018
beams from the source, using a Fibonacci lattice [3] to ap-019
proximate uniform coverage of directions. A small apex020

angle 2φmax is selected to ensure the cone-shape beams re- 021
main disjoint. Next, each beam’s center ray intersects with 022
room geometry to find reflection points (e.g. via Open3D 023
[14]), and after each reflection, we check if the reflected 024
beam can hit the listener. To determine whether a reflected 025
beam at j-th reflection point xj (with out-going direction 026
dj) reaches the listener before hitting another surface, we 027
check if the listener is within the reflected cone (as show in 028
Figure 1). Denote lj as the distance traveled by reaching 029
xj , and αj as the angle between dj and the line from xj to 030
xb and φj as the sampled half-apex angle: 031

φj = arctan

(
∥xb − xj∥ sinα

∥xb − xj∥ cosα+ lj

)
. (1) 032

The listener is considered “hit” if α is acute, φj < φmax, 033
and xj is visible by xb. In addition, the time-of-arrival is 034
by: 035

toaj =
∥xb − xj∥ sinα
vsound · sinφj

. (2) 036

Algorithm 1 summarizes our beam-tracing procedure. 037

1.2. Local Variance Derivation 038

As shown in Figure 2, consider a beam traveling distance 039
l before hitting the surface at x, with half-apex angle φ 040
and local surface normal z. Let θ be the angle between 041
the reflected direction d and z. In a local coordinate system 042
whose axes are {t1, t2, z}, where we requires t1 aligns with 043
the projection of d in the tangent surface, the beam’s cross- 044
section at distance l is approximately an ellipse with semi- 045
major and semi-minor axes proportional to l sinφ, modu- 046
lated by θ. A simple way to encode this elliptical patch is to 047
use a diagonal covariance at local coordinate 048

Σlocal = diag
(
σ2
1 , σ

2
2 , 0

)
, (3) 049

where σ2
1 and σ2

2 grow with l sinφ, adjusted by cos θ. In the 050
case when φ is small: 051

σ2
1 ≈

(
l sinφ

)2
/ cos2θ, σ2

2 ≈
(
l sinφ

)2
/ cosθ. 052
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Algorithm 1: Acoustic Beam Tracing
Input: Source xa, Listener xb, GeometryM
Output: Specular paths {x̃k}Nk=1

for i = 1 to Nd do
xi,0←xa; li,0←0;
di,0← SampleFib(Nd, i)

end
ANS←{}
if IsVisible(xa, xb) then

ANS.add(∅) // direct path
end
for j = 1 to MAXdepth do

for i = 1 to Nd do
[xi,j , z] = HitPoint(M,xi,j−1,di,j−1)

di,j = di,j−1 − 2 (z⊤di,j−1) z
li,j = li,j−1 + ∥xi,j − xi,j−1∥
if BeamHit(xb, xi,j , di,j , li,j) then

ANS.add
(
[xi,1,xi,2, . . . ,xi,j ]

)
end

end
end
return ANS

Figure 2. Local covariance derivation: as the traveling space l
increases, the region of the contact area expand linearly in terms
of radius. In addition, since the half-apex angle is assumed to be
small, the contact region is considered an ellipse, which motivates
use model the region information with a gaussian distribution.

These terms capture how the beam’s ellipse “stretches”053
along t1 and t2. In world coordinates, the final covariance054
Σ is simply055

Σ = QΣlocal Q
⊤,056

where Q = [ t1 t2 z ] rotates from local axes to world axes.057

Figure 3. Visualization of surface basis samples for extracting
multi-view images features.

1.3. Basis Points Sampling 058

we sample the basis point in two steps, first we densely sam- 059
ple 100,000 points on the room geometry, then, we down- 060
sample them with voxel size 0.2m and use the median point 061
(closest to mean point) as the basis samples for vision fea- 062
tures, as shown in Figure 3, in this way, we ensures the 063
distances between samples are stable. 064

1.4. Hyperparameters 065

Following [13], we use a spherical Gaussian weighting 066
function with a sharpness parameter of 8 for source di- 067
rectional response. We decode the image feature using a 068
4-layer MLP and sample frequencies from 12 to 7800 Hz 069
with 16 logarithmically spaced samples, linearly interpolat- 070
ing the frequency response. 071

1.5. Optimization 072

We optimize the network using the AdamW optimizer with 073
a fixed learning rate of 5 × 10−4 (and 1 × 10−4 for the 074
residual component). Our loss function is defined as: 075

L = LMAG + λpinkLpink, (4) 076

where LMAG is a multi-scale log L1 loss, and Lpink is the 077
pink noise supervision loss. We adopt a progressive training 078
strategy, starting with a reflection order N = 1 and increas- 079
ing by 1 every 100 epochs until N = 6. During training, we 080
sample 16,384 points from Fibonacci lattices for beam trac- 081
ing, reducing this to 8,192 points per RIR during inference. 082
Training is performed with a batch size of 1. 083

2. Additional Results on RAF [1] Dataset and 084

HAA [13] Dataset 085

2.1. Wave Comparison 086

Figure 4 shows wave visualizations on the Hearing Any- 087
thing Anywhere dataset. All models were trained on only 12 088
data points. Our model significantly outperforms the base- 089
lines in preserving the wave structure, producing a wave 090
front that closely matches the ground truth in terms of peak 091
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Figure 4. Wave visualization on the Hearing Anything Anywhere dataset [13]. All models are trained on 12 data points. Our model sig-
nificantly outperforms all baselines in preserving the wave structure—producing the most faithful wave front with accurate peak locations
and magnitudes. Note that quantitative metrics do not always capture these perceptual details; some methods may have low error values
despite producing distorted wave patterns.

Figure 5. Wave visualization on the Real Acoustic Field dataset [1]. We show results from three baseline models trained on 1% of
the data alongside our model trained on 1% and 0.1% of the data. Our model exhibits better peak alignment and magnitude than baseline
methods—even when trained on only 0.1% of the data—and significantly outperforms all baselines when using the same amount of training
data.

locations and magnitudes. Note that quantitative metrics092
do not always capture these perceptual differences; some093
methods may achieve low error values despite generating094
distorted wave patterns. This comparison highlights the su-095
perior capability of our approach in modeling acoustic dy-096
namics in few-shot settings.097

Figure 5 presents wave visualizations on the Real Acous-098
tic Field dataset. Here, we compare three baseline models099
trained on 1% of the data with our model trained on both 1%100

and 0.1% of the data. Our results demonstrate that, in terms 101
of wave structure, our model achieves better peak align- 102
ment and peak magnitude than the baselines—even when 103
our model is trained on only 0.1% of the data. When trained 104
on 1% of the data, our method further outperforms the base- 105
lines. 106
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2.2. Multi-scale Performance Comparison107

Figure 6 extend the multi-scale performance comparison in108
main paper by evluating on two more metrics, i.e., Loud-109
ness and EDT. The result shows that our model performs110
consistantly better than baselines in all training data scale,111
which is aligned with our observation in the main paper.

Figure 6. Performance comparison across training scales (from
0.01% to 100% of training data). In addition to the metrics re-
ported in the main paper, our model consistently outperforms the
baselines in terms of both EDT and Loudness.

112

2.3. Full Metric on HAA Dataset113

Tables 2 and 3 present the complete evaluation metrics on114
the HAA dataset, including Loudness, C50, EDT, and T60115
across four scenes. Our results show that our method out-116
performs state-of-the-art baselines across almost all met-117
rics, confirming the trends observed in the main paper. The118
only exception is the C50 metric and EDT metric in the119
Hallway scene, where AV-NeRF performs particularly well,120
likely due to its effective use of depth information in this121
constrained geometry. These comprehensive results vali-122
date the robustness and effectiveness of our model in diverse123
real-world acoustic environments.124

2.4. Ablations on Vision Features125

We investigate the impact of vision features by varying two126
aspects: the number of multi-view images used for training127
and the choice of the pretrained encoder. Both experiments128
are conducted on the RAF Furnished scene using only 0.1%129
of the training data.130

In our vision feature saturation experiment, we initially131
use 65 images to cover the entire scene, then reduce the132
number to 20, 10, and 5 views (see top four rows of Ta-133
ble 1). Reducing from 65 to 20 views incurs less than a134
1% drop in C50 and EDT, but further reduction from 20135
to 10 views causes a marked performance decline, indicat-136
ing that adequate view redundancy is essential for effective137
visual guidance. Performance remains stable when further138
reduced from 10 to 5 views, suggesting that with only 10139
views the model nearly abandons visual feature learning and140
relies primarily on acoustic cues.141

We also replace the DINO-v2 [10] encoder with 142
ResNet18 [5], which results in a noticeable drop in EDT, 143
demonstrating that DINO-V2 is better suited for our model. 144
Notably, all vision ablations have minimal impact on T60, 145
indicating that vision features primarily contribute to mod- 146
eling early reflection phenomena rather than late reverbera- 147
tion. 148

Variant C50 EDT T60

65 views 1.98 80.1 15.2
20 views 2.01 80.9 15.7
10 views 2.13 97.9 15.2
5 views 2.12 97.2 15.3
ResNet18 1.96 89.4 15.3

Table 1. Ablation study on vision features. “65 views” denotes us-
ing 65 images for training; “20 views”, “10 views”, and “5 views”
denote reduced image sets. “ResNet18” indicates replacing the
DINO-V2 encoder with ResNet18.
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Method
Classroom Complex Room

Loudness C50 EDT T60 Loudness C50 EDT T60
(dB) ↓ (dB) ↓ (ms) ↓ (%) ↓ (dB) ↓ (dB) ↓ (ms) ↓ (%) ↓

NAF++ [9] 8.27 1.62 162.3 134.0 4.43 2.25 203.5 44.8
INRAS++ [11] 1.31 1.86 110.0 60.9 1.65 2.26 150.7 29.5
AV-NeRF[8] 1.51 1.43 77.8 50.0 2.01 1.88 107.9 36.6
AVR [6] 3.26 4.18 135.6 44.3 6.47 2.55 138.3 36.7
Diff-RIR [13] 2.24 2.42 139.7 39.7 1.75 2.23 129.5 18.5

Ours 0.99 1.02 55.5 24.3 0.98 1.44 86.5 10.8

Table 2. Result on Diff-RIR [13] dataset, 2.0s, 16K sample rate

Method
Dampened Room Hallway

Loudness C50 EDT T60 Loudness C50 EDT T60
(dB) ↓ (dB) ↓ (ms) ↓ (%) ↓ (dB) ↓ (dB) ↓ (ms) ↓ (%) ↓

NAF++ [9] 3.88 4.24 360.0 306.9 8.71 1.36 148.3 21.4
INRAS++ [11] 3.45 3.28 187.1 382.9 1.55 1.87 157.9 7.4
AV-NeRF [8] 2.40 3.05 242.1 107.9 1.26 1.03 89.9 9.5
AVR [6] 6.65 11.11 305.3 81.4 2.48 2.69 195.4 7.0
Diff-RIR [13] 1.87 1.56 153.0 44.9 1.32 3.13 188.1 6.8

Ours 1.11 1.45 139.0 31.9 0.85 1.15 96.5 6.3

Table 3. Result on Diff-RIR [13] dataset, 2.0s, 16K sample rate
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