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A DIFFUSION MODEL WITH PROBABILISTIC MASKS

The masked forward process is

q(xt|xt−1,mt) = N (xt;
√

1− βtmtxt−1, βtmtI);

q(x1:T ,m|x0) = q(x1:T |x0,m)ps(m)

= ps(m)ΠT
t=1q(xt|xt−1,mt)

= ΠT
t=1q(xt|xt−1,mt)ps(mt)

The masked reverse process is

pθ(xt−1|xt,mt) = N (xt−1;µθ(xt,mt, t),mtΣθ(xt, t))

pθ(x0:T ,m) = ps(m)pθ(x0:T |m)

= ps(m)p(xT )Π
T
t=1pθ(xt−1|xt,mt)

= p(xT )Π
T
t=1pθ(xt−1|xt,mt)ps(mt)

The reduced variance variational bound for diffusion models can be written as:

− log pθ(x0) = − log

∫
pθ(x0:T ,m)dx1:T dm

= − log

∫
pθ(x0:T ,m)

q(x1:T ,m|x0)
q(x1:T ,m|x0)dx1:T dm

= − logEq
pθ(x0:T ,m)

q(x1:T ,m|x0)

≤ −Eq log
pθ(x0:T ,m)

q(x1:T ,m|x0)

= −Eq log
p(xT |m)ΠT

t=1pθ(xt−1|xt,m)ps(mt)

ΠT
t=1q(xt|xt−1,m)ps(mt)

= −Eq

[
log p(xT |m) +

T∑
t=1

log
pθ(xt−1|xt,m)

q(xt|xt−1,m)

]
=: L

q(xt|xt−1,m) =q(xt|x0,xt−1,m)

=
q(xt,x0,xt−1,m)

q(x0,xt−1,m)

=
q(xt−1|xt,x0,m)q(xt,x0,m)

q(x0,xt−1,m)

=
q(xt−1|xt,x0,m)q(xt|x0,m)q(x0,m)

q(xt−1|x0,m)q(x0,m)

=q(xt−1|xt,x0,m)
q(xt|x0,m)

q(xt−1|x0,m)
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L = −Eq

[
log p(xT |m) +

T∑
t=1

log
pθ(xt−1|xt,m)

q(xt|xt−1,m)

]

= −Eq

[
log p(xT |m) +

T∑
t=2

log
pθ(xt−1|xt,m)

q(xt|xt−1,m)
+ log

pθ(x0|x1,m)

q(x1|x0,m)

]

= −Eq

[
log p(xT |m) +

T∑
t=2

log
pθ(xt−1|xt,m)

q(xt−1|xt,x0,m)
· q(xt−1|x0,m)

q(xt|x0,m)
+ log

pθ(x0|x1,m)

q(x1|x0,m)

]

= −Eq

[
log

p(xT |m)

q(xT |x0,m)
+

T∑
t=2

log
pθ(xt−1|xt,m)

q(xt−1|xt,x0,m)
+ log pθ(x0|x1,m)

]

= Eq

DKL (q(xT |x0,m)∥p(xT |m))︸ ︷︷ ︸
LT

+

T∑
t=2

DKL (q(xt−1|xt,x0,m)∥pθ(xt−1|xt,m))︸ ︷︷ ︸
Lt−1

− log pθ(x0|x1,m)


Note that

q(xt−1|xt,x0,m) = N (xt−1; µ̃(xt,x0), β̃tI)

µ̃t(xt,x0) =

√
ᾱt−1(m)βtmt

1− αt(m)
x0 +

√
αt(m)(1− ᾱt−1(m))

1− ᾱt(m)
xt,

β̃t =
1− ᾱt−1(m)

1− ᾱt(m)
mtβt.

where

αt(m) = 1−mtβt and ᾱt(m) = Πt
i=1αi(m).

For the reverse process, we have

pθ(xt−1|xt,m) = N (xt−1;µθ(xt,m, t), σ̃2
t (m)I).

Therefore,

Lt−1 =

{
0, if mt = 0
1
2

[
n 1−ᾱt−1(m)

1−ᾱt(m)
mtβt

σ̃2
t (m)

− n+ 1
σ̃2
t (m)

∥µ̃t(xt,x0)− µθ(xt,m, t)∥2 + n log
(

1−ᾱt−1(m)
1−ᾱt(m)

mtβt

σ̃2
t (m)

)]
, otherwise

=

{
0, if mt = 0

1
2σ̃2

t (m)
∥µ̃t(xt,x0)− µθ(xt,m, t)∥2 + n

2

[
1−ᾱt−1(m)
1−ᾱt(m)

mtβt

σ̃2
t (m)

− 1 + log
(

1−ᾱt−1(m)
1−ᾱt(m)

mtβt

σ̃2
t (m)

)]
, otherwise

=

{
0, if mt = 0

1
2σ̃2

t (m)
∥µ̃t(xt,x0)− µθ(xt,m, t)∥2 + C(m) otherwise

where

C(m) =
n

2

[
1− ᾱt−1(m)

1− ᾱt(m)

mtβt

σ̃2
t (m)

− 1 + log

(
1− ᾱt−1(m)

1− ᾱt(m)

mtβt

σ̃2
t (m)

)]
.

In this paper, following DDPM, we choose

σ̃2
t (m) =

1− ᾱt−1(m)

1− ᾱt(m)
mtβt.

In this case,
C(m) = 0.

For µ̃t(xt,x0), since

xt(x0, ϵ) =
√
ᾱt(m)x0 +

√
1− ᾱt(m)ϵ with ϵ ∼ N (0, I),
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we have

µ̃t(xt,x0) =

√
ᾱt−1(m)mtβt

1− ᾱt(m)
x0 +

√
αt(m)(1− ᾱt−1(m))

1− ᾱt(m)
xt(x0, ϵ)

=

√
ᾱt−1(m)mtβt

1− ᾱt(m)

1√
ᾱt(m)

(
xt(x0, ϵ)−

√
1− ᾱt(m)ϵ

)
+

√
αt(m)(1− ᾱt−1(m))

1− ᾱt(m)
xt(x0, ϵ)

=
1√

αt(m)

(
xt(x0, ϵ)−

mtβt√
1− ᾱt(m)

ϵ

)
.

Hence, we define

µ(xt,m, t) =
1√

αt(m)

(
xt −

mtβt√
1− ᾱt(m)

ϵθ(xt, t)

)
.

Then, we have
1

2σ̃2
t (m)

∥µ̃t(xt,x0)− µθ(xt,m, t)∥2

=
mtβ

2
t

2σ̃2
t (m)αt(m)(1− ᾱt(m))

∥ϵ− ϵθ (xt, t)∥2

=
mtβ

2
t

2σ̃2
t (m)αt(m)(1− ᾱt(m))

∥∥∥ϵ− ϵθ

(√
ᾱt(m)x0 +

√
1− ᾱt(m)ϵ, t

)∥∥∥2
Finally, we get the loss as follows:

Lt−1 =

{
0, if mt = 0

mtβ
2
t

2σ̃2
t (m)αt(m)(1−ᾱt(m))

∥∥∥ϵ− ϵθ

(√
ᾱt(m)x0 +

√
1− ᾱt(m)ϵ, t

)∥∥∥2 , otherwise

Thus, we get the objective function in the maintext.

B BASICS

B.1 MUTUAL SKIPPING OF SAMPLING STEPS

To improve the efficiency of sample generation process, previous methods Song et al. (2020); Bao
et al. (2022a;b) always manually select the denoising steps through uniform skipping and quadratic
skipping. The mathematical expression of the above skipping approaches can be written as:

T = {1, 1 + S, ..., 1 + iS, ..., L}, with S =

{
T
L , uniform skipping,(
0.8T
L

)2
, quadratic skipping.

(1)

where i = 1, . . . , L. T and L are the number of diffusion steps and number of denoising steps in
the training and testing state respectively. S is the skipping step. The difference of T and L results
in decoupled forward and reverse processes, which makes a suboptimal performance. Instead, our
proposed probabilistic masking method can identify and keep the most informative steps during
training.

B.2 MULTIVARIATE TIME SERIES IMPUTATION

Let us denote each time series as X ∈ RK×P , where K is the number of features and P is the
length of time series. Probabilistic time series imputation is to estimate the missing values of X by
exploiting the observed values of X . The diffusion model is used to estimate the true conditional
data distribution q(xt

0|xc
0), where xt

0 and xc
0 are the imputation targets and conditional observations

respectively.
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C EXPERIMENTS

C.1 TIME SERIES DATASETS

Healthcare dataset Silva et al. (2012) consists of 4000 clinical time series with 35 variables for 48
hours from intensive care unit (ICU), and it contains around 80% missing values. Following previous
study Tashiro et al. (2021), we randomly choose 10/50/90% of observed values as ground-truth on
the test data for imputation.

Air-quality dataset is composed of air quality data from 36 stations in Beijing from 2014/05/01
to 2015/04/30, and it has around 13% missing values. We set 36 consecutive time steps as one
time series. To build missing values in the time series, we follow the empirical settings of the
baseline Tashiro et al. (2021), we adopt the random strategy for the healthcare dataset and the mix
of the random and historical strategy for the air quality dataset.

C.2 IMPLEMENT DETAILS

All the experiments are implemented by Pytorch 1.7.0 on a virtual workstation with 8 11G memory
Nvidia GeForce RTX 2080Ti GPUs.

Time series. As for model hyper-parameters, we set the batch size as 16 and the number of epochs
as 200. We used Adam Kingma & Ba (2014) optimizer with learning rate 0.001 that is decayed to
0.0001 and 0.00001 at 75% and 90% of the total epochs, respectively. For the diffusion model, we
follow the CSDI Tashiro et al. (2021) architecture to set the number of residual layers as 4, residual
channels as 64, and attention heads as 8. The denoising step T is set to 50 as our baseline.

Image data. Following Nichol & Dhariwal (2021), we use the U-Net model architecture, train
500K iterations with a batch size of 128, use a learning rate of 0.0001 with the Adam Kingma &
Ba (2014) optimizer and use an exponential moving average (EMA) with a rate of 0.9999. The
denoising step T is set to 1000 and the linear forward noise schedule is used as our baseline.

C.3 EVALUATION METRIC

The detailed formulations of three metrics for time series task are:

MAE(x, x̂) =
1

N

N∑
i=1

∥xi − x̂i∥, (2)

RMSE(x, x̂) =

√√√√ 1

N

N∑
i=1

∥xi − x̂i∥2, (3)

CRPS(F, F̂ ) =

∫ ∞

−∞

[
F (z)− F̂ (z)

]2
dz, (4)

where x denotes the ground truth of the missed time series, x̂ represents the predicted values. F is
the cumulative distribution function of observations.

C.4 MAIN RESULTS

As shown in Table 1, our proposed EDDPM can achieve better results than the baselines with 100%
steps (blue text) even if 60% ∼ 75% denoising steps are masked. These results are consistent with
the conclusion of the main paper.

C.5 VISUALIZATION RESULTS

From the results illustrated in Figure 1, we can conclude that our proposed EDDPM can generate
more accurate probabilistic imputation results by only using the original 20% ∼ 50% steps.

For CIFAR-10 image generation, Figure 2 and 4 show that our proposed EDDPM can generate more
high-quality image samples than DDIM Song et al. (2020) when using 10 denoising steps. Figure 3
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Table 1: Comparising sampling acceleration methods in terms of CRPS results on variable denois-
ing steps. † indicate that the sampling is accelerated by quadratic skipping during inference, the
others utilize uniform skipping. We highlight the best results that surpass the baselines in red color,
which means our method generates high-quality time series with fewer denoising steps. The bold
results show that our proposed EDDPM achieves better performance than other sampling accelera-
tion methods.

Dataset Missing Method Denoising steps Baselines10% 25% 40% 50%

H
ealthcare

10%

DDPM† 0.688 0.501 0.382 0.326
DDPM 0.640 0.431 0.344 0.276
DDIM 0.641 0.495 0.564 0.840
AnalyticDPM 0.615 0.536 0.516 0.501 0.238
SN-DDPM 0.769 0.757 0.762 0.769
NPR-DDIM 0.573 0.502 0.504 0.516
Ours 0.267 0.237 0.235 0.231

50%

DDPM† 0.699 0.582 0.490 0.439
DDPM 0.675 0.516 0.437 0.372
DDIM 0.675 0.562 0.601 0.810
AnalyticDPM 0.698 0.586 0.572 0.579 0.331
SN-DDPM 0.761 0.752 0.759 0.772
NPR-DDIM 0.612 0.546 0.547 0.561
Ours 0.357 0.337 0.321 0.330

90%

DDPM † 0.731 0.690 0.648 0.622
DDPM 0.737 0.654 0.594 0.557
DDIM 0.737 0.695 0.715 0.856
AnalyticDPM 0.715 0.685 0.672 0.668 0.522
SN-DDPM 0.840 0.810 0.808 0.810
NPR-DDIM 0.704 0.647 0.643 0.644
Ours 0.572 0.517 0.516 0.513

A
ir-quality

13%

4% 10% 20% 40%
DDPM† 0.568 0.482 0.374 0.217
DDPM 0.536 0.453 0.344 0.209
DDIM† 0.569 0.507 0.464 0.605
DDIM 0.537 0.485 0.619 1.553
AnalyticDPM 0.489 0.453 0.429 0.382 0.109
SN-DDPM 0.557 0.507 0.482 0.481
SN-DDIM 0.653 0.568 0.558 0.582
NPR-DDPM 0.359 0.355 0.377 0.395
NPR-DDIM 0.362 0.344 0.305 0.271
Ours 0.170 0.133 0.112 0.104

and 5 show the sample pairs generated by our EDDPM with 5, 10 and 100 denoising steps, from
these results we can conclude that our method generate high-quality CIFAR-10 images using 5 steps.
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Figure 1: The comparison of our EDDPM method and DDPM Ho et al. (2020) for probabilistic time
series imputation on Air-quality dataset. CSDI model is trained by DDPM. The black crosses show
observed values and the blue circles show ground-truth imputation targets. red and green colors
correspond to our EDDPM and CSDI, respectively. For each method, median values of imputations
are shown as the line and 5% and 95% quantiles are shown as the shade.
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DDIM EDDPM

Figure 2: Random samples generated by DDIM Song et al. (2020) and EDDPM (ours) with 10
denoising steps on CIFAR-10 dataset. We only present the result in this extreme sparse case since
the results for more denoising steps are difficult to differentiate for human beings.
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Figure 3: Random samples generated by our EDDPM with 5, 10 and 100 denoising steps on CIFAR-
10 dataset.

T = 10

DDIM

EDDPM

Figure 4: Sample pair comparison based on DDIM Song et al. (2020) and EDDPM (ours) with 10
denoising steps on CIFAR-10 dataset when T = 10. We can see that our method can generate
images with more details.
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Figure 5: Random samples generated by our EDDPM with 5, 10 and 100 denoising steps on CIFAR-
10 dataset.
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