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A APPENDIX

A.1 META-DATA

To incorporate epidemiological and geographical information into early-stage pandemic forecasting,
we collected 7 epidemiological and 13 geographical metadata for each location and pandemic. Data
unavailable during the early stages were marked as missing in the dataset. A detailed list of the
metadata collected is provided in Table A.1.

Table A.1: Meta data table for training HG-DCM The meta-data table including the epidemiologi-
cal metadata and geological metadata used in training HG-DCM

Epidemiological Meta Data Geological Meta Data
Basic Reproduction Rate (R0) Population
Transmission Pathways Net lending/borrowing
Mortality Rate Current Health Expenditure per capita
Average Hospitalization Length Population Density
Hospitalization Rate GNI per capita
Latent Period GDP per capita
Incubation Period Physician per 1,000 people

Urban Population Living in Slums
GDP
External Health Expenditure per capita
Air Transport
Government Effectiveness
Domestic General Government Health Expen-
diture per Capita

A.2 PARAMETER RANGES

To fit an accurate and interpretable model, it is crucial that the predicted parameters in both HG-
DCM and DELPHI fall within epidemiologically reasonable ranges. For this study, we adopted
the parameter ranges defined in the original DELPHI paper (Li et al.), with adjustments tailored
specifically for early-stage forecasting. A comprehensive list of the parameter ranges used during
model training is presented in Table A.2.

Table A.2: DELPHI Parameters Ranges The ranges of DELPHI parameters used in training
HG-DCM and DELPHI

DELPHI Parameters Range
α [0.1, 1.5]
days [0, 100]
r_s [1, 15]
r_dth [0.02, 0.5]
p_dth [0.01, 0.25]
r_dthdecay [-0.2, 5.0]
k1 [0.001, 5]
k2 [0.001, 5]
jump [0, 5]
t_jump [0, 300]
std_normal [0.1, 100]
k3 [0.2, 2.0]

A.3 COVID-19 EARLY-STAGE FORECASTING PARAMETER ANALYSIS

To better interpret the predictions, we analyzed the parameters inferred from HG-DCM compared to
DELPHI in an early-stage COVID-19 forecasting task using four weeks of data. All 12 parameters
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are significantly different between DELPHI and HG-DCM based on Wilcoxon signed-rank test (p <
0.05). HG-DCM model tends to predict a lower α, days, r_dth, t_jump, pdth, k1, and std_normal,
whereas predicting a higher r_s, rdthdecay, k2, junp, tjump, and k3. The divergent prediction set
of parameters from two different forecasting methods provides a more comprehensive understanding
of the pandemic. (Figure A.1).

Figure A.1: Comparison of fitted parameters in traditional DELPHI model and HG-DCM The
8 bar graphs show the mean and standard deviation of the remaining 8 predicted parameters from two
different approaches that are not shown in the main text. Mann-Whitney U test is used to calculate
the p-value of the two groups. Pairs with p-values < 0.05 are considered significantly different.
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