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Abstract

Large-batch training has been essential in leveraging large-scale datasets and models in
deep learning. While it is computationally beneficial to use large batch sizes, it often re-
quires a specially designed learning rate (LR) schedule to achieve a comparable level of
performance as in smaller batch training. Especially, when the number of training epochs
is constrained, the use of a large LR and a warmup strategy is critical in the final per-
formance of large-batch training due to the reduced number of updating steps. In this
work, we propose an automated LR scheduling algorithm which is effective for neural net-
work training with a large batch size under the given epoch budget. In specific, the whole
schedule consists of two phases: adaptive warmup and predefined decay, where the LR is
increased until the training loss no longer decreases and decreased to zero until the end
of training. Here, whether the training loss has reached the minimum value is robustly
checked with Gaussian process smoothing in an online manner with a low computational
burden. Coupled with adaptive stochastic optimizers such as AdamP and LAMB, the pro-
posed scheduler successfully adjusts the LRs without cumbersome hyperparameter tuning
and achieves comparable or better performances than tuned baselines on various image
classification benchmarks and architectures with a wide range of batch sizes.

1. Introduction

In modern deep learning tasks, scaling up both the sizes of dataset and model has shown
promising improvements. However, a large number of samples and slow gradient com-
putations lead to considerably longer training time, and therefore the use of large batch
size in stochastic optimization with multiple computational nodes has gain popularity to
speed up for such a large-scale training. It is desirable for the optimization algorithm with
the increased batch sizes to maintain the performances without increasing the amount of
processed samples, namely the number of training epochs.

Recently, several works have been proposed for successful large-batch training with
stochastic gradient descent (SGD), and most of them achieve it by specially designed learn-
ing rate (LR) schedules and especially LR scaling (Krizhevsky, 2014; Goyal et al., 2017;
Hoffer et al., 2017). For instance, linear (Krizhevsky, 2014; Goyal et al., 2017) or square-
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root (Hoffer et al., 2017) LR scaling rules according to the batch sizes effectively alleviate the
performance degradation in large-batch training by compensating the reduced number of
optimization steps. In addition, gradual LR warmup heuristic (Goyal et al., 2017) reduces
the instability caused by large LRs and has become a standard for large-batch training.
More recently, layer-wise adaptive LR scalings have been proposed to further increase the
batch size and are applied to diverse tasks (You et al., 2017, 2020; Ginsburg et al., 2019).
However, these LR scaling and warmup heuristics are sensitive to its hyperparameters in-
cluding the LR and the warmup schedule, hence require intensive tuning effort.

There are a number of studies attempting to automate the LR scheduling to reduce such
cumbersome tuning and to enhance the performance. Online or offline LR search algorithms
using Bayesian optimization (Picheny et al., 2020) or meta-optimization (Schraudolph, 1999;
Chen et al., 2017; Baydin et al., 2018; Donini et al., 2020) have been proposed. However,
they have been limited to small (surrogate) tasks due to complexity and the feasibility of
them in large-batch training is unknown.

We propose an automated online LR scheduler for large-batch training. The schedule
consists of the warmup phase, where the LR is increased until the training loss no longer
decreases, and the decay phase that decreases the LR. To robustly decide the phase transi-
tion on the fly, we employ Gaussian process (GP) smoothing (Rasmussen et al., 2006). This
GP-based online detection is robust to small bumps and has a low computational burden.
In addition, to cover a wide range of possible LR values while ensuring stability, the LR is
exponentially increased from a very small value (10−5) to a very large value (1.0) up to the
half of the given epoch budget. As a result, the proposed LR scheduler can efficiently and
automatically figure out not only the initial and peak LRs but also the warmup length in a
data-driven way as the training progresses. From the perspective of having the warmup and
the decay phase, SALSA (Zhang et al., 2020) is most similar to this work. However, SALSA
relies on the backtracking line search for the warmup phase which can be burdensome, and
it was not evaluated on large batch sizes.

We empirically demonstrate that the proposed LR scheduler together with an adaptive
optimizer such as AdamP (Heo et al., 2021) or LAMB (You et al., 2020) achieves comparable
or better performance compared to a tuned baseline in case of large batch size on various
image classification benchmarks and architectures.

2. Methods

We propose an automated LR scheduler, called AutoWU (stands for automated warmup),
which consists of two phases warmup and decay. Figure 1 describes how AutoWU works.

2.1 Warmup Phase

During the warmup phase, the LR starts from a very small value and is increased following
an exponential schedule. It is tested at the end of each epoch whether the loss has hit the
minimum value as training progresses. If the minimum has been detected, then the LR
follows the predefined decay schedule. This scheme combines the warmup strategy which
enhances the stability in the early phase of training with the automated LR selection.

2.1.1 Warmup by exponential schedule

The proposed exponential schedule in the warmup phase has three hyperparameters: the
initial LR ηmin, the maximum possible LR ηmax, and the maximum possible fraction ρw ∈
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Figure 1: Conceptual diagram of AutoWU. It adaptively switches from the warmup phase to a
decay schedule (e.g. cosine) at t, upon detection of minimum loss at t∗ preceding t with high
probability. The start LR of the decay phase is also adaptively set as ηt∗ corresponding to t∗. The
shaded region in the right plot indicates the variance of the observed losses, and the bold curve
corresponds to the smoothed loss via GP.

(0, 1) of warmup steps. Given the total number of steps T , the warmup schedule is defined
as η0 = ηmin and

ηt = γηt−1 for t ∈ {1, ..., bρwT c}, where γ = (ηmax/ηmin)1/bρwT c . (1)

Here, if the training loss keeps decreasing, then the warmup phase can last for bρwT c steps,
and ηt can grow up to ηmax.

In comparison to the other growth rates such as the linear growth rate, this exponential
growth rate enables stable and fine-grained LR exploration, especially in the early stage for
large-batch training. We set ηmin = 10−5 and ηmax = 1 to ensure that LRs can sweep a
wide enough range of values.1 Moreover, we set ρw = 0.5 to ensure that the LR does not
grow too fast. Results regarding the sensitivity of AutoWU with respect to ρw and the
comparison with the linear growth are found in Appendix C.2.

2.1.2 Online minimum detection via Gaussian process

A loss trajectory may exhibit local and global fluctuations due to the stochastic nature of
a mini-batch computation and a highly non-convex loss landscape. This makes it difficult
to robustly detect whether a loss is no longer decreasing or not in an online manner. As
a remedy, we propose to use GP regression to smooth the loss curve and then conduct a
decision test based on the predictive distribution.

Suppose that the test is conducted at step t. We model the loss L(s) at time s ∈ [0, t]
by GP with a homoskedastic noise:

L(s) = f(s/t) + ε, where f ∼ GP(θ,K`,σf (·, ·)) and ε ∼ N (0, σ2n), (2)

where θ, K`,σf and σ2n denote the mean, the covariance kernel, and the noise level, respec-

tively. Then, conditioned on (noisy) loss observations {(s, Ls)}t−1s=0, the predictive distri-
bution of f is again a Gaussian process hence can be computed in standard means (See
Rasmussen et al. (2006) for a good exposition on the subject).

We are interested in whether f is no longer decreasing, i.e., there exists x∗ < 1 such
that f(x∗) < f(1). Hence, it is natural to compute the probability

Pf (f(x) < f(1) for some x ∈ [0, 1]) , (3)

1. This range of LRs is sufficient for AdamP and LAMB, but may require a modification for other optimizers,
e.g., a good value of ηmax for SGD would be larger.
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and decide to stop the warmup phase if (3) is large. However, since (3) is not easy to
compute, we compute the following lower bound instead:

Pmin(f) := max
x∈S

Pf (f(x) < f(1)), (4)

which holds for any S ⊆ [0, 1]. Here, S is chosen to be 500 equally-spaced points in [0, 1].

GP model details. We use the GP model with the constant mean θ and the squared-

exponential kernel K`,σf (x, x′) = σ2f · exp
(
− |x−x

′|2
2`2

)
, where the length-scale ` is fixed to 0.2

to prevent model overfitting to local variations, and all other parameters θ, σf , and σn are
trained by gradient based method before each test.

Test details. Let C = {(0, L0), · · · , (t − 1, Lt−1)} be the full observations of training
losses. When the test is conducted, we first uniformly subsample C0 ⊆ C of maximum 100
samples and fit the GP parameters with respect to the marginal log-likelihood of C0 by
Adam (Kingma and Ba, 2014) with the LR of 0.01 for 100 steps. Then, we sample ntest = 5
subsets C1, · · · , Cntest from C, each of maximum 500 samples, and infer fi conditioned on Ci
for i = 1, · · · , ntest. Finally, we compute Pmin(fi) in Eqn. 4 and if the majority of Pmin(fi)’s
exceed the confidence c = 0.95, then it is decided that the minimum has been detected.

Additionally, we only start the decay phase if the minimum has been detected in p = 3
(called patience) consecutive tests. This is to prevent premature ending of warmup due
to random bumps in the loss trajectory, which typically occurs more often in large-batch
setting. To reduce instability in the early stage of decay phase, we set the starting LR of
the decay phase to be ηt∗ = γt

∗
η0 where

t∗ := t · Ei
[
arg min

x∈[0,1]
Efi [fi(x)]

]
. (5)

The overall warmup algorithm is summarized in Appendix A.

Computation time. Time complexity of exact GP inference increases cubically with the
number of samples. Nonetheless, those computations are not very burdensome since they
are only conducted once per epoch in this work, and we use subsampling so that the number
of samples is kept constant regardless of the task (particularly the batch size). Moreover,
we use GPyTorch (Gardner et al., 2018) for efficient GP computations on GPUs. Time
overhead per test (fitting and 5 inferences) was less than a second in average, which is
typically much smaller than the overall gradient computation time per epoch.

2.2 Decay Phase

In the decay phase, AutoWU follows an LR schedule with the predefined shape, but whose
starting LR is adaptively determined in the warmup phase. To remove any sophistication
in evaluation, we only consider two simple types of schedule in the decay phase: cosine
(Loshchilov and Hutter, 2017) or constant-then-cosine. In case of cosine decay, the LR
starts with the value determined by the warmup phase and is annealed toward zero with
cosine schedule. This schedule is particularly appealing since it does not introduce any
additional hyperparameters to consider. On the other hand, constant-then-cosine decay
maintains LR constant until a predetermined fraction of epochs is left and then follows
cosine schedule. We set the fraction 0.2 (i.e. cosine decay in the last 20% of epochs) in all
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Table 1: Comparison of test/val accuracies (%) between the baseline schedule and AutoWU with
two decay schedules (cosine and constant-then-cosine) when used with AdamP. We report the mean
and the standard deviation (written in parenthesis) of three independent runs with different random
seeds in case of CIFAR tasks.

Dataset
(Architecture)

Schedule
Batch size

256 1K 8K 16K

CIFAR-10
(ResNet-18)

Baseline 96.58 (0.07) 96.48 (0.02) 96.05 (0.15) 94.63 (0.06)

AutoWU + const-cos 96.26 (0.12) 96.20 (0.03) 95.92 (0.22) 94.80 (0.17)

AutoWU + cos 96.43 (0.02) 96.42 (0.05) 95.77 (0.01) 94.03 (0.26)

CIFAR-100
(Wide-ResNet28-10)

Baseline 83.36 (0.38) 83.13 (0.14) 81.08 (0.33) 77.62 (0.36)

AutoWU + const-cos 83.36 (0.21) 83.21 (0.19) 82.32 (0.42) 81.42 (0.35)

AutoWU + cos 83.59 (0.46) 83.39 (0.20) 82.26 (0.60) 80.25 (0.36)

1K 4K 16K 32K

ImageNet
(ResNet-50)

Baseline 76.28 76.10 75.02 74.11
AutoWU + const-cos 76.31 76.33 75.62 74.84

AutoWU + cos 76.19 75.70 75.22 74.40

experiments. Note that we have empirically observed that an automated LR decay based
on the convergence test like in SALSA (Zhang et al., 2020) did not perform better than
these schedules. This means that a warmup strategy including the peak LR is more critical
in the final performance, especially for large-batch training.

3. Experiments

We evaluate our algorithm on image classification tasks with three benchmark datasets:
CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009). We
mainly consider convolutional networks: ResNet-18, Wide-ResNet-28-10 (Zagoruyko and
Komodakis, 2016) for CIFAR-10 and CIFAR-100 respectively, and ResNet-50 (He et al.,
2016) for ImageNet. We also conduct evaluations on ImageNet with EfficientNet-B0 (Tan
and Le, 2019) and a vision transformer ViT-S/16 (Dosovitskiy et al., 2020), and the results
by these other architectures are included in Appendix B.

AutoWU only requires to know how a loss is changing over the course of training,
hence it is capable to be used with any stochastic descent algorithm. In our evaluations,
the state-of-the-art Adam-based optimizer, AdamP (Heo et al., 2021) is used as the base
optimizer due to their better stability than SGD and its variants with large batch sizes.2

The results when coupled with the layer-wise adaptive optimizer, LAMB (You et al., 2020),
are also presented in Appendix B.

The proposed AutoWU scheduler is compared with the conventional baseline LR sched-
ule on each task with multiple batch sizes: {256, 1024, 8192, 16384} for CIFAR (200 epochs)
and {1024, 4096, 16384, 32768} for ImageNet (120 epochs). The baseline LR schedule con-
sists of 5 epochs of a linear warmup from 0 to a predetermined peak LR followed by a
cosine decay to 0. Here, following a common LR scaling practice for large-batch training,
the peak LR is scaled with the batch-size according to the square-root scaling rule, specifi-
cally, ηbase

√
B/256 for batch size B. We set ηbase = 0.001 in all experiments by empirically

tuning it as the common base LR that is well performed across tasks and architectures. We
verify that the base LR as well as the warmup length strongly affect the performances of the
baseline LR scheduler for large-batch training (see Appendix C.1), however the proposed
AutoWU scheduler removes these tuning efforts.

2. In our preliminary experiments, we have observed that instability of SGD could be mitigated with
gradient clipping but extensive tuning effort was required to match the same level of performances.
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(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet

Figure 2: LR schedules (top row) and training loss curves (bottom row) of the baseline and AutoWU
with cosine decay on CIFAR and ImageNet tasks. Shadowed area represents the standard deviation
computed over different seeds.

As shown in Table 1, the proposed AutoWU performs on par with or better than the
baseline LR schedule across diverse batch sizes and tasks. Especially, with large batch sizes
of 8K and 16K for CIFAR-100 and 16K and 32K for ImageNet, AutoWU with constant-
then-cosine decay significantly reduces the performance drops in comparison to the conven-
tional baseline. In addition, overall, the constant-then-cosine decay is slightly better than
the cosine decay when combined with AutoWU which means that as we find the safe peak
LR automatically for a long warmup time, retaining the found LR longer would be better.

Figure 2 shows the LR schedule that AutoWU found and the training loss curve in
each task. For any batch size and task, AutoWU robustly detects the minimum loss in an
online manner by GP. Also, interestingly, the starting LR of the decay phase by AutoWU
grows as the batch size increases, and the rate is similar to the baseline scaling of the peak
LR even though the warmup epochs are quite different. Actually, the found combination of
the peak LR and the warmup length is similar to the search results on the baseline schedule
as shown in Appendix C.1. More ablations on AutoWU are presented in Appendix C.

4. Conclusion

In this work, an automated online LR scheduler especially for fast training using large
batch sizes is proposed. The proposed LR schedule has the warmup phase followed by
the decay phase, where the LR is exponentially increased until the training loss no longer
decreases and then decreased to zero until the end of training. The online detection of
the minimum loss has been efficiently and robustly realized by GP regression. Empirical
evaluation demonstrates that our automated LR scheduler appropriately adapts the whole
warmup procedure as well as LRs for any batch size and task, and consequently results in
comparable or better performances in comparison to the fine-tuned LR schedulers. Our
implementation can be found in https://anonymous.4open.science/r/autowu-532B.
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Algorithm 1 Automated LR scheduler (AutoWU)

Hyperparameters: ηmin, ηmax, ρw ∈ (0, 1), ntest, c, p
Inputs: θ0, A (optimizer), T (the number of total steps)
η0 ← ηmin, γ ← (ηmax/ηmin)1/bρwTc, flag← 0, C ← ∅
for t from 0 to T − 1 do

Sample ξt.
Lt ← L(θt; ξt), gt ← ∇θtLt
Take an optimizer step of A w.r.t. LR ηt and gt to compute θt+1.
If warmup phase, append (t, Lt) to C.
if end of epoch and warmup phase then

Subsample C0, · · · , Cntest from C.
Fit GP parameters with C0.
Infer fi conditioned on Ci for i = 1, · · · , ntest.
Compute Pmin(fi) as in Eqn. (4).
if #(i : Pmin(fi) > c) > ntest/2 then

flag← flag + 1
else

flag← 0
end if
Switch to decay phase if flag ≥ p and set ηt+1 = ηt∗ according to Eqn. (5).

end if
Compute ηt+1 with respect to the phase.

end for

Appendix A. More Details

The overall algorithm of AutoWU is depicted in Algorithm 1.
All implementations are based on PyTorch 1.7.0 and GPyTorch 1.3.0. Experiments are

conducted on NVIDIA Tesla V100 GPUs with 32GB memory.
We use the weight decay of 0.1, β1 = 0.9, β2 = 0.999, ε = 10−8 and δ = 0.1 for AdamP

and the weight decay of 0.1, β1 = 0.9, β2 = 0.999 and ε = 10−6 for LAMB.
In all experiments involving CIFAR-10 or CIFAR-100, the corresponding network is

trained with AutoAugment (Cubuk et al., 2018), Cutout (DeVries and Taylor, 2017), and
label smoothing (Müller et al., 2019) with factor 0.1 for 200 epochs. We report the mean
and the standard deviation from three independent runs with different random seeds. In
case of ResNet-50 training on ImageNet, the standard set of augmentations as in He et al.
(2016) is used for ImageNet and the network is trained for 120 epochs. We report the
result of a single run with a fixed random seed in all ImageNet experiments due to resource
constraints.

Appendix B. Further Evaluations

In this section, further evaluation results which were not discussed in Section 3 are presented.
Firstly, the comparison between AutoWU and the baseline schedule when coupled with

LAMB is made. The peak LR of the baseline is scaled as ηbase
√
B/256 for batch size B.

The base LR ηbase is chosen 0.01 rather than 0.001, since the latter has resulted in worse
performances. The results are summarized in Table 2, and the plot of LR schedules and
training loss curves can be found in Figure 3. We observe that general tendency is similar
to that of AutoWU coupled with AdamP, but the resulting performances are slightly
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Table 2: Comparison of test accuracies (%) on CIFAR-10 and CIFAR-100 between a default schedule
and AutoWU with LAMB.

Dataset
(Architecture)

Schedule
Batch size

256 1K 8K 16K

CIFAR-10
(ResNet-18)

Baseline 96.37 (0.16) 96.39 (0.14) 95.92 (0.09) 95.36 (0.08)

AutoWU + const-cos 96.26 (0.09) 96.17 (0.07) 95.53 (0.13) 94.47 (0.23)

AutoWU + cos 96.23 (0.14) 96.14 (0.09) 95.37 (0.10) 94.19 (0.22)

CIFAR-100
(WideResNet28-10)

Baseline 83.38 (0.15) 83.61 (0.01) 82.16 (0.19) 79.99 (0.30)

AutoWU + const-cos 82.86 (0.16) 83.11 (0.32) 82.44 (0.11) 79.36 (0.47)

AutoWU + cos 82.92 (0.33) 82.88 (0.38) 81.31 (0.06) 77.57 (0.50)

(a) CIFAR-10 (b) CIFAR-100

Figure 3: LR schedules (top row) and training loss curves (bottom row) of the baseline and AutoWU
with cosine decay on CIFAR tasks, when the base optimizer is LAMB.

worse than those obtained by the baseline schedule with an exception of batch size 8192 on
CIFAR-100. However, we emphasize that AutoWU does not require tuning, in contrast to
the fact that LAMB can be more sensitive to ηbase (Chen et al., 2021) and adjusting ηbase
to 0.01 in baselines was necessary to achieve the reported performance.

We also evaluate the performance of AutoWU on ImageNet classification task with
two other architectures: EfficientNet-B0 and ViT-S/16. The training configuration of
EfficientNet-B0 is identical to that of ResNet-50, except that the label smoothing of factor
0.1 is used. For ViT-S/16, it is trained for 300 epochs with augmentations as described
in Touvron et al. (2020). The peak LR of the baseline is scaled as ηbase

√
B/256 with

ηbase = 0.001 for EfficientNet-B0 and ηbase = 0.0005 for ViT-S/16. Results are found in
Table 3, and the plots of LR schedules and training loss curves are found in Figure 4. Even
though the performances are a little bit lower compared to the tuned baseline, AutoWU
stably works on other architectures without any specific hyperparameter tuning.
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Table 3: Comparison of top-1 validation accuracies (%) between the baseline schedule and AutoWU,
in case of ImageNet training on EfficientNet-B0 and ViT-S/16 with AdamP.

Dataset
(Architecture)

Schedule
Batch size

1K 4K 16K 32K

ImageNet
(EfficientNet-B0)

Baseline 75.03 76.00 74.23 75.17
AutoWU + const-cos 74.58 75.43 75.01 73.99

AutoWU + cos 74.90 75.81 75.44 74.34

ImageNet
(ViT-S/16)

Baseline 79.37 79.34 77.39 73.92
AutoWU + const-cos 77.65 78.14 75.67 72.73

AutoWU + cos 79.01 79.15 76.95 72.38

(a) EfficientNet-B0 (b) ViT-S/16

Figure 4: LR schedules (top row) and training loss curves (bottom row) of the baseline and AutoWU
with cosine decay on ImageNet with EfficientNet-B0 and ViT-S/16, when the base optimizer is
AdamP.

Appendix C. Ablation Studies

C.1 Sensitivity of the baseline with respect to the warmup schedule

We compare the performances of the baseline LR scheduling according to various numbers of
warmup epochs and peak LRs. Namely, the LR is linearly increased from 0 to the peak LR
ηpeak for nwarmup epochs then decayed to 0 via cosine schedule, and the experiment is carried
out for ηpeak ∈ {0.002, 0.004, 0.008, 0.016, 0.032} and nwarmup ∈ {5, 20, 40, 60}. Here, we use
ResNet-50 trained by AdamP with a batch size of 16384 on ImageNet, and therefore the
configuration (ηpeak, nwarmup) = (0.008, 5) corresponds to the baseline schedule (presented
in Table 1).

Figure 5 demonstrates how the performance of ResNet-50 on ImageNet changes with
respect to ηpeak and nwarmup. The value of optimal LR is either 0.008 or 0.016 when
nwarmup is fixed, which includes our baseline. On the other hand, we find that the validation
accuracy is improved as nwarmup increases and the best performance is 75.84% obtained by
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Figure 5: Comparison of validation accuracies over the choices to the peak LR ηpeak and the number
of warmup epochs nwarmup, in case of ResNet-50 training on ImageNet with AdamP and a batch
size of 16384. The schedule presented as the baseline in Table 1 corresponds to (ηpeak, nwarmup) =
(0.008, 5) and colored red in the plot. Additionally, the performances of AutoWU with cosine and
constant-then-cosine decay are annotated as orange lines in the colorbar on the right.

(ηpeak, nwarmup) = (0.016, 60). We remark that not only the performances of AutoWU
with cosine and constant-then-cosine decay (75.22% and 75.62%, respectively) are fairly
close to the best performance but also the peak LR and the warmup epochs found by
AutoWU, (0.0215, 40) as shown in Figure 2(c), are similar to the best configuration on the
baseline schedule. This validates the effectiveness of the proposed algorithm.

C.2 Dependency of AutoWU on the warmup schedule

We have argued that the exponential growth in the warmup phase stabilizes the training and
enables a fine-grained LR exploration. To demonstrate this, we compare the linear growth
and the exponential growth in case of ResNet-50 training on ImageNet with AdamP and
batch size 16384. Specifically, we consider the linear schedule in the warmup phase defined
as

ηt = ηmin + (ηmax − ηmin) · t

bρwT c
for t ∈ {0, · · · , bρwT c}, (6)

where ηmin = 10−5 and ηmax ∈ {0.1, 1.0}. In both choices of ηmax, the cosine schedule is
used in the decay phase and all hyperparameters are set identical as in case of AutoWU
with exponential warmup schedule.

Figure 6 shows the LR schedule, the training loss and the validation accuracy of the base-
line, AutoWU with exponential growth, and AutoWU with linear growth as described
above. In terms of the validation accuracy, the baseline and AutoWU with exponen-
tial growth achieves 75.02% and 75.22% respectively, while AutoWU with linear growth
achieves 29.65% for ηmax = 1.0 and 73.56% for ηmax = 0.1. This implies that the linear
warmup makes AutoWU very sensitive to the choice of ηmax, hence a significant amount
of effort to tune ηmax must be made, obliterating the purpose of automated LR scheduling.
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Figure 6: Comparison of the linear growth and the exponential growth in the warmup phase of
AutoWU. ResNet-50 is trained on ImageNet with a batch size of 16384, AdamP optimizer, and
the corresponding scheduler.

Table 4: Sensitivity of AutoWU (+cos) with respect to the maximum fraction of warmup (ρw).

ρw
Batch size

1K 4K 16K 32K
0.125 75.89 75.59 74.52 73.40
0.25 76.60 76.04 75.28 73.89
0.5 76.19 75.70 75.22 74.40

The growth factor γ in Eqn. 1 in AutoWU with the exponential growth is completely
determined by ρw when ηmin and ηmax are set to the sufficiently small and large values; γ
is increased if ρw is decreased. Therefore, we also compare the performances of AutoWU
with the cosine decay for different values of ρw.

Specifically, ResNet-50 is trained on ImageNet with a batch size of 16384, AdamP, and
AutoWU for ρw ∈ {0.125, 0.25, 0.5}, and the results are summarized in Table 4. Here,
ρw = 0.5 corresponds to the default configuration which is also reported in Table 1. The
best performances are attained by ρw = 0.25 or ρw = 0.5, and when ρw = 0.125, the
performances are degraded.

We plot the relation between the starting LR ηt∗ of the decay phase and the choice of
ρw in Figure 7. Larger batch size or faster growth implies the bigger starting LR in the
decay phase in general, but this breaks down when the batch size becomes very large. We
have observed that this “critical batch size” is larger with larger ρw (i.e. smaller γ), and
supports the intuition that slow growth of LR in the warmup phase stabilizes the overall
training dynamics. Such an observation is also consistent with the previous works (Smith
and Topin, 2019; Cohen et al., 2021).
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Figure 7: Dependency of AutoWU on ρw in terms of the starting LR of the decay phase. Plotted
are the starting LRs of the decay phase of AutoWU for ρw ∈ {0.125, 0.25, 0.5} together with the
peak LRs of the baseline, for batch sizes {1024, 4096, 16384, 32768}.
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