## Automated Learning Rate Scheduler for Large-Batch Training

Chiheon Kim<sup>1</sup>, Saehoon Kim<sup>1</sup>, Jongmin Kim<sup>1</sup>, Donghoon Lee<sup>1</sup>, Sungwoong Kim<sup>1</sup> <sup>1</sup>Kakao Brain, Seongnam, Korea

## **Summary**

- Choosing a proper learning rate (LR) and its schedule is essential in large-batch training.
- LR scaling rule and gradual LR warmup has been shown to be \*successful in large-batch training, if a good LR for the small-batch counterpart is known.
- \* We design an **automated LR scheduler (AutoWU)** which takes care of (1) LR tuning and (2) gradual warmup simultaneously.
- The proposed scheduler works well for wide-range of batch sizes, \* with minimal hyper-parameter tuning effort.

## Method

#### AutoWU: (1) Warmup + (2) Decay phases

- Warmup: Exponential schedule from a very small value (1e-5)
- Decay: Cosine or Constant-then-cosine (cosine decay in the last 20% epochs)



**Automatic Phase Transition:** 

- **GP-based online detection of the minimum loss:**  $\max_{s \in [0,t]} \mathbb{P}_f(f(s) < f(t)) > 0.95$ 

## **Experiments**

Dataset (Architecture)

> CIFAR-10 (ResNet-18)

CIFAR-100 (Wide-ResNet28-1

> ImageNet (ResNet-50)

Comparison of validation accuracy (%): AutoWU achieves a comparable performance to the baseline for all batch sizes.

#### \* Ablation on hyperparameters regarding the warmup schedule



# kakaobrain

https://github.com/kakaobrain/autowu

#### Baseline vs. AutoWU on image classification benchmarks

(baseline = good-working small-batch tuning + square-root scaling law + gradual warmup)

|     | Schodulo           | Batch size   |              |              |                     |
|-----|--------------------|--------------|--------------|--------------|---------------------|
|     | Schedule           | 256          | 1K           | 8K           | 16K                 |
|     | Baseline           | 96.58 (0.07) | 96.48 (0.02) | 96.05 (0.15) | 94.63 (0.06)        |
|     | AutoWU + const-cos | 96.26 (0.12) | 96.20 (0.03) | 95.92 (0.22) | 94.80 (0.17)        |
|     | AutoWU + cos       | 96.43 (0.02) | 96.42 (0.05) | 95.77 (0.01) | 94.03 (0.26)        |
|     | Baseline           | 83.36 (0.38) | 83.13 (0.14) | 81.08 (0.33) | 77.62 (0.36)        |
| 10) | AutoWU + const-cos | 83.36 (0.21) | 83.21 (0.19) | 82.32 (0.42) | <b>81.42</b> (0.35) |
|     | AutoWU + cos       | 83.59 (0.46) | 83.39 (0.20) | 82.26 (0.60) | 80.25 (0.36)        |
|     |                    | 1K           | 4K           | 16K          | 32K                 |
|     | Baseline           | 76.28        | 76.10        | 75.02        | 74.11               |
|     | AutoWU + const-cos | 76.31        | 76.33        | 75.62        | 74.84               |
|     | AutoWU + cos       | 76.19        | 75.70        | 75.22        | 74.40               |
|     |                    |              |              |              |                     |





baseline.

# — linear (max\_lr=1.0) linear (max Ir=0.1) 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 epoch epoch epoch

LR, loss, validation accuracy plots (baseline, linear, and exponential):

Linear warmup schedule is sensitive to the choice of the growth rate (or equivalently, maximum LR) and shows unstable training dynamics, compared



|           |       | Batch size |      |  |
|-----------|-------|------------|------|--|
| $ ho_{w}$ | 1K    | 4K         | 16I  |  |
| 0.125     | 75.89 | 75.59      | 74.5 |  |
| 0.25      | 76.60 | 76.04      | 75.2 |  |
| 0.5       | 76.19 | 75.70      | 75.2 |  |
|           |       |            |      |  |

Starting LR of decay phase (left) and valid. acc. (%, right) w.r.t.  $\rho_w$  (maximum warmup duration):

Performance of AutoWU does not vary much w.r.t.  $\rho_w$ (which determines the growth factor), and the relation between the found LR and batch size is similar to that of square-root scaling law.







