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A APPENDIX

A.1 VITASK PERFORMANCE ON ORIGINAL TASK.

To verify that VLM maintains its original capabilities while adapting to new tasks via our VITask
fine-tuning, we evaluated different fine-tuning approaches on eight benchmark datasets originally
used to assess the pre-trained InternVL2-2B model: MMBench en Liu et al. (2025), CCBench Liu
et al. (2025), POPE Li et al. (2023c), MMMU Yue et al. (2024b), MMVP Tong et al. (2024),
MMVet Yu et al. (2023b), GQA Hudson & Manning (2019), and AI2D Kembhavi et al. (2016). As
shown in Table 4, our method preserves the original capabilities of the base model across all bench-
marks, with differences typically within 3% from the original model (e.g., MMBench en: 72.2 vs.
73.2, CCBench: 72.5 vs. 74.7). In contrast, alternative fine-tuning approaches that make either the
vision encoder or both the vision encoder and connector learnable during fine-tuning suffer from
severe performance degradation, with accuracy dropping by up to 90% on some benchmarks.

Table 4: Performance comparison of InternVL2-2B before and after fine-tuning.

Method MMBench↑ CCBench↑ POPE↑ MMMU↑ MMVP↑ MMVet↑ GQA↑ AI2D↑
Original 73.20 74.7 87.3 0.342 0.353 44.6 61.03 0.741

Tunning LLM + Vision 27.60 27.7 0.1 0.274 0.112 15.5 30.18 0.021
Tunning LLM + Vision + Conn 17.15 8.0 0.7 0.291 0.073 13.0 27.80 0.005
Ours 72.20 72.5 87.7 0.341 0.340 36.2 59.60 0.700

A.2 FURTHER ABLATIONS ON THE EFFECTIVENESS OF EXEMPLAR PROMPTING.

To thoroughly investigate the effectiveness of Exemplar Prompting (EP), we conducted several ab-
lation studies as shown in Table 5. The results show that EP’s performance gain stems from the
specialized features of the external TSM rather than additional learnable parameters, as evidenced
by consistently outperforming baselines like LLM+Conn (tune LLM and connector parameters) and
LLM+Conn+Prefix (tune LLM, connector and additional learnable prefix parameters) across med-
ical tasks. Further experiments reveal that while fine-tuning the vision encoder (LLM+Vision) can
improve downstream task performance, it causes catastrophic forgetting of pre-trained knowledge,
making it impractical for maintaining generalizability.

Table 5: Classification performance (Acc./F1) of InternVL2-2B with different fine-tuning ap-
proaches (Best, Second Best).

Model Path Chest Derma OCT Pneumonia Retina Breast Blood Tissue OrganA OrganC OrganS
Baseline 0.926/0.896 0.523/0.024 0.770/0.499 0.726/0.704 0.886/0.873 0.590/0.370 0.744/0.524 0.931/0.818 0.569/0.419 0.828/0.801 0.778/0.742 0.635/0.578

LLM+Conn 0.940/0.912 0.511/0.078 0.773/0.497 0.808/0.798 0.905/0.893 0.590/0.359 0.782/0.658 0.975/0.856 0.617/0.502 0.898/0.886 0.862/0.838 0.728/0.679
LLM+Conn+Prefix 0.941/0.913 0.513/0.078 0.775/0.503 0.813/0.803 0.920/0.910 0.608/0.384 0.808/0.724 0.973/0.855 0.616/0.497 0.905/0.891 0.863/0.837 0.724/0.670
LLM+Vision 0.972/0.964 0.510/0.134 0.835/0.658 0.891/0.891 0.910/0.899 0.598/0.425 0.865/0.828 0.986/0.867 0.738/0.659 0.962/0.960 0.932/0.919 0.824/0.777
LLM+Vision+Conn 0.967/0.957 0.511/0.127 0.822/0.641 0.898/0.897 0.923/0.914 0.605/0.418 0.859/0.815 0.990/0.869 0.736/0.655 0.963/0.959 0.935/0.923 0.825/0.781
EP 0.948/0.931 0.514/0.118 0.863/0.725 0.951/0.950 0.941/0.935 0.608/0.489 0.878/0.836 0.991/0.870 0.760/0.689 0.951/0.942 0.894/0.885 0.788/0.747
EP+Vision 0.645/0.660 0.241/0.053 0.748/0.356 0.937/0.937 0.716/0.605 0.345/0.270 0.795/0.763 0.985/0.863 0.672/0.512 0.918/0.913 0.828/0.805 0.739/0.672

A.3 VITASK PERFORMANCE ON NATURAL IMAGE DOMAIN.

To verify VITask’s effectiveness beyond medical images, we evaluated our method on three natural
image classification datasets: Stanford Cars Gebru et al. (2017), Flowers 102 Nilsback & Zisserman
(2008), and Caltech 101 Fei-Fei et al. (2006). As shown in Table 6, VITask significantly improves
the accuracy of the vanilla-tuned InternVL2-2B model (e.g., from 77.4% to 85.4% on Stanford Cars
and from 89.9% to 99.0% on Flowers 102), achieving results comparable to the specialized TSM
(86.2%, 99.2%, and 97.6% respectively). These results demonstrate that our method is effective and
broadly applicable across both general and medical domains.

A.4 DATASET AND INSTRUCTION PROMPT.

We utilize the MedMNIST dataset collection Yang et al. (2023) as our primary training and testing
dataset for VLM, which comprises 12 distinct 2D datasets. Detailed descriptions of each dataset are
provided below:
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Table 6: Classification performance (Acc.) of the fine-tuned VLM on natural image datasets.

Method Stanford Cars Flowers 102 Caltech 101

TSM 0.862 0.992 0.976

InternVL2-2B 0.774 0.899 0.960
InternVL2-2B + Ours 0.854+8.0% 0.990+9.1% 0.980+2.0%
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Figure 6: Performance of VITask in adapting to different tasks.

• PathMNIST Kather et al. (2019): Derived from the NCT-CRC-HE-100K dataset based
on colorectal cancer histology slides, this dataset includes 100, 000 training image patches
and 7, 180 test patches from a different clinical center, classified into 9 tissue types for
multi-class classification.

• ChestMNIST Kermany et al. (2018): Based on the NIH-ChestXray14 dataset, it com-
prises 112, 120 frontal-view chest X-ray images of 30, 805 unique patients, labeled with 14
disease categories for multi-label classification.

• DermaMNIST Tschandl et al. (2018); Codella et al. (2019): Sourced from the HAM10000
dataset, a large collection of multi-source dermatoscopic images, it contains 10, 015 images
categorized into 7 different skin conditions for multi-class classification.

• OCTMNIST Kermany et al. (2018): Derived from a prior dataset on retinal optical coher-
ence tomography (OCT) images, it comprises 109, 309 samples categorized into 4 diagnos-
tic classes for multi-class retinal disease classification.

• PneumoniaMNIST Kermany et al. (2018): Based on a collection of pediatric chest X-ray
images, it includes 5, 856 samples for binary classification of pneumonia against normal
cases.

• RetinaMNIST Liu et al. (2022): Developed from the DeepDRiD challenge dataset, this
collection includes 1, 600 retina fundus images labeled for 5-level diabetic retinopathy
severity and formulated as an ordinal regression task.

• BreastMNIST Al-Dhabyani et al. (2020): Sourced from a dataset of 780 breast ultrasound
images, it is categorized into 3 classes—normal, benign, and malignant—and simplified
into binary classification for the current study.

• BloodMNIST Acevedo et al. (2020): This dataset features 17, 092 images of individual
normal blood cells, categorized into 8 classes based on cell type, for multi-class classifica-
tion.
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• TissueMNIST Ljosa et al. (2012): Developed from the BBBC051 dataset, it contains
236, 386 human kidney cortex cell images segmented into 8 tissue types for classification.

• Organ{A,C,S}MNIST Bilic et al. (2023); Xu et al. (2019): Sourced from the Liver Tu-
mor Segmentation Benchmark (LiTS) dataset, it contains 2D images obtained from 3D CT
scans of 11 body organs. The dataset is split into three separate views (axial, coronal, and
sagittal), each forming a multi-class organ classification task.

The diverse array of datasets provides a solid foundation for evaluating our method across multiple
biomedical imaging domains, supporting both binary and multi-class classification tasks.

We construct the instruction-response pairs for medical image classification following the approach
outlined in previous work He et al. (2024). Specifically, to prepare the image classification data for
ViTask training and testing, each dataset is converted into an instruction-tuning format by rephrasing
the classification task as a question about the disease observed in the image, along with a set of pos-
sible disease options. The response corresponds to the correct disease name. The data construction
template is shown below.

User:
Analyze the given {Modality} image.
The possible diagnoses are:{Label Set}.
VITask:
{Label}.

A.5 IMPLEMENTATION DETAILS.

Training of Task-Specific Model for Exemplar Prompting. For the task-specific model used
in Exemplar Prompting, we employ a ViT Dosovitskiy et al. (2020) base model pre-trained on
ImageNet-21K Deng et al. (2009), and fine-tune it on the MedMNIST dataset for training, testing,
and validation. We combine all 2D datasets in MedMNIST and jointly train the ViT model across
all 70 classification tasks (i.e., using a shared classification head with 70 classes). During training,
the loss is computed only over the class subset corresponding to the current sample’s dataset. We
train the ViT model for 30 epochs and select the best model based on validation set performance.
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