
Appendix358

A Glossary359

Table 2: Glossary

Name Notation Expression Dimension

sampling distribution ρ - X → R+

sampling size N - integer
input matrix X (xi)

N
i=1 ∼

iid
ρX N × d

output vector y (yi)
N
i=1 N × 1

sample Z (X,y) N × (d+ 1)

noise ε - random scalar
noise variance σ2 E[ε2] scalar
ridge λ - scalar
finite-rank kernel K

∑M
k=1 λkψk(·)ψk(·) X × X → R

kernel rank M - integer
kth eigenfunction ψk - X → R
kth value λk - scalar
- ψ(x) [ψk(x)]

M
k=1 M × 1

- Ψ [ψk(xi)]k,i M ×N

- Λ diag
[
λk
]

M ×M

kernel matrix K [K(xi, xj)]i,j = Ψ⊤ΛΨ N ×N

resolvent R (K+ λNIN )−1 N ×N

target function f̃
∑M
k=1 γ̃kψk + γ̃>Mψ>M X → R

- f̃≤M
∑M
k=1 γ̃kψk X → R

kth target coefficient γ̃k
∫
X f̃(x)ψk(x)dρX (x) scalar

- γ [γk] M × 1

orthonormal complement ψ>M - X → R
complementary coefficient γ̃>M - scalar
- Ψ>M [ψ>M (xi)] 1×N

test error RZ,λ Ex,ϵ
[
(fZ,λ(x)− f̃(x))2

]
scalar

bias -
∫
X

(
f(X,f̃(X)),λ(x)− f̃(x)

)2
dρ(x) scalar

variance - RZ,λ − bias = Ex,ε
(
K⊤
xRε

)2
scalar

fluctuation matrix ∆ 1
NΨΨ⊤ − IM M ×M

fluctuation δ ∥∆∥op scalar
error vector E [ηk] M × 1

- ηk
1
N

∑N
i=1 ψk(xi)ψ>M (xi) scalar

- B (IM +∆+ λΛ−1)−1 M ×M

- P̄ diag
[

λk

λk+λ

]
M ×M
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B Classical KRR Theory360

In an effort to keep our manuscript as self-contained as possible, we recall the Mercer decomposition,361

representer theorem for kernel ridge regression as well as the form of the bias-variance tradeoff in the362

KRR context.363

B.1 Mercer Decomposition364

We begin with a general kernel K(∞) : X × X → R.365

Proposition B.1. [12] Fix a sample distribution ρ. Let K(∞) : X ×X → R be a reproducing kernel366

with corresponding RKHS H(∞). There exists a decreasing sequence of real numbers λ1 ≥ λ2 ≥ ...,367

called the eigenvalues of the kernel K(∞); and a sequence of pairwise-orthonormal functions368

{ψk}∞k=1 ⊂ L2
ρ, called the eigenfunctions of K(∞), such that for all x, x′ ∈ X , we have369

K(∞)(x, x′) =

∞∑
k=1

λkψk(x)ψk(x
′) (14)

In particular, we assume λk = 0, ∀k > M . In this case, we say the kernel K(x, x′) =370 ∑M
k=1 λkψk(x)ψk(x

′) is of finite rank M with corresponding (finite-dimensional) RKHS H, re-371

covering equation (2).372

The first of these results, allows us to explicitly express the finite-rank kernel ridge regressor fZ,λ.373

Proposition B.2 (Representer Theorem - [38, Chapter 12]). Let R def.
= (K+ λNIN )−1 ∈ RN×N be374

the resolvent matrix and recall the kernel ridge regressor fZ,λ given by equation (3):375

fZ,λ
def.
= argmin

f∈H

1

N

N∑
i=1

(f(xi)− yi)
2
+ λ∥f∥2H

Then, for every x ∈ X , we have the expression376

fZ,λ(x) = y⊤RKx, ∀x ∈ X , (15)

where Kx
def.
= [K(xi, x)]

N
i=1 ∈ RN×1.377

B.2 Compact Matrix Expression378

First, let Ψ
def.
= (ψk(xi))

M,N
k=1,i=1 be the random M × N matrix defined by evaluating the M379

eigenfunctions on all input training instances X def.
= (xi)

N
i=1, Λ

def.
= diag[λk] ∈ RM×M , and380

ψ(x)
def.
= [ψk(x)]

M
k=1 ∈ RM×1. The advantage of this notation is that we can rewrite the equa-381

tions in a more compact form. For equation (15):382

fZ,λ(x) = y⊤ (Ψ⊤ΛΨ+ λNIM )−1︸ ︷︷ ︸
R

Ψ⊤Λψ(x); (16)

for equation (4):383

f̃(x) = γ̃⊤ψ(x) + γ̃>Mψ>M (x). (17)

Last but not least, we define some important quantities for later analysis.384

Definition B.3 (Fluctuation matrix). The fluctuation matrix is the random M ×M -matrix given by385

∆
def.
= 1

NΨΨ⊤ − IM . Our analysis will often involve the operator norm of ∆, which we denote by386

δ
def.
= ∥∆∥op.387

The fluctuation matrix ∆ measures the first source of randomness in the KRR’s test error. Namely388

it encodes the degree of non-orthonormality between the vectors obtained by evaluating of the M389

eigenfunctions ψ1, . . . , ψM on the input X.390

The second source of randomness in the KRR’s test error comes from the empirical evaluation of the391

dot product of the eigenfunction ψk’s and the orthogonal complement ψ>M :392

Definition B.4 (Error Vector). E def.
= 1

NΨψ>M (X) is called the error vector.393

The random matrix ∆ and the random vector E are centered; i.e. EX[∆] = 0 and EX[E] = 0.394
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B.3 Bias-Variance Decomposition395

The derivation of several contemporary KRR generalization bounds [6, 26, 27] involves the classical396

Bias-Variance Trade-off:397

Proposition B.5 (Bias-Variance Trade-off). Fix a sample Z. Recall the definition 3.4 of test error398

RZ,λ, bias, and variance:399

RZ,λ
def.
= Ex,ϵ

[
(fZ,λ(x)− f̃(x))2

]
= Eϵ

[∫
X

(
fZ,λ(x)− f̃(x)

)2
dρ(x)

]
;

bias def.
=

∫
X

(
f(X,f̃(X)),λ(x)− f̃(x)

)2
dρ(x);

variance def.
= RZ,λ − bias.

Then, we can write variancetest = Ex,ε
(
K⊤
xRε

)2
and hence the test error RZ,λ admits a decompo-400

sition:401

RZ,λ = bias + Ex,ε
(
K⊤
xRε

)2
.

Proof. See the proof of Theorem C.8.402

C Proofs403

In this section, we will derive the essential lemmata and propositions for proving the main theorems.404

C.1 Formula Derivation405

We begin with writing the test error in convenient forms.406

C.1.1 Bias407

We first derive, from the definition of the bias, a convenient expression to proceed:408

Proposition C.1 (Bias Expression). Let Ψ>M
def.
= [ψ>M (xi)]

N
i=1 as an 1×N - row vector,

(
Ψ

Ψ>M

)
409

as an (M + 1)×N matrix. Denote P
def.
=
(
P≤M P>M

)
= ΛΨR

(
Ψ⊤ Ψ⊤

>M

)
∈ RM×(M+1)410

, P≤M ∈ RM×M and P>M ∈ RM×1. Then the bias admits the following expression:411

bias = γ̃2>M︸︷︷︸
Finite Rank Error

+ ∥γ̃ −P≤M γ̃ − γ̃>MP>M∥22︸ ︷︷ ︸
Fitting Error

.

Proof. Recall that, by equations (16) and (17), we can write412

f̃(x) = γ̃⊤ψ(x) + γ̃>Mψ>M (x),

f(X,f̃(X)),λ(x) = (γ̃⊤Ψ+ γ̃>MΨ⊤
>M )RΨ⊤ΛΨ(x).

Hence413

bias = Ex
[(
γ̃⊤ψ(x) + γ̃>Mψ>M (x)− (γ̃⊤Ψ+ γ̃>MΨ⊤

>M )RΨ⊤ΛΨ(x)
)2]

=
∥∥∥( γ̃

γ̃>M

)
−

(
P
(

γ̃
γ̃>M

)
0

)∥∥∥2
2

(18)

= γ̃2>M︸︷︷︸
Finite Rank Error

+ ∥γ̃ −P≤M γ̃ − γ̃>MP>M∥22︸ ︷︷ ︸
Fitting Error

,

in line (18), we use Parseval’s identity.414

We proceed by reformulating the projection matrix P, first with the left matrix P≤M :415
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Lemma C.2. Recall the following notations416

K
def.
= Ψ⊤ΛΨ, R

def.
= (K+ λNIM )−1, P≤M

def.
= ΛΨRΨ⊤.

Define the symmetric random matrix B
def.
= (IM +∆+ λΛ−1)−1. It holds that417

P≤M = IM − λBΛ−1.

Proof. We first observe that418

ΨΨ⊤P≤M = ΨΨ⊤ΛΨRΨ⊤ (19)

= ΨK(K+ λNIM )−1Ψ⊤

= Ψ
(
IM − λN(K+ λNIM )−1

)
Ψ⊤

= ΨΨ⊤ − λNΨ(K+ λNIM )−1Ψ⊤. (20)
From lines (19)- (20) and the definition of the fluctuation matrix ∆ we deduce419

1

N
ΨΨ⊤(IM −P≤M ) = λΨ(K+ λNIM )−1Ψ⊤

(IM +∆)(IM −P≤M ) = λΨRΨ⊤

(IM +∆)(IM −P≤M ) = λΛ−1P≤M

(Λ+Λ∆)(IM −P≤M ) = λP≤M

Λ+Λ∆ = (Λ+Λ∆+ λIM )P≤M . (21)
Rearranging (21) and applying the definition ofB we find that420

P≤M = (Λ+Λ∆+ λIM )−1(Λ+Λ∆) (22)

= IM − λ(Λ+Λ∆+ λIM )−1

= IM − λ(Λ+Λ∆+ λIM )−1ΛΛ−1

= IM − λBΛ−1. (23)
421

Arguing analogously for the right matrix P>M , we draw the subsequent similar conclusion.422

Lemma C.3. Recall the following notations423

K
def.
= Ψ⊤ΛΨ, R

def.
= (K+ λNIM )−1, P>M

def.
= ΛΨRΨ⊤

>M ,

E
def.
=

1

N
ΨΨ⊤

>M , B
def.
= (IM +∆+ λΛ−1)−1.

We have that P>M = BE.424

Proof. Similarly to (19)- (20) we note that425

ΨΨ⊤P>M = ΨΨ⊤ΛΨRΨ⊤
>M

= ΨK(K+ λNIM )−1Ψ⊤
>M

= Ψ
(
IM − λN(K+ λNIM )−1

)
Ψ⊤
>M

= ΨΨ⊤
>M − λNΨ(K+ λNIM )−1Ψ⊤

>M .

Analogously to the computations in (22)-(23)426

(IM +∆)P>M = E − λΨ(K+ λNIM )−1Ψ⊤
>M

(IM +∆)P>M = E − λΛ−1ΛΨ(K+ λNIM )−1Ψ⊤
>M

(IM +∆)P>M = E − λΛ−1P>M

(Λ+Λ∆)P>M = ΛE − λP>M

(Λ+Λ∆+ λIM )P>M = ΛE

P>M = (Λ+Λ∆+ λIM )−1ΛE

P>M = BE.

427
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Lemma C.4 (Fitting Error). Recall the notation428

fitting error = ∥γ̃ −P≤M γ̃ − γ̃>MP>M∥22,

B
def.
= (IM +∆+ λΛ−1)−1.

We have fitting error =
∥∥B (λΛ−1γ̃ −Eγ̃>M

)∥∥2
2
.429

Proof. By lemmata C.2 and C.3,430

∥γ̃ −P≤M γ̃ − γ̃>MP>M∥22 =
∥∥γ̃ − (IM − λBΛ−1)γ̃γ̃ −BEγ̃>M

∥∥2
2

=
∥∥B (λΛ−1γ̃ −Eγ̃>M

)∥∥2
2
.

431

Hence we come up with a new expression of the bias:432

Proposition C.5 (Bias). Recall that B def.
= (IM +∆+ λΛ−1)−1. The bias Ex

(
fλX(x)− f̃(x)

)2
has433

the following expression:434

bias = γ̃2>M +
∥∥B (λΛ−1γ̃ − γ̃>ME

)∥∥2
2
.

Proof. We apply Proposition C.1 and Lemma C.4 to obtain the result.435

C.1.2 Variance436

If we consider noise in the label, we have to compute the variance part of the test error.437

Proposition C.6 (Variance Expression). Define438

M
def.
= Ex[KxK

⊤
x ]

= Ex[Ψ⊤Λψ(x)ψ(x)⊤ΛΨ]

= Ψ⊤ΛEx[ψ(x)ψ(x)⊤]ΛΨ

= Ψ⊤ΛIMΛΨ

= Ψ⊤Λ2Ψ.

We can further simplify the variance part:439

variance def.
= Ex,ε

[(
K⊤
xRε

)2]
= Ex,ε

[
ε⊤RKxK

⊤
xRε

]
= Eε

[
ε⊤RMRε

]
= σ2 · Tr[RMR].

Theorem C.7 (Variance). Recall that B def.
= (IM +∆+ λΛ−1)−1. The variance part, variance, can440

be expressed as:441

variance =
σ2

N
Tr
[
B2(IM +∆)

]
.

Proof. We argue similarly as in lemma C.2. Since442

ΨΨ⊤ΛΨR = ΨK(K+ λNIM )−1

= Ψ(IM − λNR)

= Ψ− λNΨR,
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therefore, we deduce that443

(IM +∆)ΛΨR =
1

N
Ψ− λΨR (24)

(IM +∆)ΛΨR =
1

N
Ψ− λΛ−1ΛΨR

(IM +∆+ λΛ−1)ΛΨR =
1

N
Ψ

ΛΨR =
1

N
(IM +∆+ λΛ−1)−1Ψ

ΛΨR =
1

N
BΨ. (25)

By leveraging the identity M = Ψ⊤Λ2Ψ and elementary properties of the trace map, the computa-444

tions in (24)-(25) imply that445

Tr[RMR] = Tr[RΨ⊤Λ2ΨR] (26)

= Tr
[
(ΛΨR)

⊤
(ΛΨR)

]
(27)

= Tr

[(
1

N
BΨ

)⊤(
1

N
BΨ

)]
(28)

=
1

N
Tr

[
1

N
Ψ⊤B⊤BΨ

]
=

1

N
Tr

[
B⊤B · 1

N
ΨΨ⊤

]
(29)

=
1

N
Tr
[
B⊤B(IM +∆)

]
(30)

=
1

N
Tr
[
B2(IM +∆)

]
; (31)

in more detail: in line (26), we use the definition of M; in line (27), we use the fact that both Λ and446

R are symmetric; in line (28), we use line (25); in line (29), we use the cyclicity of the trace; in line447

(30), we use the definition of ∆; in line (31), we use the symmetry of B. We obtain the result upon448

applying Lemma C.6.449

C.1.3 Test Error450

The Bias-Variance trade-off (see Proposition B.5) decomposed the KRR’s test error into two terms,451

the bias and variance. Since Propositions C.5 and C.7 give us exact expressions for the bias and452

variance, respectively, we deduce the following exact expression for the KRR’s test error.453

Theorem C.8 (Exact Formula for KRR’s Test Error). The test error RZ,λ of KRR equals454

RZ,λ =

fitting error︷ ︸︸ ︷∥∥B (λΛ−1γ̃ − γ̃>MEM
)∥∥2

2
+

finite rank error︷︸︸︷
γ̃2>M︸ ︷︷ ︸

bias

+
σ2

noise

N
Tr
[
B2(IM +∆)

]
︸ ︷︷ ︸

variance

,

where B
def.
= (IM +∆+ λΛ−1)−1.455

Proof. We begin with the bias/variance decomposition:456

RλZ
def.
= Ey∥fλZ − f̃∥2L2

ρX

= Ex,y
(
K⊤
xRy − f̃(x)

)2
= Eε,x

(
K⊤
xR(f̃(X) + ε)− f̃(x)

)2
= Ex

(
fλX(x)− f̃(x)

)2
+ Ex,ε

[(
K⊤
xRε

)2]
= bias + variance,
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then we apply Propositions C.5 and C.7.457

For the validation of the Theorem C.8, please see Appendix D for details.458

The matrix B plays an important role in the expression since it encodes most information of the KRR.459

Therefore, the following subsection will discuss the approximation of the matrix B.460

C.2 Matrix Approximation461

Recall that the matrix B
def.
= (IM +∆+ λΛ−1)−1 is the inverse of a random matrix. The following462

lemma helps to approximate B. Informally, it says that: given that δ def.
= ∥∆∥op < 1. We have463

B =

∞∑
s=0

(−P̄∆)sP̄

in operator norm ∥ · ∥op for an M ×M matrix P̄ depending only on the M eigenvalues {λk}Mk=1464

and on the ridge λ > 0. More precisely we have the following.465

Lemma C.9 (B-Expansion). Given that δ def.
= ∥∆∥op < 1. It holds that466

lim
n↑∞

∥∥∥B−
n∑
s=0

(−P̄∆)sP̄
∥∥∥
op

= 0

where P̄
def.
= diag

[
λk

λk+λ

]
k
= Λ(Λ+ λIM )−1 ∈ RM×M .467

Proof. Set A = IM+λΛ−1 and repeatedly use the formula (A+∆)−1 = A−1−A−1∆(A+∆)−1468

from [31], we have469

B
def.
= (IM +∆+ λΛ−1)−1

= (A+∆)−1

= A−1 −A−1∆(A+∆)−1

= A−1 −A−1∆
(
A−1 −A−1∆(A+∆)−1

)
= A−1 −A−1∆A−1 + (A−1∆)2(A+∆)−1

=

n∑
s=0

(−A−1∆)sA−1 + (−A−1∆)n+1(A+∆)−1

Note that A−1 = (IM + λΛ−1)−1 = Λ(Λ+ λIM )−1 = P̄ with operator norm λ1

λ1+λ
< 1, hence470

we have (A−1∆)n+1 = (−P̄∆)n+1 → 0 in operator norm as n→ ∞. Hence471

B =

∞∑
s=0

(−A−1∆)sA−1

=

∞∑
s=0

(−P̄∆)sP̄

in operator norm.472

Due to the convergence result in lemma C.9, it is natural to define:473

Definition C.10. For any n ∈ N ∪ {∞}, write B(n) =
∑n
s=0(−P̄∆)sP̄. For example, We have474

B(0) = P̄

B(1) = P̄− P̄∆P̄

B(∞) = B
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Although lemma C.9 is valid when δ < 1, we need a slightly stronger condition that δ is upper475

bounded by an arbitrary constant strictly small than 1. For simplicity, we assume this constant to be476
1
2 in the following lemma:477

Lemma C.11 (B-Approximation). Assume that δ def.
= ∥∆∥op <

1
2 . Let B(n) =

∑n
s=0(−P̄∆)sP̄ be

the nth-order approximation of the matrix B as in definition C.10. Then we have∥∥∥B−B(n)
∥∥∥

op
< 2δn+1.

Proof. We first bound the operator norm of the matrix B: since the minimum singular value of the478

matrix P̄−1 +∆ is at least479

λk + λ

λk
− ∥∆∥op ≥ 1 +

λ

λk
− 1

2
>

1

2
,

and hence480

∥B∥op =
∥∥∥(P̄−1 +∆

)−1
∥∥∥

op
< 2.

Also, we have481

B−B(n) =

∞∑
s=n+1

(−P̄∆)sP̄

= (−P̄∆)n+1
∞∑
s=0

(−P̄∆)sP̄

= (−P̄∆)n+1B.

Hence
∥∥B−B(n)

∥∥
op ≤

∥∥P̄∆
∥∥n+1

op ∥B∥op < ∥∆∥n+1
op · 2 = 2δn+1, since we have

∥∥P̄∥∥op =482

λ1

λ1+λ
< 1.483

Note that the upper bound 1
2 of δ can be replaced by any constant strictly small than 1 to get a similar484

conclusion.485

Remark C.12. Using the concentration result from random matrix theory, for M < N , one can486

show with high probability that the operator norm δ of the fluctuation matrix ∆ is less than 1. 4487

See subsection C.3 for details. Then we can use the the above lemmata C.9 and C.11 to approximate488

the test error of KRR:489

Proposition C.13 (Bias Approximation). Fix a sample Z of ρ such that δ def.
= ∥∆∥op <

1
2 . Then the490

biastest term is bounded above and below by491 ∣∣∣bias −
(∥∥P̄w∥∥2

2
+ γ̃2>M

)∣∣∣ ≤ 2δ
∥∥P̄w∥∥2

2
+ ∥w∥22 δ

2p(δ),

where P̄
def.
= Λ(Λ + λIM )−1, w = λΛ−1γ̃ − γ̃>ME, and p(δ) def.

= 5 + 4δ + 4δ2. By writing492

E = (ηk)
M
k=1, the upper-bound simplifies to493

bias ≤ (1 + 2δ)

M∑
k=1

(λγ̃k − γ̃>Mηkλk)
2

(λk + λ)2
+ γ̃2>M + ∥w∥22 δ

2p(δ).

Analogously, the lower bound can be derived.494

4From there, we differentiate the approach from Bach [6]: From Propositions C.5 and C.7, it is inevitable to
approximate the matrix B, and we have IM as support of the inverse. Bach instead uses RHKS basis to express
the fluctuation matrix and is hence forced to use λIM as the support. As a result, he would need to require that
the fluctuation is less than λ and hence his requirement on N is antiproportional to λ in Theorem 5.1.
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Proof. Let w = λΛ−1γ̃ − γ̃>ME. We apply lemma C.4 followed by the 1st-order approximation495

B(1) of the matrix B in lemma C.11:496

fitting error = ∥Bw∥22 =
∥∥∥B(1)w +

(
B−B(1)

)
w
∥∥∥2
2

=
∥∥∥B(1)w

∥∥∥2
2
+ w⊤

(
B−B(1)

)
B(1)w + w⊤B(1)

(
B−B(1)

)
w +

∥∥∥(B−B(1)
)
w
∥∥∥2
2

≤
∥∥∥B(1)w

∥∥∥2
2
+ 2

∥∥∥B(1)
∥∥∥

op

∥∥∥B−B(1)
∥∥∥

op
∥w∥22 +

∥∥∥B−B(1)
∥∥∥2

op
∥w∥22

≤
∥∥∥B(1)w

∥∥∥2
2
+ 2 · (1 + δ) · 2δ2 ∥w∥22 + 4δ4 ∥w∥22

≤
∥∥∥B(1)w

∥∥∥2
2
+ 4 ∥w∥22 δ

2(1 + δ + δ2)

≤
∥∥(P̄− P̄∆P̄

)
w
∥∥2
2
+ 4 ∥w∥22 δ

2(1 + δ + δ2)

≤
∥∥IM − P̄∆

∥∥2
op

∥∥P̄w∥∥2
2
+ 4 ∥w∥22 δ

2(1 + δ + δ2)

≤
(
1 + 2

∥∥P̄∆
∥∥

op +
∥∥P̄∆

∥∥2
op

)∥∥P̄w∥∥2
2
+ 4 ∥w∥22 δ

2(1 + δ + δ2)

≤
(
1 + 2

∥∥P̄∆
∥∥

op

)∥∥P̄w∥∥2
2
+ ∥w∥22 δ

2(5 + 4δ + 4δ2)

≤ (1 + 2δ)
∥∥P̄w∥∥2

2
+ ∥w∥22 δ

2(5 + 4δ + 4δ2).

Hence we have the upper bound:497

bias ≤ γ̃2>M + (1 + 2δ)
∥∥P̄w∥∥2

2
+ ∥w∥22 δ

2p(δ).

We argue similarly for the lower bound using: ∥A∥op ∥v∥
2
2 ≥ v⊤Av ≥ −∥A∥op ∥v∥

2
2 for any498

A ∈ RM×M , v ∈ RM×1.499

We argue similarly for variance.500

Proposition C.14 (Variance Approximation). Fix a sampling Z such that δ def.
= ∥∆∥op <

1
2 . Then we501

have502 ∣∣∣∣∣variance − σ2

N

M∑
k=1

λ2k
(λk + λ)2

∣∣∣∣∣ ≤ δ
σ2

N

M∑
k=1

λ2k
(λk + λ)2

+M
σ2

N
(1 + δ)δ2p(δ),

where p(δ) def.
= 5 + 4δ + 4δ2, and σ2 def.

= E[ϵ2] is the noise variance.503

Proof. Note that TrA ≤ M ∥A∥op for any matrix A ∈ RM×M . Since B2(IM + ∆) =504

(B(1))2(IM + ∆) + 2B(1)
(
B−B(1)

)
(IM + ∆) +

(
B−B(1)

)2
(IM + ∆), we can bound the505

residue term by δ:506

Tr

[
2B(1)

(
B−B(1)

)
(IM +∆) +

(
B−B(1)

)2
(IM +∆)

]
≤M(1 + δ)

∥∥∥B−B(1)
∥∥∥

op
(2
∥∥∥B(1)

∥∥∥
op
+
∥∥∥B−B(1)

∥∥∥
op
)

≤M(1 + δ) · 2δ2(2(1 + δ) + 2δ2)

≤ 4Mδ2(1 + δ)(1 + δ + δ2),

For the main terms, we have507

Tr[(B(1))2(IM +∆)] ≤ Tr[P̄2] ·
∥∥(IM −∆P̄)2(IM +∆)

∥∥
op

= Tr[P̄2]
∥∥IM +∆(IM − 2P̄) + (∆P̄)2 − 2∆P̄∆+ (∆P̄)2∆

∥∥
op

≤ Tr[P̄2]
∥∥IM +∆(IM − 2P̄)

∥∥
op +M

∥∥(∆P̄)2 − 2∆P̄∆+ (∆P̄)2∆
∥∥

op

≤ Tr[P̄2](1 + δ) +Mδ2(1 + δ).
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We apply Theorem C.7 to yield a bound on variance:508 ∣∣∣∣∣variance − σ2

N

M∑
k=1

λ2k
(λk + λ)2

∣∣∣∣∣ ≤ δ
σ2

N

M∑
k=1

λ2k
(λk + λ)2

+M
σ2

N
(1 + δ)δ2p(δ).

509

Note that the above propositions C.13 and C.14 give absolute (non-probabilistic) bounds on the test510

error, once δ is controlled.511

C.3 Concentration Results512

In this subsection, we focus on bounding the operator norm δ of the fluctuation matrix ∆. We can513

assume the data-generating distribution ρ and eigenfunctions ψk are well-behaved in the sense that:514

Assumption C.15 (Sub-Gaussian-ness). We assume probability distribution of the random variable515

ψk(x), where x ∈ ρ, has sub-Gaussian norm bounded by a positive constant G > 0, for all516

k ∈ {1, ...,M} ∪ {> M}5.517

In particular, if the random variable ψk(x) is bounded, the assumption C.15 is fulfilled. First, we518

establish some concentration results.519

Lemma C.16 (Theorem 3.59 in [36]). Let A be an n×N matrix with independent isotropic sub-520

Gaussian columns in Rn which sub-gaussian norm is bounded by a positive constant G > 0. Then521

for all t ≥ 0, with probability at least 1− 2 exp(− 1
3 t

2), we have522 ∥∥∥∥ 1

N
AA⊤ − In

∥∥∥∥
op

≤ max(a, a2), (32)

where a def.
= C

√
n
N + t√

N
, for all constant C ≥ 12G2 .523

Proof. Let a def.
= C

√
n
N + t√

N
with C > 0 to be determined, and ϵ def.

= max{a, a2}. The first step to524

show that :525

max
x∈N

∣∣∣∣ 1N ∥∥A⊤x
∥∥2
2
− 1

∣∣∣∣ ≤ ϵ

for some 1
4 -net N on the sphere Sn−1 ⊂ Rn. Choose such a net N with |N | <

(
1 + 2

1/4

)n
= 9n.526

Let Ai be the ith column of the matrix A and let Zi
def.
= A⊤

i x be a random variable. By definition527

of A, Zi is centered with unit variance with sub-Gaussian norm upper bounded by G. Note that528

G ≥ 1√
2
E[Z2

i ]
1/2 = 1√

2
, and the random variable Z2

i − 1 is centered and has sub-exponential norm529

upper bounded by 4G2. Hence by an exponential deviation inquality 6, we have, for any x ∈ Sn−1:530

P
{∣∣∣∣ 1N ∥∥A⊤x

∥∥2
2
− 1

∣∣∣∣ ≥ ϵ

2

}
= P

{∣∣∣∣∣ 1N
N∑
i=1

Z2
i − 1

∣∣∣∣∣ ≥ ϵ

2

}

≤ 2 exp

(
−1

2
e−1G−4 min{ϵ, ϵ2}

)
=≤ 2 exp

(
−1

2
e−1G−4a2

)
≤ 2 exp

(
−1

2
e−1G−4(C2n+ t2)

)
.

5it means the orthonormal complement ψ>M is also mentioned in the assumption.
6This inequality is Corollary 5.17 from [36].
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Then by union bound, we have531

P
{
max
x∈N

∣∣∣∣ 1N ∥∥A⊤x
∥∥2
2
− 1

∣∣∣∣ ≥ ϵ

2

}
≤ 9n · 2 exp

(
−1

2
e−1G−4(C2n+ t2)

)
≤ 2 exp

(
−1

2
e−1G−4t2

)
,

for C ≥
√
2e log 9G2. Since 12 >

√
2e log 9, for simplicity, we assume C > 12G2. Moreover, since532

G ≥ 1√
2

, we have 1
2e

−1G−4 ≤ 1
3 , we have533

P
{
max
x∈N

∣∣∣∣ 1N ∥∥A⊤x
∥∥2
2
− 1

∣∣∣∣ ≥ ϵ

2

}
≤ 2 exp

(
−1

3
t2
)
.

Then by the 1
4 -net argument, with probability at least 1− 2 exp

(
− 1

3 t
2
)
, we have534 ∥∥∥∥ 1

N
AA⊤ − In

∥∥∥∥
op

≤ 4

2
max
x∈N

∣∣∣∣ 1N ∥∥A⊤x
∥∥2
2
− 1

∣∣∣∣
≤ ϵ = max{a, a2}.

535

Lemma C.17. Assume Assumption C.15 holds and that N > exp(4(12G2)2(M + 1)). Then with a536

probability of at least 1− 2/N , we have537

max {δ, ∥EM∥2} ≤
√

logN

N
.

Proof. Set n =M + 1, A =
( Ψ≤M

ψ>M (X)⊤

)
∈ R(M+1)×N . Then538

1

N
AA⊤ − In =

(
1
NΨ≤MΨ⊤

≤M EM
E⊤
M η>M + 1

)
− In =

(
∆M EM
E⊤
M η>M

)
.

where η>M
def.
= 1

N

∑N
i=1 ψ>M (xi)

2 − 1. On one hand, the operator norm of the above matrix bounds539

δ and ∥EM∥2 from above:540 ∥∥∥∥∥
(
∆M EM
E⊤
M η>M

)∥∥∥∥∥
op

= max
∥u∥2

2+v
2=1

∥∥∥∥∥
(
∆M EM
E⊤
M η>M

)(
u

v

)∥∥∥∥∥
2

= max
∥u∥2

2+v
2=1

∥∥∥∥∥
(
∆Mu+ vEM
E⊤
Mu+ η>Mv

)∥∥∥∥∥
2

≥ max
∥u∥2

2+v
2=1

∥∆Mu+ vEM∥2

≥ max
∥u∥2

2=1,v=0
∥∆Mu+ vEM∥2

≥ max
∥u∥2

2=1
∥∆Mu∥2 = δ,

and541 ∥∥∥∥∥
(
∆M EM
E⊤
M η>M

)∥∥∥∥∥
op

≥ max
∥u∥2

2+v
2=1

∥∆Mu+ vEM∥2 ≥ max
∥u∥2

2=0,|v|=1
∥∆Mu+ vEM∥2 = ∥EM∥2 .

On the other hand, set t = 1
2

√
logN, C = 12G2, since N > exp(4C2(M + 1)), we have542

a = C

√
n

N
+

t√
N

= 12G2

√
M + 1

N
+

1

2

√
logN

N
≤
√

logN

N
< 1.

By Lemma C.17, then with probability of at least 1−2 exp(− 1
3 t

2) = 1−2 exp(− 1
12 )/N > 1−2/N ,543

we have544 ∥∥∥∥∥
(
∆M EM
E⊤
M η>M

)∥∥∥∥∥
op

≤ max{a, a2} = a ≤
√

logN

N
.

Combine the both results and we conclude the upper bounds.545

23



In particular, as N → ∞, δ vanishes almost surely. In empirical calculation, if the requirement546

N > exp(4(12G2)2(M +1)) exponential in M is too demanding for a large integer M , we can take547

t = Ns for any positive number s ∈
(
0, 12

)
instead of t = 1

2 logN . In this way, we decrease the548

requirement to N polynomial in M in sacrificing the decay from O
(√

logN
N

)
to O

(
Ns−1/2

)
. For549

simplicity purpose, we do not list out the result with this decay in this paper.550

C.4 Refined Test Error Analysis551

We can apply the above concentration results to refine the following bounds on the finite-rank KRR552

test error.553

Definition C.18. To ease the notation, we denote r def.
= mink{|γ̃k/λk|} and r def.

= maxk{|γ̃k/λk|}.554

C.4.1 Refined Bounds on Bias555

Recall that Proposition C.13 bounding the bias in terms of δ and ηk. For the former one, we can556

choose: for N > max{exp(4(12G2)2(M + 1)), 9}, by Lemma C.17, with probability of at least557

1− 2/N , we have δ ≤
√

logN
N <

√
log 9
9 < 1

2 . For the latter one, we have to control the vector w:558

Lemma C.19. Let w = λΛ−1γ̃ − γ̃>ME. We have559

λ2r2M − 2λr|γ̃>M |
√
M ∥E∥2 ≤ ∥w∥22 ≤

(
λr

√
M + γ̃>M ∥E∥2

)2
;

λ2λM
(λM + λ)2

∥f̃≤M∥2H − 1

2
|γ̃>M |∥f̃≤M∥L2

ρ
∥E∥2 ≤

∥∥P̄w∥∥2
2
≤ λ∥f̃≤M∥2H +

1

2
|γ̃>M |∥f̃≤M∥L2

ρ
∥E∥2 + γ̃2>M ∥E∥22 .

Proof. Since λ2r2M ≤
∥∥λΛ−1γ̃

∥∥2
2
≤ λ2r2M and ∥γ̃>ME∥22 = γ̃2>M ∥E∥22, we have560

λ2r2M − 2λr|γ̃>M |
√
M ∥E∥2 ≤ ∥w∥22 ≤

(
λr

√
M + γ̃>M ∥E∥2

)2
.

Similarly, we can bound
∥∥P̄w∥∥

2
. Observe that:561

∥∥P̄w∥∥2
2
= λ2

M∑
k=1

γ̃2k
(λk + λ)2︸ ︷︷ ︸
I

−2λγ̃>M

M∑
k=1

γ̃kλkηk
(λk + λ)2︸ ︷︷ ︸

II

+ γ̃2>M

M∑
k=1

λ2kη
2
k

(λk + λ)2︸ ︷︷ ︸
III

.

Since 1 ≥ λ
λM+λ ≥ λ

λk+λ
, we have the upper bound:562

I = λ2
M∑
k=1

γ̃2k
(λk + λ)2

≤ λ

M∑
k=1

λ

λk + λ

γ̃2k
λk + λ

≤ λ
M∑
k=1

γ̃2

λk
= λ∥f̃≤M∥2H. (33)

where f̃≤M
def.
=
∑M
k=1 γ̃kψk = f̃ − γ̃>Mψ>M . For the lower bound, we have:563

I = λ2
M∑
k=1

γ̃2k
(λk + λ)2

≥ λ2
M∑
k=1

λk
(λk + λ)2

γ̃2k
λk

≥ λ2
λM

(λM + λ)2
∥f̃≤M∥2H (34)

Similarly, since 4λλk ≤ (λk + λ)2,564

|II| = 2λ|γ̃>M |
M∑
k=1

|γ̃k|λk|ηk|
(λk + λ)2

≤ 1

2
|γ̃>M |

M∑
k+1

|γ̃kηk| ≤
1

2
|γ̃>M |

√√√√ M∑
k+1

γ̃2k

M∑
k=1

η2k ≤ 1

2
|γ̃>M |∥f̃≤M∥L2

ρ
∥E∥2 .

And565

III = γ̃2>M

M∑
k=1

λ2kη
2
k

(λk + λ)2
≤ γ̃2>M

M∑
k=1

η2k = γ̃2>M ∥E∥22 .

566
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Combining the above result, we state the following theorem:567

Theorem C.20. For N > max
{
exp(4(12G2)2(M + 1)), 9

}
and for any constant C1 >568

8
(
λr

√
M + 1

2 |γ̃>M |
)2

+ 5
2∥f̃∥

2
L2

ρ
(independent to N ), with a probability of at least 1 − 2/N ,569

we have the upper and lower bounds of bias:570

bias ≤ γ̃2>M + λ∥f̃≤M∥2H +

(
1

4
∥f̃∥2L2

ρ
+ 2λ∥f̃≤M∥2H

)√
logN

N
+ C1

logN

N
;

bias ≥ γ̃2>M +
λ2λM

(λM + λ)2
∥f̃≤M∥2H −

(
1

4
∥f̃∥2L2

ρ
+

2λ2

λ1 + λ
∥f̃≤M∥2H

)√
logN

N
− C1

logN

N
.

For λ→ 0, we have a simpler bound: with a probability of at least 1− 2/N , we have571

lim
λ→0

bias ≤
(
1 +

logN

N

)
γ̃2>M + 6γ̃2>M

(
logN

N

) 3
2

;

lim
λ→0

bias ≥
(
1− logN

N

)
γ̃2>M − 6γ̃2>M

(
logN

N

) 3
2

.

(35)

For γ̃2>M = 0, that is f̃ ∈ H, we have a simpler upper bound on bias: with a probability of at least572

1− 2/N , we have573

bias ≤ λ∥f̃∥2H

(
1 + 2

√
logN

N

)
+ C1

logN

N
;

bias ≥ λ2λM
(λM + λ)2

∥f̃∥2H

(
1− 2

√
logN

N

)
− C1

logN

N
.

(36)

Proof. By Proposition C.13 and Lemma C.19,574

fitting error ≤ (1 + 2δ)
∥∥P̄w∥∥2

2
+ ∥w∥22 δ

2p(δ) (37)

≤ (1 + 2δ)(λ∥f̃≤M∥2H +
1

2
|γ̃>M |∥f̃≤M∥L2

ρ
∥E∥2 + γ̃2>M ∥E∥22) + ∥w∥22 δ

2p(δ)

(38)

≤ (1 + 2δ)(λ∥f̃≤M∥2H +
1

4
∥f̃∥2L2

ρ
∥E∥2 + γ̃2>M ∥E∥22) + ∥w∥22 δ

2p(δ). (39)

where in line (37), we use Proposition C.13; in line (38), we use Lemma C.19; in line (38), we use575

the fact that 2ab ≤ a2 + b2 where a = |γ̃>M |, b = ∥f̃≤M∥L2
ρ
.576

Now we apply the concentration result in Lemma C.17: with a probability of at least 1− 2/N :577

fitting error ≤

(
1 + 2

√
logN

N

)
λ∥f̃≤M∥2H +

1

4
∥f̃∥2L2

ρ

√
logN

N

+
logN

N

(
∥w∥22 p(δ) + (1 + 2δ)γ̃2>M +

1

2
∥f̃∥2L2

ρ

)
≤ λ∥f̃≤M∥2H +

(
1

4
∥f̃∥2L2

ρ
+ 2λ∥f̃≤M∥2H

)√
logN

N
+ C1

logN

N
,

where we choose C1 > 0 to be such that:578

∥w∥22 p(δ) + (1 + 2δ)γ̃2>M +
1

2
∥f̃∥2L2

ρ
≤ ∥w∥22 p(δ) +

(
1 + 2δ +

1

2

)
∥f̃∥2L2

ρ

≤ ∥w∥22 p
(
1

2

)
+

(
1 + 2 · 1

2
+

1

2

)
∥f̃∥2L2

ρ

≤ 8
(
λr

√
M + |γ̃>M | ∥E∥2

)2
+

5

2
∥f̃∥2L2

ρ

≤ 8

(
λr

√
M +

1

2
|γ̃>M |

)2

+
5

2
∥f̃∥2L2

ρ
< C1.
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Hence we have an upper bound for the bias. We argue similarly for the lower bound:579

fitting error ≥

(
1− 2

√
logN

N

)
λ2λM

(λM + λ)2
∥f̃≤M∥2H − 1

4
∥f̃∥2L2

ρ

√
logN

N

− logN

N

(
∥w∥22 p(δ) + (1 + 2δ)γ̃2>M + |γ̃>M |∥f̃≤M∥L2

ρ

)
≥ λ2λM

(λM + λ)2
∥f̃≤M∥2H −

(
1

4
∥f̃∥2L2

ρ
+

2λ2

λ1 + λ
∥f̃≤M∥2H

)√
logN

N
− C1

logN

N
.

For λ→ 0, note that w → −γ̃>ME. This yields580

lim
λ→0

fitting error ≤ lim
λ→0

{
(1 + 2δ)

∥∥P̄w∥∥2
2
+ ∥w∥22 δ

2p(δ)
}

= (1 + 2δ) ∥−γ̃>ME∥22 + ∥−γ̃>ME∥22 δ
2p(δ)

= γ̃2>M ∥E∥22 (1 + δ(2 + δp(δ))).

Hence, by plugging in δ < 1
2 , with probability of at least 1− 2/N ,581

lim
λ→0

fitting error ≤ γ̃2>M
logN

N

(
1 + 6

√
logN

N

)

lim
λ→0

bias ≤
(
1 +

logN

N

)
γ̃2>M + 6γ̃2>M

(
logN

N

) 3
2

.

For lower bound, it follows similarly:582

lim
λ→0

bias ≥
(
1− logN

N

)
γ̃2>M − 6γ̃2>M

(
logN

N

) 3
2

,

and we obtain line (35). For the case where γ̃>M = 0, recalculate and simplify line (38) to obtain583

line (36).584

C.4.2 Refined Bounds on Variance585

Similarly, we can refine Theorem C.14 to get a bound on the variance:586

Theorem C.21. For N > max
{
(12G)4(M + 1)2, 9

}
, and set C2 = 12 (independent to N ), with a587

probability of at least 1− 2/N , we have the upper and lower bounds of variance:588

variance ≤ σ2M

N

(
1 +

√
logN

N
+ C2

logN

N

)
;

variance ≥ λ2M
(λM + λ)2

σ2M

N

(
1−

√
logN

N

)
− C2σ

2M

N

logN

N
.

Proof. We argue analogously as in Theorem C.20: by Proposition C.14 and Lemma C.17, we have589

variance ≤ (1 + δ)
σ2

N

M∑
k=1

λ2k
(λk + λ)2

+M
σ2

N
(1 + δ)δ2p(δ)

≤ (1 + δ)σ2M

N
+ σ2M

N
(1 + δ)δ2p(δ)

≤

(
1 +

√
logN

N

)
σ2M

N
+ σ2M

N

logN

N

(
1 +

1

2

)
p

(
1

2

)

≤

(
1 +

√
logN

N

)
σ2M

N
+ 12σ2M

N

logN

N
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Hence we can choose C2 = 12. For the lower bound, since λ2
k

(λk+λ)2
>

λ2
M

(λM+λ)2 , we have590

variance ≥ (1− δ)
σ2

N

M∑
k=1

λ2k
(λk + λ)2

−M
σ2

N
(1 + δ)δ2p(δ)

≥ λ2M
(λM + λ)2

σ2M

N

(
1−

√
logN

N

)
− 12σ2M

N

logN

N
.

591

Note that in both Theorems C.20 and C.21, the constants C1, C2 > 0 is not optimized.592

D Numerical Validation593

In this section, we illustrate our result for KRR with two different finite rank kernels.594

D.1 Truncated NTK595

First, we need to define a finite-rank kernel K : X × X → R. We set X = S1 ⊂ R2. By
reparametrization, we write S1 ∼= [0, 2π]/0∼2π. We assume the data are drawn uniformly on the
circle, that is ρX = unif[S1]. We can use the Fourier functions cos(k·), sin(k·) as the orthogonal
eigenfunctions of the kernel. We define the NTK

K(∞)(θ, θ′)
def.
=

cos(θ − θ′) (π − |θ − θ′|)
2π

for all θ, θ′ ∈ [0, 2π]. 3) We choose a rank-M truncation K(θ, θ′) =
∑M
k=1 λkψk(θ)ψk(θ

′) for all596

θ, θ′ ∈ [0, 2π]. For the first few eigenvalues of the kernel, please see Table 3 for example. Before

k 1 2 3 4 5 6 7 ∞

λk
1
π2

1
8

1
8

5
9π2

5
9π2

17
225π2

17
225π2 -

ψk(θ) 1
√
2 cos(θ)

√
2 sin(θ)

√
2 cos(2θ)

√
2 sin(2θ)

√
2 cos(4θ)

√
2 sin(4θ) -∑k

k′=0 λk′ 0.1013 0.2263 0.3513 0.4076 0.4639 0.4716 0.4792 0.5

Table 3: The first few eigenvalues of the NTK

597
proceeding to test error computation, we present a training example, Figure 4, to give readers an598

intuition on the truncated NTK (tNTK).
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Figure 4: (left): NTK training; (right): tNTK training where N = 50,M = 7. σ2 = 0.05, λ =
σ2/N .
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D.2 Test Error Computations600

In the following tNTK training, we set the hyperparameters as follows:601

Target function We choose a simple target function f̃(x) = cosx = 1√
2
ψ2(x). Throughout the602

experiment, we set the noise variance σ2 = 0.05.603

Ridge We choose λ = σ2

N . In Figure 5 (left), we set N = 50, λ = 0.05/50 for tNTK training;604

(right) we set set λ = 0.05/50 for varying N from 10 to 200.605

Error bars In Figure 7 (right), for each value of N , we run over 10 iterations of random samples606

and compute the test error. The error bars are shown as the difference between the upper and the607

lower quartiles.608
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Figure 5: (left): tNTK training; (right): the decay of test error as N varies.

Lower bound See the subsection below.609

D.3 Bound Comparison610

We continue with the experiment on the tNTK this time with varying N and compare our upper611

bound with [6].612

Upper bounds In Figure 6, the expression of Bach’s and our upper bounds are directly computed:613

Bach’s upper bound = 4λ∥f̃∥2H +
8σ2R2

λN
(1 + 2 logN)

Our upper bound without residue = λ∥f̃∥2H

(
1 + 2

√
logN

N

)
,

where the constants ∥f̃∥2H and R2 can be computed directed from the choice of kernel and target614

function. For simplicity reason, we drop the residue term C1
logN
N since it is overshadowed by the615

other terms and the constant C1 is not optimized.616

D.4 Legendre Kernel617

To illustrate the bounds with another finite-rank, we choose a simple legendre kernel (LK):618

K(x, z) =

M∑
k=0

λkPk(x)Pk(z)

where Pk is the Legendre polynomial of degree k, and λk > 0 are the eigenvalues.619
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Figure 6: Bound improvement on tNTK. Residue term is dropped in our bound.

Eigenvalues To better compare the Legendre kernelK with the NTK, we choose λk = C ·(k+1)−2620

of quadratic decay such that the spectral sums are the same:
∑∞
k=0 λk = 0.5. Hence we choose621

C = 0.5/
∑∞
k=1 k

−2 = 3
π2 .622

Target function We choose a simple target function f̃(x) = x2 = 1
3P0(x) +

2
3P2(x). Throughout623

the experiment, we set the noise variance σ2 = 0.05.624

D.5 Test Error Computation625

Ridge As before, our bound suggests that, to balance the bias and the variance with a fixed N , we626

can choose λ = σ2

N . In Figure 7 (left), we set N = 50, λ = 0.05/50 for KRR training; (right) we set627

set λ = 0.05/50 for varying N from 10 to 200.628

Error bars In Figure 7 (right), for each value of N , we run over 10 iterations of random samples629

and compute the test error. The error bars are shown as the different between the upper and the lower630

quartiles. The median is taken as average.
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Figure 7: (left): LK training; (right): the decay of test error as N varies. Same as Figure 1.
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Upper bounds In Figure 8, the expression of Bach’s and our upper bounds are directly computed:632

Bach’s upper bound = 4λ∥f̃∥2H +
8σ2R2

λN
(1 + 2 logN)

Our upper bound without residue = λ∥f̃∥2H

(
1 + 2

√
logN

N

)
,

where the constants ∥f̃∥2H and R2 can be computed directed from the choice of kernel and target633

function.634
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Figure 8: Bound improvement on LK. Same as Figure 2.

Lower Bound Last but not least, we need to show our lower bound is valid. To see this clearly, we635

need to write the bound in exact sums instead of in HKRS norm square ∥f̃∥2H: namely, we compute I636

λ2λM
(λM + λ)2

∥f̃∥2H ≤ I = λ2
M∑
k=1

γ̃2k
(λk + λ)2

≤ λ∥f̃∥2H, (40)

instead of using the inequality (40) in Lemma C.19; and637

M
λ2M

(λM + λ)2
≤

M∑
k=1

λ2k
(λk + λ)2

≤M, (41)

instead of using the inequality (40) in Theorem C.21. Then we can compute our bounds as:638

Our upper bound without residue = λ2I

(
1 + 2

√
logN

N

)
+
σ2

N

M∑
k=1

λ2k
(λk + λ)2

(
1 +

√
logN

N

)
,

Our lower bound without residue = λ2I

(
1− 2

√
logN

N

)
+
σ2

N

M∑
k=1

λ2k
(λk + λ)2

(
1−

√
logN

N

)
,

and we drop the residue terms C1
logN
N and C2

σ2

NM
logN
N by the same reason as before. From Figure639

3, we can see that our bounds precisely describe the decay of the test error. Our bounds are not640

‘bounding’ the test errors in smaller instances due to the absence of the residue terms, which increases641

the interval of confidence of our approximation. But for larger instances, say N > 100, all upper and642

lower bounds, and the averaged test error converge to the same limit.643
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Figure 9: Our bounds comparing to the averaged test error with varying N , over 10 iterations. Same
as Figure 3.
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