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Unifying Spike Perception and Prediction: A Compact Spike
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ABSTRACT
The widespread adoption of bio-inspired cameras has catalyzed
the development of spike-based intelligent applications. Despite its
innovative imaging principle allows for functionality in extreme
scenarios, the intricate nature of spike signals poses processing
challenges to achieve desired performance. Traditional methods
struggles to deliver visual perception and temporal prediction si-
multaneously, and they lack the flexibility needed for diverse in-
telligent applications. To address this problem, we analyze the
spatio-temporal correlations between spike information at different
temporal scales. A novel spike processing method is introduced
for compact spike representations that utilizes intra-scale corre-
lation for higher predictive accuracy. Additionally, we propose a
multi-scale spatio-temporal aggregation unit (MSTAU) that fur-
ther leverages inter-scale correlation to achieve efficient perception
and precise prediction. Experimental results show noticeable im-
provements in scene reconstruction and object classification, with
increases of 3.49dB in scene reconstruction quality and 2.20% in
accuracy, respectively. Besides, the proposed method accommodate
different visual applications via switching analysis models, offering
a novel perspective for spike processing.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
spike processing, perception and prediction, multi-scale aggrega-
tion, scene reconstruction, object classification

1 INTRODUCTION
With the popularization of autonomous driving and Industry-4.0, an
innovative biologically inspired spike camera has emerged, which
emulates the fovea of mammalian retina [31] [3]. Breaking the
limitation of exposure [18], the spike camera emits spikes at each
position asynchronously and achieves a maximum temporal res-
olution of up to 40k frames per second (FPS). This can effectively
mitigate motion blur and content missing, supporting visual tasks
in scenarios with high-speed motion, such as scene reconstruc-
tion and classification for fast moving objects. In practical usages,
intelligent applications are usually deployed in an end-cloud col-
laborative architecture due to the weak computational ability of
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(a) Ground Truth (b) Scene-domain Processing

30.44dB

29.51dB

25.78dB

(c) Feature-domain Processing

Figure 1: Visual comparison scene reconstructed through scene-
domain and feature-domain processing. Zoom for better visibility.

cameras [38] [25]. The camera captures information and emits
spikes, which are compressed and transmitted to a cloud server for
further processing according to specific task. On the one hand, it is
essential to extract sufficient semantic information from spike se-
quences to satisfy the precision requirements of visual applications
at different granularities [23] [13] [16]. On the other hand, accurate
prediction of future spatio-temporal states is also crucial for proac-
tive decision-making ahead of time [21] [20]. This imposes demands
on perception and prediction of spike signals simultaneously.

Given the analyzed results, an intuitive strategy for simultaneous
perception and prediction of spike signals is to first process spikes
to meet demands of visual applications and then perform tempo-
ral predictions on the result sequences. However, this struggles to
effectively address these challenges. On one hand, although this ap-
proach can achieve satisfactory performance in specific task, it lacks
versatility for scenarios with multiple tasks, especially when these ap-
plications involve different semantic levels [36] [37]. On the other hand,
inconsistency between the target of perception and prediction lead
to distortion, which accumulates gradually over temporal interval,
making it increasingly difficult to effectively perceive after predic-
tions [15]. For instance, in scene reconstruction, spike sequence
can be rebuilt into a series of scenes initially, upon which video
prediction methods are applied for forecasting. However, results in
Fig. 1(b) show that the predictive quality is less efficient enough.
One issue is that the reconstructed scenes exhibit severe distortion
compared with ground truth, which escalates with the extension
of prediction interval. Moreover, prediction in pixel-level accuracy
is limited so that the abundant temporal information contained in
the spike sequence is used to compensate for the lack of spatial
information (e.g., calculating the average firing rate and estimating
the light intensity at the current moment based on spike generation
over a period of time). In contrast, prediction on scenes rebuilt from
spikes requires joint modeling of spatio-temporal information from
historical observations. With temporal details discarded in recon-
structed scenes and only spatial information preserved, achieving

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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high-accuracy forecasts becomes challenging. Besides, this method
is not directly applicable for other visual tasks and retraining is
required for all modules. Therefore, there is an urgent necessity to
propose an effective method for spike processing with perception
and prediction.

Building upon the above discussion, we introduce an innova-
tive spike processing method considering multi-scale correlations,
which are categorize as intra-scale and inter-scale one. Compared
with previous approaches, information within spikes can be pre-
dicted in temporal domain with higher efficiency and fidelity, which
can further serve for downstream applications with better perfor-
mance. The major contributions are summarized as follows:

• We present a novel spike data processing method utilizing
compact spike representations through multi-scale correla-
tions. Our method offers perception and prediction at multi-
ple semantic levels, providing a fresh perspective on spike
visual intelligence.

• Leveraging strong stability within temporal scale, we pro-
pose an Intra-scale Correlation based Prediction (ICP) ap-
proach to learn from the Multi-scale Temporal Filters (MTFs)
for compact spike representations. Moreover, we further
consider inter-scale correlation and introduce a Multi-scale
Spatio-Temporal Aggregation Unit (MSTAU) for the joint
modeling of spatio-temporal information across different
scales, enabling efficient spike representation prediction. The
predictive represents are adaptable for low-level and high-
level spike visual tasks simultaneously.

• Extensive experimental results demonstrate that our method
achieves a significant improvement for predictive accuracy
of spike perception, compared to previous SOTAmethods. In
terms of downstream applications, we achieve a noticeable
increase of 3.49dB in PSNR for scene reconstruction and an
improvement of 2.20% in Top-1 accuracy for classification,
setting a robust foundation for spike processing.

2 RELATEDWORK
Scene reconstruction and object classification are two important
visual applications in spike processing. The former utilizes the
principle of spike firing, which is stimulated by luminance intensity,
to rebuild scenario content with high pixel-level fidelity. The latter
involves categorizing objects captured by spike cameras based on
higher-level semantic information, resulting in superior accuracy.

Scene reconstruction. Chen et al. [28] introduced a tokenizer
and spatio-temporal attention significantly enhances the accuracy
and stability of reconstruction quality. Zhu et al. [42] put forward
a framework for retina-like visual image reconstruction, harness-
ing bio-realistic Leaky Integrate and Fire (LIF) neurons along with
synapse connections governed by spike-timing-dependent plastic-
ity (STDP) rules. Additionally, Spk2ImgNet proposed in [39] stood
out for its ability to reconstruct dynamic scenes from continuous
spike streams through the use of deep learning techniques. Wei et
al. [19] also introduces a retinal spike train decoder to enhance the
accuracy of reconstructing visual scenes from retinal spike trains,
demonstrating its potential to advance brain-machine interface
technologies by improving how visual scenes are decoded from
spike data. Xiang et al. [35] contributed to the field by proposing

a learning-based super-resolution reconstruction method tailored
for high temporal resolution spike streams. [8] presented a novel
coarse-to-fine method utilizing region-adaptive-based spike distinc-
tion, which effectively differentiates between dynamic and static
spikes to enhance the reconstruction of natural scenes.

Object classification. Felix et al. [10] employed linear filters
for enhanced signal representation and signal-to-noise ratio, and
used well-defined thresholds for simultaneous spike detection and
classification. Wilson et al. [33] utilized multiple monotonic neural
network to group spikes automatically via hierarchical clustering,
which is visually compared with hand marked grouping on a sin-
gle record. Recent years, Zhao et al. [40] introduced a modeling
algorithm to assess the detection capability of spiking cameras un-
der various scenarios, such as different brightness intensities and
camera lens configurations. This algorithm helped determine ap-
propriate camera settings for capturing high-speed objects. SpiReco
mentioned in [41] discussed the potential of spike cameras in high-
speed object recognition. The study highlighted the advantages of
spike cameras, such as their high temporal resolution and dynamic
range, while also acknowledging the challenges posed by their
physical limits. Besides, a accelerator was implemented on FPGA
for high-speed moving objects detection and tracking with a spike
camera. This research explored hardware acceleration techniques
to enhance the real-time processing capabilities of spike cameras,
enabling them to detect and track high-speed objects more effec-
tively.

3 METHODOLOGY
Building upon the discussion in Sec. 1, we propose to convert
the spike sequence {𝑆𝑡 } into compact spike representations {𝐹𝑡 }
according to the biological visual mechanism, which are rich in
spatio-temporal information. Based on observations of historical
representations {𝐹𝑡−𝑖 }, we predict the representation at the current
moment 𝐹𝑡 and utilize it to generate the result 𝑅𝑉𝑡 for applications,
formulating as

𝐹𝑡 = FE(𝑆𝑝𝑘{𝑡−Δ𝑡 :𝑡+Δ𝑡 } ), (1)

𝐹𝑡 = 𝑃𝑟𝑒𝑑 (𝐹{𝑡−𝜏 :𝑡−1} ), (2)

𝑅𝑉𝑡 = A𝑉 (𝐹𝑡 ), (3)
where FE and 𝑃𝑟𝑒𝑑 denote the feature extraction and prediction
module respectively, and A𝑉 is the analysis component for task 𝑉 .
On the one hand, {𝐹𝑡 } are profuse with spatial information at dif-
ferent granularities, which can be reused for multiple downstream
tasks at various semantic levels through different A𝑉 . On the other
hand, {𝐹𝑡 } are abundant with temporal information at different
scales, enabling efficient and accurate forecast at multiple extents.
Moreover, the dimensions of {𝐹𝑡 } can be compacted to enhance
the expressive capability of {𝐹𝑡 } through increasing the density of
information, while the computational complexity can be decreased
in the meanwhile. Consequently, the compact representation-based
spike processing approach can efficiently meet the demands of var-
ious applications and achieve high-precision temporal predictions.

3.1 Necessity of Multi-scale Temporal Filters
As spike cameras are bio-inspired, the processing for spike signals
should also mimic biological visual mechanism to extract features
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with TRF=5
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with TRF=13
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(f) Optical flow of (b) (g) Optical flow of (c) (h) Optical flow of (d) (i) Optical flow of (e)

(a) Curve of membrane potential v.s. time when 

the neuron receives a luminance stimulus

Figure 2: The neural dynamics curve stimulated by luminance and the spatio-temporal content comparison corresponding to different
TRFs. Results illustrate a strong correlation between 𝑡𝜃 and 𝜈 , while the information extracted by different TRFs has significant differences,
demonstrating the necessity of utilizing MTFs to comprehensively extract information from spikes.

abundant with spatio-temporal information [17] [2]. We decouple
the persistent light stimuli into a sequence of transient luminance
stimulus, each of which lasts for an extremely short time and thus
the luminance can be approximated as constant. Taking the LIF as
an example of neural dynamics [34] [14], for a neuron with time
constant 𝜈 , under the influence of transient luminance stimulus 𝐼
defined by

𝐼 =

{
𝐼0, 0 < 𝑡 < 𝑡0,
0, 𝑒𝑙𝑠𝑒

, (4)

we derive the temporal extent of this impact reaching up to 𝑡𝜃 .
The entire process can be divided into two dependent procedures,

which are the charging during [0, 𝑡0) and the discharging during
[𝑡0, 𝑡𝜃 ]. The schematic diagram of themembrane potential changing
over time is shown in Fig. 2(a). The neuro-dynamic differential
equation can be expressed as

𝜈
d𝑉𝑡
𝑑𝑡

= −(𝑉𝑡 − 𝐸) + 𝛼𝑅𝐼, (5)

where𝑉𝑡 and 𝐸 denote the membrane potential at moment 𝑡 and the
resting potential, 𝑅 is the membrane resistance and 𝛼 represents
the photovoltaic conversion efficiency [4] [27]. By joint solving
equations for both two processes, 𝑡𝜃 can be formulated as

𝑡𝜃 = 𝑡0 + 𝜈 ln
𝛼𝑅𝐼0 [1 − exp(−𝑡0/𝜈)]

𝑉𝜃 − 𝐸 , (6)

where 𝑉𝜃 illustrates the threshold that can distinguish between
electrical signals or disturbances. Noticing that 𝑡0 is an infinitesimal,
which means the equation above can be approximated via Taylor
expansion as

𝑡𝜃 = 𝜈 ln
𝛼𝑅𝐼0𝑡0

(𝑉𝜃 − 𝐸)𝜈 = 𝜈 ln
𝛼𝑅𝑃0

(𝑉𝜃 − 𝐸)𝜈 , (7)

where 𝑃0 denotes the amount of photons received by the neuron per
unit time [22]. For any moment 𝑡 ,𝑉𝑡 is a nonlinear superposition of
the effects of all luminance stimuli during [𝑡 − 𝑡𝜃 , 𝑡). After substitut-
ing the relevant parameters, the PLCC (Pearson Linear Correlation
Coefficient) between 𝑡𝜃 and 𝜈 reaches 0.995 [7], indicating that their
correlation is extremely high. Since the mammalian visual system
consists of neurons with different time constants [11] [1] [24], it
is essential to take into account the impact of various 𝜈 on neural
dynamics in a comprehensive manner. 1

1Detailed derivations are shown in the supplementary material.

From perspective of implementation, MTFs with various tempo-
ral receptive fields (TRFs) are required as a combination to extract
features with different temporal granularities, which are subse-
quently associated to support intelligent applications. We further
illustrate the necessity of using MTFs through a scene reconstruc-
tion task in both spatial (Fig. 2(b∼e)) and temporal (Fig. 2(f∼i))
domain. As for spatial texture, reconstructed results are signifi-
cantly influenced by the stochastic nature of spikes (pixel-level
noise) if TRF is too small, while an excessively large TRF makes it
challenging for alignment, leading to severe motion blur. In terms
of temporal characteristic, movement exhibits strong disorder and
randomness for small TRF. In contrast, motion is more consistent
and the boundaries between foreground and background are more
pronounced for large TRF.

We assert that features produced by filters with varying TRFs
exhibit unique temporal scales. Therefore, composing features 𝑓 1:𝐾𝑡
at different scales into 𝐹𝑡 is crucial to maintain the richness and
continuity of spatio-temporal information. Eq. 1 can be adapted as

𝑓
{1:𝐾 }
𝑡 = MFE(𝑆𝑝𝑘{𝑡−Δ𝑡 :𝑡+Δ𝑡 } ), (8)

𝐹𝑡 = FC(𝑓 {1:𝐾 }
𝑡 ), (9)

whereMFE and FC denote the multi-scale feature extraction and
feature composition module respectively, and 𝐾 represents the
number of temporal scales.

3.2 Intra-scale Correlation based Prediction
To explore the discrepancies and correlations between features
at different scales, we statistically analyze the spatio-temporal
characteristics through TFP reconstruction results with various
TRFs [26] [32], as shown in Fig. 3(a). The pixel smoothness in spa-
tial domain is negatively correlated with TRF, while the motion
intensity in temporal domain is positively associated with TRF. This
strong correlation indicates that visual information corresponding
to different TRFs have significant disparities. Therefore, the repre-
sentation composed from features with varying scales possess more
complex spatio-temporal characteristics, making it challenging to
be precisely predicted.

Despite the different texture contents and motion trends ex-
tracted from features at various temporal scales, the spatio-temporal
information within the same scale exhibits significant stability in
temporal domain, referred as intra-scale correlation. We calculate
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Figure 3: Comparison of spatio-temporal characteristics of features
corresponding to different TRFs. Though there are significant varia-
tions between scales, temporal continuity within each scale is robust
to facilitate accurate prediction.
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Figure 4: Pipeline of prediction with ICP method. Leveraging intra-
scale correlations, ICP predict features at each scale and ultimately
combines them to form compact representations to support intelli-
gent visual applications.

the L1-norm of the residual between adjacent frames for features at
each scale [12], as shown in Fig. 3(b). Results indicate that features
at the same scale demonstrate strong temporally continuity with
fewer noticeable fluctuations, denoting stable characteristics within
scale. In contrast, although the representation is composed from
these features, the emphatic temporal randomness and volatility
make it challenging for prediction. Therefore, we propose an ICP
method to model spatio-temporal characteristics of features at each
scale separately for higher prediction accuracy, pipeline of which
is illustrated as Fig. 4. With historical observations from last 𝜏 mo-
ments, each feature is predicted separately as 𝑓 𝑘𝑡 , all of which are
then composed as 𝐹𝑡 . Therefore, Eq. 9 and Eq. 2 can be adapted as

𝑓 𝑘𝑡 = 𝑃𝑟𝑒𝑑 (𝑓 𝑘{𝑡−𝜏 :𝑡−1} ), (10)

𝐹𝑡 = FC(𝑓 {1:𝐾 }
𝑡 ), (11)

where 𝑓 {1:𝐾 }
{𝑡−𝜏 :𝑡−1} are historical features extracted according to Eq. 8.

3.3 Multi-scale Spatio-Temporal Aggregation
Unit

Although there is a wide variation between features with different
scales shown in Fig. 3(b), we observe a relatively consistent trend
in their changes. Therefore, we calculate the PLCC between optical
flows at various scales, as shown in Table. 1. Results indicate the ex-
istence of correlations between temporal scales, primarily occurring
with larger TRFs and close TRF pairs (9&11 and 11&13). This rele-
vance can serve as guidance information to supervise multi-scale

TRFs 7 9 11 13
7 1.0 - - -
9 0.0991 1.0 - -
11 0.2063 0.5978 1.0 -
13 0.1026 0.1484 0.4367 1.0

Table 1: PLCC between contents corresponding to different TRFs.
Results indicate the existence of high correlations between larger
TRFs and close TRF pairs (9&11 and 11&13).

joint prediction, referred as inter-scale correlation. Therefore, we
propose a Multi-scale Spatio-Temporal Aggregation Unit (MSTAU)
considering both intra-scale and inter-scale correlations to predict
features with high precision to support visual applications, the
pipeline of which is depicted in Fig. 5(a).

At the 𝑛𝑡ℎ layer and 𝑘𝑡ℎ temporal scale,𝑀𝑆𝑇𝐴𝑈 𝑘𝑛 takes several
spatio-temporal states as input, including:

• Spatial states of all 𝐾 scales from previous 𝜏 and the current
time steps in the 𝑛 − 1𝑡ℎ layer 𝑆𝑛−1,{1:𝐾 }

{𝑡−𝜏 :𝑡 } .
• Temporal states of the current scale from previous 𝜏 time
steps in the 𝑛𝑡ℎ layer 𝑇𝑛,𝑘{𝑡−𝜏 :𝑡−1} .

𝑀𝑆𝑇𝐴𝑈 𝑘𝑛 outputs the spatial and temporal states of the current scale
at the current time step 𝑆𝑛,𝑘𝑡 and 𝑇𝑛,𝑘𝑡 respectively, propagating to
other MSTAUs. 𝑁 layers of MSTAU are stacked hierarchically to
enhance the expression and prediction capabilities. Features 𝑓 {1:𝐾 }

𝑡

are regarded as spatial inputs of the first layer 𝑆0,{1:𝐾 }
𝑡 , while spatial

outputs of the final layer 𝑆𝑁,{1:𝐾 }
𝑡 are considered as prediction of

features 𝑓 {1:𝐾 }
𝑡+1 . As shown in Fig. 5(b), each MSTAU consists of

the following three modules, which are coupled tightly to enhance
predictive capability.

Temporal Regression Module. Based on the temporal rele-
vance at each scale, this module regresses historical states towards
the current moment and generate multiple regression results cor-
responding to each scale. Prior works transferred the relevance
between (𝑡 − 𝜏 ∼ 𝑡 − 1) and 𝑡 in the 𝑛 − 1𝑡ℎ layer to the 𝑛𝑡ℎ layer
to predict the state at 𝑡 [6] [5]. However, these approaches per-
formed poorly due to the lack of consideration for intra-scale and
inter-scale correlations. Our module extends this concept to multi-
ple scales, transferring the temporal relevance of all scales in the
𝑛 − 1𝑡ℎ layer to the current scale in the 𝑛𝑡ℎ layer for regression.
For scale 𝜅, similarities between spatial states at 𝑡 and 𝑡 − 𝑖 in the
𝑛 − 1𝑡ℎ layer is calculated as guidance on regression of temporal
states, formulating as

𝑞𝜅𝑖 =
∑︁

(𝑥,𝑦) [𝑆
𝑛−1,𝜅
𝑡−𝑖 ⊙ (𝑊𝑎 ∗ 𝑆𝑛−1,𝜅𝑡 )], (12)

𝑇
𝑛,𝜅
𝑟𝑒𝑔 =

∑︁𝜏

𝑖=1
𝑇
𝑛,𝑘
𝑡−𝑖 ·

exp(𝑞𝜅
𝑖
)∑𝜏

𝑗=1 exp(𝑞𝜅𝑗 )
, (13)

where 𝑞𝜅
𝑖
is the similarity score and 𝑇𝑛,𝜅𝑟𝑒𝑔 denotes the regression

result at scale 𝜅 in the 𝑛𝑡ℎ layer, which is regarded as a long-term
regression for temporal state at moment 𝑡 .

Multi-scale Aggregation Module. The major challenge ad-
dressed by this module is how to adaptively aggregate long-term
regressions 𝑇𝑛,{1:𝐾 }

𝑟𝑒𝑔 corresponding to various scales and combine
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Figure 5: The spike processing pipeline with MSTAU and the detailed structure of MSTAU and its sub-modules. By introducing inter-scale
correlations to achieve efficient aggregation of features at different scales, MSTAU can propagate spatial and temporal information to other
units, ultimately achieving high-precision prediction. Zoom for better visibility.

them with momentary state 𝑇𝑛,𝑘
𝑡−1 to obtain the most accurate es-

timation of the temporal state. As for long-term aggregation, we
transfer the correlation between all scales and the current scale
from spatial states to temporal ones. Attention scores within scales
𝑟𝑘{1:𝐾 } are generated according to pixel-wise similarity, which then

serve as navigation for fusion of 𝑇𝑛,𝑘{𝑡−𝜏 :𝑡−𝑖 } , formulating as

𝑟𝑘𝜅 =
∑︁

(𝑥,𝑦) [𝑆
𝑛−1,𝜅
𝑡 ⊙ (𝑊 ′

𝑎 ∗ 𝑆𝑛−1,𝑘𝑡 )], (14)

𝑇𝑛𝑎𝑔𝑔 =
∑︁𝐾

𝜅=1
𝑇
𝑛,𝜅
𝑟𝑒𝑔 · exp(𝑟𝑘𝜅 )∑𝐾

𝜅=1 exp(𝑟𝑘𝜅 )
, (15)

where 𝑇𝑛𝑎𝑔𝑔 is respected as the comprehensive long-term aggrega-
tion for temporal state. As for long and short-term combination,
𝑇
𝑛,𝑘
𝑡−1 is utilized for providing momentary information and maintain-
ing content consistency. We employ an adaptive gating mechanism
that generates fusion ratio, based on which to fuse trending and
momentary information, formulating as

𝑢𝑓 = 𝑈𝐹 (𝑇𝑛,𝑘𝑡−1) = 𝜎 (𝑊𝑓 ∗𝑇𝑛,𝑘𝑡−1), (16)

𝑇𝑒𝑠𝑡 = 𝑢𝑓 ⊙ 𝑇𝑛,𝑘
𝑡−1 + (1 − 𝑢𝑓 ) ⊙ 𝑇𝑛𝑎𝑔𝑔, (17)

where 𝑢𝑓 represents the ratio generated from fusion gate𝑈𝐹 and
𝑇𝑒𝑠𝑡 denotes the estimated temporal state.

Spatio-Temporal InjectionModule. During information prop-
agation, spatio-temporal states should be processed with injection
bidirectionally to ensure the consistency. Drawing inspiration from
the dual-gate mechanism, two gates 𝑈𝑆 and 𝑈𝑇 are employed to

generate injection ratios respectively, guiding the bi-directional
interaction of spatio-temporal information. As shown in Fig. 5(c),
the temporal and spatial injection sub-modules are formulated as

𝑢𝑠 = 𝑈𝑆 (𝑆𝑛−1,𝑘𝑡 ) = 𝜎 (𝑊𝑠 ∗ 𝑆𝑛−1,𝑘𝑡 ), (18)

𝑆
𝑛,𝑘
𝑡 = 𝑢𝑠 ⊙ 𝑆𝑛−1,𝑘𝑡 + (1 − 𝑢𝑠 ) ⊙ 𝑇𝑒𝑠𝑡 , (19)

𝑢𝑡 = 𝑈𝑇 (𝑇𝑒𝑠𝑡 ) = 𝜎 (𝑊𝑡 ∗𝑇𝑒𝑠𝑡 ), (20)

𝑇
𝑛,𝑘
𝑡 = 𝑢𝑡 ⊙ 𝑇𝑒𝑠𝑡 + (1 − 𝑢𝑡 ) ⊙ 𝑆𝑛−1,𝑘𝑡 , (21)

where 𝑢𝑠 and 𝑢𝑡 are ratios generated from 𝑈𝑆 and 𝑈𝑇 , guiding
the injection of information form temporal to spatial domain and
its reversal. This constrains the output to maintain consistency
between two dimension.

4 EXPERIMENTAL RESULTS
4.1 Experimental Settings
We select 𝐾 = 4 MTFs in ICP methods with 𝑇𝑅𝐹 = (7, 9, 11, 13).
MSTAUs are stacked with 𝑁 = 4 layers, each of which takes 𝜏 = 5
historical states as observations. We consider scene reconstruc-
tion and object classification as representatives of spike-based
visual applications at distinct semantic levels. The former is val-
idated on S-VIMEO dataset [9], while the latter is evaluated on
S-MNIST, S-CIFAR, and S-CALTECH datasets [41]. For performance
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Predicted
Sequence

Processing
Method

t+1 t+3 t+5 t+10

{𝐹𝑡 }

PredRNN w/o ICP 8.31 11.74 14.82 18.05
MAU w/o ICP 7.70 10.97 14.03 16.78
PredRNN w/ ICP 7.56 9.97 12.10 16.37
MAU w/ ICP 6.89 9.29 11.61 15.99
MSTAU 6.26 8.61 11.04 15.34

{𝑓 1𝑡 }
PredRNN w/ ICP 6.59 9.61 12.18 16.62
MAU w/ ICP 6.11 8.62 10.63 14.66
MSTAU 6.03 8.47 10.22 13.98

{𝑓 2𝑡 }
PredRNN w/ ICP 4.32 6.51 7.55 9.17
MAU w/ ICP 4.04 5.56 6.94 8.71
MSTAU 3.96 5.34 6.59 8.10

{𝑓 3𝑡 }
PredRNN w/ ICP 2.71 4.24 5.71 6.65
MAU w/ ICP 2.57 2.94 5.10 6.16
MSTAU 2.47 2.77 4.80 5.67

{𝑓 4𝑡 }
PredRNN w/ ICP 1.12 1.85 2.51 5.12
MAU w/ ICP 1.01 1.71 2.22 4.10
MSTAU 1.01 1.63 2.08 3.83

Table 2: Comparison of prediction error measured by MSE (in units
of 1e-4) for various spike processing methods on the composed rep-
resentation and features at different scales. Results demonstrate
that introducing intra-scale correlation and further incorporating
inter-scale one both lead to significant enhancements in precision.

Processing
Method

PredRNN [30] MAU [6]
MSTAU

w/o ICP w/ ICP w/o ICP w/ ICP
t+1 32.67 32.93 33.36 33.73 34.42
t+3 30.86 31.27 31.74 32.51 33.60
t+5 29.02 29.82 29.86 31.04 32.18
t+10 25.24 26.20 27.44 28.86 30.01

Table 3: Comparison of PSNR performance for various spike pro-
cessingmethods in scene reconstruction tasks. Results show that per-
formance is greatly improved through incorporating ICPmethod for
different backbones. MSTAU further outperforms other approaches
by introducing multi-scale aggregation.

comparison, we utilize two state-of-the-art (SOTA) temporal pre-
diction models, PredRNN[30] and MAU[6], as backbones to assess
the reconstruction precision and classification accuracy. 2

4.2 Reconstruction Oriented Prediction
Effectiveness of intra-scale correlation. Through compar-
ing the predictive accuracy with and without incorporating ICP
method, we validate the effectiveness of intra-scale correlation in
guiding spike prediction. Without ICP method, the predictor fore-
casts representations for future moments directly, corresponding
to Eq. 1, 2 and 3. In contrast, with ICP method composed of Eq. 8,
10, 11 and 3, the predictor forecasts multi-scale features, which

2Details are illustrated in the supplementary material.
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Figure 6: Visual comparison between scene reconstructed through
feature-domain approaches with and without ICP method. Zoom
for better visibility.

are then composed as visual representations to support intelligent
applications. As shown in Table. 2, the prediction error measured
by MSE on representation {𝐹𝑡 } decreases by 7.3% for PredRNN and
8.9% for MAU when the ICP method is applied. This improvement
is attributed to the ICP method’s capability to effectively utilize
intra-scale correlations to predict spatio-temporal contents with
high fidelity. The enhanced accuracy is evident when comparing
the prediction errors of {𝑓 {1:4}𝑡 } and {𝐹𝑡 } in Table. 2, demonstrat-
ing the more complex spatio-temporal characteristics of 𝐹𝑡 make it
more challenging to predict accurately compared to 𝑓 {1:4}𝑡 , which
is consistent with the conclusion in Fig. 3(b). ICP method, by com-
posing accurate 𝑓 {1:4}𝑡 as 𝐹𝑡 , simplifies a complex prediction into
multiple sub-predictions and reaches high precision through the
strong relevance within each scale.

Precise scenes can be reconstructed subsequently from this ac-
curate predicted representation, with statistical results shown in
Table. 3, demonstrating the efficacy of intra-scale correlation for
visual perception. Compared to the absence of ICP method, em-
ploying ICP method leads to an average increase of 2.7% in the
PSNR, with the gain growing as the prediction time interval ex-
tends (0.32dB, 0.59dB, 0.99dB, 1.19dB). This suggests that ICP can
exploit the stronger temporal continuity of features at different
scales, resulting in more significant performance enhancements for
long-term predictions of scene sequences. We also visualize recon-
structed scenes based on predicted features through ICP method, as
shown in Fig.6. Without ICP method, local low-intensity features
are often misinterpreted as noise, causing uncontrolled blurring in
the reconstructed content. Moreover, these noisy features tend to
propagate over time, leading to accumulation of blurring and other
artifacts that significantly deteriorate scene quality. On the other
hand, implementing the ICP method stabilizes the predicted fea-
tures, preventing high-frequency information from being overshad-
owed by low-frequency noise. Consequently, scenes reconstructed
with ICP exhibit distinct edges and rich texture details.

Effectiveness of inter-scale correlation. We demonstrate
the significant enhancement in perception and prediction achieved
through further incorporation of inter-scale correlations by com-
paring MSTAU with other ICP methods. According to Table. 2,
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Figure 7: Visual comparison between scene reconstructed through
approaches with ICP method and MSTAU. Zoom for better visibility.

the MSTAU improves accuracy of each feature sequence by 4.9%,
7.5%, 8.6% and 7.0% compared to ICP methods, which is consistent
with the PLCC in Table. 1 approximately. Feature corresponding
to TRF=11 exhibit the strongest correlation with others and guid-
ing it with other features can therefore maximize the prediction
accuracy of 𝑓 3𝑡 , while 𝑓

1
𝑡 corresponding to TRF=7 demonstrates

opposite characteristics. This indicates that content with stronger
correlations to features at other scales can be guided by inter-scale
information more effectively, resulting in more precise predictions.
Moreover, the accuracy of predicted representation 𝐹𝑡 can also
improved with assistance of MSTAU, as illustrating in Table. 2.
Compared to ICP approaches only considering intra-scale correla-
tions, MSTAU enhances the precision of composed representations
by an average of over 8.9%. This improvement exhibits a roughly
decreasing trend with the increase in prediction temporal interval
(13.2%, 10.5%, 6.8%, 5.2%). Although features are correlated, the
spatio-temporal characteristics corresponding to different TRFs are
distinct essentially. As a result, the correlation between contents
within different features significantly decreases over time, and the
temporal estimation generated with the help of prior knowledge
shows noticeable distortion. These factors collectively contribute
to the decrease in accuracy gain.

For visualization, we showcase the predictive reconstruction
scenes of MSTAU in Fig. 7. MSTAU outperforms methods with no
inter-scale correlation by predicting and generating higher quality
scenes in short-term scenarios (e.g. the spoon with more distinct
edges and the flour with a grainier texture). However, we note that
as the prediction interval extends, the quality of the reconstructed
scenes deteriorates, characterized by overly high local contrast and
a noticeable light-dark grid effect (Fig. 7(d)). This decline in quality
stems from the decreasing correlation of features across different
scales, resulting in content inconsistencies and misalignments. The
reliance on the pixel-wise L2-norm as the only constraint causes
the model to overlook the rationality of local textures and their
correlation with adjacent frames during processing. Future work
can address this issue by incorporating inter-frame constraints.

4.3 Classification Oriented Prediction
Effectiveness of inter-scale correlation. Compared to ICP
approaches, MSTAU achieves an improvement in classification ac-
curacy of 0.70%, 2.20%, and 1.47% for the S-MNIST, S-CIFAR and

Dataset Processing Method t+1 t+3 t+5 t+10

S-MNIST
PredRNN w/ ICP 98.64 97.85 97.02 94.40
MAU w/ ICP 98.86 98.08 97.18 94.96
MSTAU 99.13 98.77 98.06 95.92

S-CIFAR
PredRNN w/ ICP 67.10 64.97 63.24 57.89
MAU w/ ICP 67.55 65.68 63.95 58.07
MSTAU 68.02 67.43 66.28 62.30

S-CALTECH
PredRNN w/ ICP 76.45 75.32 73.97 69.01
MAU w/ ICP 76.71 75.77 74.60 69.85
MSTAU 77.25 76.84 75.76 72.97

Table 4: Comparison of Top-1 classification accuracy for various
spike processing methods across different datasets. Results indi-
cate that incorporating intra-scale and inter-scale correlations can
achieve more precise categorization, and the precision remains sta-
ble over longer prediction intervals.

t+1 t+5 t+10

Figure 8: Visualization of T-SNE on S-MNIST through MSTAU. Re-
sults indicate that samples of the same category cluster closely de-
spite of large prediction intervals, making the classification precise.

(a) Reconstructed scene and classification

confidence via MAU w/ ICP

t+1

t+5

t+10

92.45

95.12

96.75

93.72

95.93

96.96

(b) Reconstructed scene and

classification confidence via MSTAU

Figure 9: Reconstructed scenes and classification confidence
through MSTAU and MAU with ICP on S-MNIST. Results demon-
strate that compact representations can simultaneously accomplish
multiple visual applications with different semantic levels.

S-CALTECH respectively as shown in Table. 4. This demonstrates
that introducing inter-scale correlation for prediction can enhance
the semantic fidelity of visual representations, providing support
for spike-based intelligent applications in perception and under-
standing. Additionally, we visualize the last layer of latent features
from S-MNIST via t-Distributed Stochastic Neighbor Embedding
(t-SNE) [29], as shown in Fig. 8. Results indicate that predicted
labels for samples within the same category remain tightly clus-
tered in the high-dimensional space, thereby ensuring high fidelity
in classification accuracy. However, the degree of congregation
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Processing Method t+1 t+3 t+5 t+10
PredRNN [30] 31.72 29.23 27.42 23.28
MAU [6] 32.27 30.02 28.16 25.79

Table 5: PSNR performance for reconstruction and prediction in
scene-domain. Results indicate that pixel-wise distortion accumulate
over time, leading to extremely poor predictions.

slightly decreases over time, leading to a small number of samples
being misclassified and a slight reduction in classification precision
essentially.

Versatility formultiple tasks. We further validate the versa-
tility and robustness of our method for multiple intelligent tasks on
S-MNIST. Fig. 9 shows the results processed by the reconstruction
and classification network respectively from the predicted visual
representation 𝐹𝑡 . The proposed ICP method and MSTAU can re-
construct precise scenes while ensuring accurate classification with
high confidence. Moreover, we note that although the distortion
in reconstructed scenes becomes more noticeable as the prediction
interval extends, the classification accuracy consistently remains
high. This indicates that for visual tasks at different semantic levels,
performance exhibits varying levels of temporal decay with the
prediction interval, suggesting that our method can be paired with
different analysis models to achieve diverse intelligent applications
with varying granularity and precision requirements.

4.4 Ablation Study
Effectiveness of feature-domain processing. We take scene
reconstruction to demonstrate the rationality of feature-domain pro-
cessing compared to that in scene-domain. Comparison of results in
Table. 3 and 5 show that feature-domain methods outperform scene-
domain ones by 8.4% and 6.4% for PredRNN and MAU respectively.
The average PSNR gain of the reconstructed scenes is positively
proportional to the prediction interval (1.0dB, 1.7dB, 1.7dB, 1.8dB),
indicating that visual features have better temporal coherence and
contain more abundant spatio-temporal information to ensure ef-
ficient prediction and authentic reconstruction compared to re-
constructed scenes. As shown in Fig. 1, results generated through
feature-domain processing broadly eliminate content-irrelevant
artifacts and blurring, while retain high-frequency texture details
in the meanwhile . This indicates that visual features contain com-
prehensive information of various semantic granularities, which is
utilized for reconstruction and prediction with higher accuracy.

Effectiveness of multi-scale aggregation. We verify the
rationality of proposed multi-scale aggregation through ablation
experiments. In the aggregation process described as Eq.14 and 15,
the inter-scale correlations between spatial states are utilized to
obtain the weight 𝑟 𝑗

𝑖
, which controls the aggregation of temporal

state from scale 𝑖 to 𝑗 . The weight matrix [𝑟 𝑗
𝑖
] is visualized in

Fig.10. The distribution of [𝑟 𝑗
𝑖
] resembles the PLCC distribution

in Table. 1, suggesting that features with stronger correlations
are more effectively guided and aggregated through information
interaction, leading to enhanced prediction accuracy.

Additionally, we further confirm the impact of aggregation pro-
cess on the spatial and temporal states of the output, as shown in
Fig. 11. 𝑢𝑓 , 𝑢𝑠 , and 𝑢𝑡 correspond to Eq. 16, 18 and 20 respectively.

(a) Aggregation Weight at 2𝑛𝑑 layer (b) Aggregation Weight at 4𝑡ℎ layer

Figure 10: Visualization of the aggregation weight matrices for each
layer ofMSTAU. Results reveal that features with higher correlations
are more effectively guided and aggregated through information
interaction.

Ground 

Truth

𝒖𝒇

𝒖𝒔

𝒖𝒕

t+1 t+3 t+5 t+7 t+9 t+11

Figure 11: Visualization of the fusion and injection ratio within
MSTAU. Results indicate that as the estimations and aggregations
stabilize, the weights allocated to fusion and bidirectional injec-
tion gradually increase, demonstrating the effectiveness of spatio-
temporal aggregation.

The sequence of 𝑢𝑓 indicates that in the initial stage, the infor-
mation within 𝑇𝑛𝑎𝑡𝑡 is not yet accurate, so the aggregation module
obtain most content from𝑇𝑛,𝑘

𝑡−1. As time accumulates,𝑇𝑛𝑎𝑡𝑡 gradually
stabilizes. For stationary areas, the module tends to obtain infor-
mation from long-term estimates, while only whose with intense
motion aggregate momentary information. Similarly, sequences
of 𝑢𝑠 and 𝑢𝑡 indicate that 𝑇𝑎𝑔𝑔 obtained mainly from momentary
content has a significant deviation from 𝑆

𝑛−1,𝑘
𝑡 , making it difficult

to fuse and obtain spatio-temporal states with high accuracy. As
the aggregation quality improves over time, the fusion module can
gradually align 𝑆𝑛−1,𝑘𝑡 and 𝑇𝑎𝑔𝑔 on content, thereby jointly gener-
ating 𝑆𝑛,𝑘𝑡 and 𝑇𝑛,𝑘𝑡 with high precision. This provides support for
subsequent visual applications at various semantic granularities.

5 CONCLUSION
We propose an innovative spike processing method for visual per-
ception and temporal prediction utilizing compact spike represen-
tation with high versatility, providing a fresh perspective on spike
intelligence. Taking multi-scale correlation into consideration, our
method effectively models spatio-temporal information at different
scales, facilitating proactive decision-making in scenarios with di-
verse semantic complexities. Experimental results confirm that our
method significantly enhance predictive accuracy of spike percep-
tion, propelling the widespread adoption and application of spike
cameras and further contributing for a tech-harmonious world.
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