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1 QUANTITATIVE DERIVATIONS OF 𝑡𝜃
Neurons generate electrical signals in response to light stimuli and
transmit these signals by exchanging 𝑁𝑎+ and 𝐾+ ions inside and
outside the cell. We use the Leaky Integrate and Fire (LIF) model to
analyze the duration of luminance effects on photo-receptor cells.
Variables used in the derivation process and their meanings are
illustrated in Table. 1.

The neuro-dynamical differential equation of the LIFmodel [12] [4]
is formulated as

𝜈
d𝑉𝑡
𝑑𝑡

= −(𝑉𝑡 − 𝐸) + 𝛼𝑅𝐼 . (1)

We decouple the persistent light stimuli into a sequence of transient
luminance stimulus, each of which lasts for an extremely short time
and thus the luminance can be approximated as constant. For the
luminance stimulation defined as

𝐼 =

{
𝐼0, 0 < 𝑡 < 𝑡0,
0, 𝑒𝑙𝑠𝑒

, (2)

The entire process can be divided into two dependent procedures,
including the charging and the discharging process. which are the
charging during [0, 𝑡0) and the discharging during [𝑡0, 𝑡𝜃 ].

The charging process persists during [0, 𝑡0), in which the Eq. 1
can be specified as

𝜈
d𝑉𝑡
𝑑𝑡

= −(𝑉𝑡 − 𝐸) + 𝛼𝑅𝐼0 . (3)

By separating variables, Eq. 3 is redrafted as

𝜈
d𝑉𝑡

𝑉𝑡 − 𝐸 − 𝛼𝑅𝐼0
= −d𝑡 . (4)

Through integrating in temporal series and regarding 0 and 𝑡0 as
upper and lower bounds on the integral, it can be deduced from
Eq. 4 that

ln(𝑉𝑡 − 𝐸 − 𝛼𝑅𝐼0)
���𝑡0
0
= − 𝑡

𝜈

���𝑡0
0
,

ln 𝑉0 − 𝐸 − 𝛼𝑅𝐼0
−𝑅𝐼0

= − 𝑡0
𝜈
.

(5)

From the above, the membrane potential at the end of this process
can be derived as

𝑉0 = 𝐸 + 𝛼𝑅𝐼0 [1 − exp(− 𝑡0
𝜈
)] . (6)

Similarly, the discharging process persists during [𝑡0, 𝑡𝜃 ], in
which the Eq. 1 can be specified as

𝜈
d𝑉𝑡
𝑑𝑡

= −(𝑉𝑡 − 𝐸). (7)

By separating variables, Eq. 7 is redrafted as

𝜈
d𝑉𝑡

𝑉𝑡 − 𝐸
= −d𝑡 . (8)

Variables Meaning of Variables
𝜈 The time constant
𝑡 The current moment
𝑡0 The duration of luminance stimulation

𝑡𝜃
The maximum moment which stimulation
can affect

𝑉𝑡 The membrane potential at moment 𝑡
𝑉0 The membrane potential at moment 𝑡0
𝐸 The resting membrane potential

𝑉𝜃
The threshold potential that can distinguish
between electrical signals or disturbances

𝑅 The membrane resistance
𝐼𝑡 The luminance stimulation at moment 𝑡
𝐼0 The luminance intensity

𝑃0
The photons received during temporal
range 𝑡0 with luminance intensity 𝐼0

𝛼 The photovoltaic conversion efficiency

Table 1: Variables in derivation and correspondingmeanings.

Through integrating in temporal series and regarding 𝑡0 and 𝑡𝜃 as
upper and lower bounds on the integral, it can be deduced from
Eq. 4 that

ln(𝑉𝑡 − 𝐸)
���𝑡𝜃
𝑡0

= − 𝑡
𝜈

���𝑡𝜃
𝑡0
,

ln 𝑉𝜃 − 𝐸
𝑉0 − 𝐸

= − 𝑡𝜃 − 𝑡0
𝜈

.

(9)

Bringing in the results in Eq. 6, the membrane potential at the end
of this process can be derived as

𝑡𝜃 = 𝑡0 + 𝜈 ln
𝑉0 − 𝐸
𝑉𝜃 − 𝐸

= 𝑡0 + 𝜈 ln
𝛼𝑅𝐼0 [1 − exp(−𝑡0/𝜈)]

𝑉𝜃 − 𝐸 .

(10)

Since 𝑡0 is infinitesimal [5], Eq. 10 is approximated as

lim
𝑡0→0

𝑡𝜃 = lim
𝑡0→0

[𝑡0 + 𝜈 ln
𝛼𝑅𝐼0 [1 − exp(−𝑡0/𝜈)]

𝑉𝜃 − 𝐸 ]

= 𝜈 ln
𝛼𝑅𝐼0 [1 − lim𝑡0→0 exp(−𝑡0/𝜈)]

𝑉𝜃 − 𝐸

= 𝜈 ln 𝛼𝑅𝐼0𝑡0
(𝑉𝜃 − 𝐸)𝜈

= 𝜈 ln 𝛼𝑅𝑃0
(𝑉𝜃 − 𝐸)𝜈 .

(11)
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2 PLCC BETWEEN 𝑡𝜃 AND 𝜈

We numerically calculate Eq. 11 by approximation and further esti-
mate the PLCC between 𝑡𝜃 and 𝜈 to illustrate the strong correlation.

For neurons, the resting membrane potential is -70𝑚𝑉 with a
noisy disturbance of ±10𝑚𝑉 , and the membrane resistance is 10
𝑀Ω. For cone cells, with a surface area of approximately 1.77𝜇𝑚2,
the number of photons received per unit time per unit area is
approximately 2.75×1021/𝑠/𝑚2 under natural light conditions. Each
photon can generate about 5 electrons, and the charge of each
electron is approximately 1.6×10−19𝐶 . Above all, coefficients in
Eq. 11 are:

𝛼 = 8 × 10−19

𝑅 = 1 × 107

𝑃0 = 4.9 × 109

𝑉𝜃 = −6 × 10−2

𝐸 = −7 × 10−2

.

Thus Eq. 11 can be numerically redrafted as
𝑡𝜃 = 𝜈 ln(3.894/𝜈) . (12)

According to Eq. 12, PLCC [3] between 𝑡𝜃 and 𝜈 is calculated as
0.995.

3 VISUALIZATION OF SPIKE VISUAL
REPRESENTATION

Wevisualize the predicted visual representations through approaches
with andwithout the proposed ICPmethod, as shown in Fig. 1.With-
out ICP, local low-intensity features are mistaken for noise and
diffuse over time (Fig. 1(c)), while the establishment of ICP leads to
stable prediction results. In the meanwhile, ICP can reserve detailed
high-frequency information and rebuild more texture content, re-
sulting in less blurring and more defined edges. These all illustrate
that ICP can exploit the stronger temporal continuity of features at
different scales, resulting in more significant performance enhance-
ments for long-term predictions of scene sequences.

We further compare ICP-based approaches with MSTAU on qual-
ity of predicted visual representations, as demonstrating in Fig. 2.
MSTAU is observed to accurately predict visual features in short-
term prediction scenarios, including texture details and brightness
intensity. However, as time progresses, inconsistencies arise in lo-
cal brightness intensity compared to the ground truth (Fig. 2(d)).
Influenced by rapidly changing high-frequency components, low-
frequency information representing luminance is considered to
be significantly changing during temporal extension. This contra-
dicts the fact that low-frequency features change slowly, leading
to distortion in the brightness intensity of areas with intense mo-
tion. Future work can address this issue by utilizing different time
constant 𝜈 for various temporal scales.

4 COMPARISONWITH OTHER PREDICTION
METHODS ON SCENE RECONSTRUCTION

We compare the performance of the proposed MSTAU method with
video prediction methods in scene and feature domain for scene re-
construction task as illustrating in Table. 2. On one hand, there is ob-
vious distortion in reconstructed scene sequences, from which the

Processing Method t+1 t+3 t+5 t+10

Scene
Domain

ConvLSTM [6] 29.91 27.26 24.99 20.52
PredRNN [9] 31.72 29.23 27.42 23.28
PredRNN++ [10] 31.92 29.65 27.78 23.69
MIM [11] 32.15 29.90 28.04 24.07
E3D-LSTM [8] 32.20 29.95 28.10 24.93
MAU [2] 32.27 30.02 28.16 25.79
STAU [1] 33.41 31.10 29.41 27.83

Feature
Domain

ConvLSTM [6] 31.04 29.32 27.57 23.98
PredRNN [9] 32.67 30.86 29.02 25.24
PredRNN++ [10] 32.77 30.95 29.11 25.75
MIM [11] 32.98 31.15 29.30 26.18
E3D-LSTM [8] 33.24 31.40 29.53 26.68
MAU [2] 33.36 31.74 29.86 27.44
STAU [1] 34.02 32.52 30.75 28.37
MSTAU 34.43 33.60 32.18 30.01

Table 2: PSNR performance for reconstruction and prediction
through approaches in scene-domain and feature-domain.
Results indicate that the proposedMSTAU achievesmore pre-
cise predictions in feature-domain, leading to reconstructed
scenes with higher fidelity.

FLOPs (G) Params (M)
PredRNN [9] 64.29 210.57
MAU [2] 31.72 112.28
MSTAU 1.24 × 4 + 1.38 2.14 × 4 + 0.79

Table 3: Comparison on computational complexity between
previous predictive approaches and the proposed MSTAU
method.

results predicted directly through previous video prediction meth-
ods are unsatisfactory. On the other hand, the proposed MSTAU
method can finely perceive motion with assistance of intra-scale
and inter-scale correlations compared to video prediction methods,
further enabling the reconstruction of high-quality scenes. These
demonstrate the best performance in spike perception and predic-
tion, establishing an innovative perspective and a baseline for spike
visual intelligence.

5 COMPARISON ON COMPUTATIONAL
COMPLEXITY

We compare the computational complexity including floating point
operations (FLOPs) and parameters between previous predictive
approaches and the proposed MSTAU method. We downsample
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the spike signals for 8 times to increase the informative density,
while decreases the computational complexity in the meanwhile.
As shown in Table. 3, the MSTAU method outperforms other ap-
proaches on both metrics significantly, illustrating competitive
prospects for deployment on spike cameras. It’s vital to note that
the statistical results for MSTAU method consider both 4 units at
each temporal scale and the consequent compositor, formulated as
𝑆𝑖𝑛𝑔𝑙𝑒 𝑀𝑆𝑇𝐴𝑈 × 𝑆𝑐𝑎𝑙𝑒𝑠 +𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑜𝑟 .

6 CODE
The implementation of ICP method and MSTAU is illustrated in
the 𝑐𝑜𝑑𝑒.𝑝𝑦.
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Figure 1: Visualization for predicted spike visual representation through different approaches. Results indicate that incorporat-
ing intra-scale correlation can decrease the prediction error measured by MSE significantly.

t+1

t+5

t+10

t+3

(a) Ground Truth (b) PredRNN w/ ICP (c) MAU w/ ICP (d) MSTAU

15.31 14.62 14.12

7.738.098.91

34.21 30.63 27.09

18.2719.3220.64

Figure 2: Visualization for predicted spike visual representation through different approaches. Results indicate that incorporat-
ing inter-scale correlation can further decrease the prediction error measured by MSE significantly.
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