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1 QUANTITATIVE DERIVATIONS OF ¢y

Neurons generate electrical signals in response to light stimuli and
transmit these signals by exchanging Na* and K* ions inside and
outside the cell. We use the Leaky Integrate and Fire (LIF) model to
analyze the duration of luminance effects on photo-receptor cells.
Variables used in the derivation process and their meanings are
illustrated in Table. 1.
The neuro-dynamical differential equation of the LIF model [12] [4]

is formulated as

v% =—(V; —E) +aRI. (1)

We decouple the persistent light stimuli into a sequence of transient
luminance stimulus, each of which lasts for an extremely short time
and thus the luminance can be approximated as constant. For the
luminance stimulation defined as

I—{IO’ 0<t<ty,
0, else
The entire process can be divided into two dependent procedures,
including the charging and the discharging process. which are the
charging during [0, ty) and the discharging during [#o, tg]-

The charging process persists during [0, ), in which the Eq. 1
can be specified as

, @

dv;
v—L = —(V; = E) + aRl. 3)
dt
By separating variables, Eq. 3 is redrafted as
dv;
v—— L = _dr. (4)
Vi —E—aRly

Through integrating in temporal series and regarding 0 and ¢ as
upper and lower bounds on the integral, it can be deduced from

Eq. 4 that
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From the above, the membrane potential at the end of this process
can be derived as

In

Vo = E+ aRlp[1 —exp(—%o)]. ©)

Similarly, the discharging process persists during [fo, tg], in
which the Eq. 1 can be specified as

) @)

By separating variables, Eq. 7 is redrafted as

dv;

Vﬁ = —dt. 8)

Variables Meaning of Variables
v The time constant
t The current moment
to The duration of luminance stimulation
to The maximum moment which stimulation
can affect
Vi The membrane potential at moment ¢
Vo The membrane potential at moment #y
E The resting membrane potential
7 The threshold potential that can distinguish
between electrical signals or disturbances
R The membrane resistance
I; The luminance stimulation at moment ¢
Iy The luminance intensity
Py The photons received during temporal
range tp with luminance intensity Iy
a The photovoltaic conversion efficiency

Table 1: Variables in derivation and corresponding meanings.

Through integrating in temporal series and regarding ty and ty as
upper and lower bounds on the integral, it can be deduced from
Eq. 4 that
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Bringing in the results in Eq. 6, the membrane potential at the end
of this process can be derived as

Vo—E
tg=ty+vin
Vo —E 10
aRIp[1 - exp(—to/v)]
=ty+vin )
Vo —E
Since ty is infinitesimal [5], Eq. 10 is approximated as
RIp[1 - —t
lim tg = lim [t0+1/11’1a 0[ exp( O/V)]]
thy—0 to—0 VB _E
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2 PLCC BETWEEN tg AND v

We numerically calculate Eq. 11 by approximation and further esti-
mate the PLCC between ty and v to illustrate the strong correlation.

For neurons, the resting membrane potential is -70mV with a
noisy disturbance of +10mV, and the membrane resistance is 10
MQ. For cone cells, with a surface area of approximately 1.77um?,
the number of photons received per unit time per unit area is
approximately 2.75x102! /s/m? under natural light conditions. Each
photon can generate about 5 electrons, and the charge of each
electron is approximately 1.6x1071°C. Above all, coefficients in
Eq. 11 are:

a=8x10""

R=1x10’
Py =4.9x%10° .
Vop=—6x10"2
E=-7x10"%
Thus Eq. 11 can be numerically redrafted as
tg = vIn(3.894/v). (12)

According to Eq. 12, PLCC [3] between fy and v is calculated as
0.995.

3 VISUALIZATION OF SPIKE VISUAL
REPRESENTATION

We visualize the predicted visual representations through approaches
with and without the proposed ICP method, as shown in Fig. 1. With-
out ICP, local low-intensity features are mistaken for noise and

diffuse over time (Fig. 1(c)), while the establishment of ICP leads to

stable prediction results. In the meanwhile, ICP can reserve detailed

high-frequency information and rebuild more texture content, re-
sulting in less blurring and more defined edges. These all illustrate

that ICP can exploit the stronger temporal continuity of features at

different scales, resulting in more significant performance enhance-
ments for long-term predictions of scene sequences.

We further compare ICP-based approaches with MSTAU on qual-
ity of predicted visual representations, as demonstrating in Fig. 2.
MSTAU is observed to accurately predict visual features in short-
term prediction scenarios, including texture details and brightness
intensity. However, as time progresses, inconsistencies arise in lo-
cal brightness intensity compared to the ground truth (Fig. 2(d)).
Influenced by rapidly changing high-frequency components, low-
frequency information representing luminance is considered to
be significantly changing during temporal extension. This contra-
dicts the fact that low-frequency features change slowly, leading
to distortion in the brightness intensity of areas with intense mo-
tion. Future work can address this issue by utilizing different time
constant v for various temporal scales.

4 COMPARISON WITH OTHER PREDICTION
METHODS ON SCENE RECONSTRUCTION

We compare the performance of the proposed MSTAU method with
video prediction methods in scene and feature domain for scene re-
construction task as illustrating in Table. 2. On one hand, there is ob-
vious distortion in reconstructed scene sequences, from which the
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Processing Method t+1  t+3  t+5  t+10
ConvLSTM [6] 2991 27.26 2499 20.52
PredRNN [9] 31.72 29.23 27.42 23.28

Scene PredRNN++ [10] | 31.92 29.65 27.78 23.69

Domain MIM [11] 32.15 2990 28.04 24.07
E3D-LSTM [8] 32.20 29.95 28.10 24.93
MAU [2] 32.27 30.02 28.16 25.79
STAU [1] 3341 31.10 29.41 27.83
ConvLSTM [6] 31.04 29.32 27.57 23.98
PredRNN [9] 32.67 30.86 29.02 25.24
PredRNN++ [10] | 32.77 30.95 29.11 25.75

Feature MIM [11] 3298 31.15 29.30 26.18

Domain E3D-LSTM [8] |[33.24 31.40 2953 26.68
MAU [2] 3336 3174 29.86 27.44
STAU [1] 34.02 32.52 30.75 28.37
MSTAU 34.43 33.60 32.18 30.01

Table 2: PSNR performance for reconstruction and prediction
through approaches in scene-domain and feature-domain.
Results indicate that the proposed MSTAU achieves more pre-
cise predictions in feature-domain, leading to reconstructed
scenes with higher fidelity.

FLOPs (G) Params (M)
PredRNN [9]  64.29 210.57
MAU [2] 31.72 112.28
MSTAU 1.24 X 4 + 1.38 2.14 x4 +0.79

Table 3: Comparison on computational complexity between
previous predictive approaches and the proposed MSTAU
method.

results predicted directly through previous video prediction meth-
ods are unsatisfactory. On the other hand, the proposed MSTAU
method can finely perceive motion with assistance of intra-scale
and inter-scale correlations compared to video prediction methods,
further enabling the reconstruction of high-quality scenes. These
demonstrate the best performance in spike perception and predic-
tion, establishing an innovative perspective and a baseline for spike
visual intelligence.

5 COMPARISON ON COMPUTATIONAL
COMPLEXITY
We compare the computational complexity including floating point

operations (FLOPs) and parameters between previous predictive
approaches and the proposed MSTAU method. We downsample
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the spike signals for 8 times to increase the informative density,
while decreases the computational complexity in the meanwhile.
As shown in Table. 3, the MSTAU method outperforms other ap-
proaches on both metrics significantly, illustrating competitive
prospects for deployment on spike cameras. It’s vital to note that
the statistical results for MSTAU method consider both 4 units at
each temporal scale and the consequent compositor, formulated as
Single MSTAU X Scales + Compositor.

6 CODE

The implementation of ICP method and MSTAU is illustrated in
the code.py.
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Figure 1: Visualization for predicted spike visual representation through different approaches. Results indicate that incorporat-
ing intra-scale correlation can decrease the prediction error measured by MSE significantly.
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(a) Ground Truth (b) PredRNN w/ ICP (c) MAU w/ ICP (d) MSTAU

Figure 2: Visualization for predicted spike visual representation through different approaches. Results indicate that incorporat-
ing inter-scale correlation can further decrease the prediction error measured by MSE significantly.
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