
Appendices

A Phase Function Details

Our phase function for participating media (Sec. 4.1) is the Henyey-Greenstein (HG) function [1]
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3/2

, (1)

where θ is the angle between the outgoing direction ωo and the incident direction ωi. For the notations
of directions, we use the convention that both the incident and outgoing rays point away from a
scattering location. g is called the asymmetry parameter that is in (−1, 1). A positive g value is for
forward scattering, a negative g value is for backward scattering, and the zero value is for isotropic
scattering.

Same as in [2, 3], our BRDF function for the experiment on solid objects (Sec. 5.2) is the analyt-
ical model [4] which combines a specular component using the ggx distribution [5] and a diffuse
component.

B Spherical Harmonics Details

In Sec. 4.1 of the main paper, we propose to represent the incident radiance due to multiple scattering
with spherical harmonics. Spherical Harmonics (SH) are orthonormal basis defined on complex
numbers over the unit sphere. Since our radiance function is defined in the real number domain, our
SH basis functions Y m

l (ωi) (0 ≤ l ≤ lmax,−l ≤ m ≤ l) in Eq. 6 (main paper) are real spherical
harmonic functions

Y m
l (θi, ϕi) =


√
2Km

l cos(mϕi)P
m
l (cos θi) m > 0

Km
l Pm

l (cos θi) m = 0√
2Km

l sin(−mϕi)P
−m
l (cos θi) m < 0,

(2)

where (θi, ϕi) are the spherical coordinates of the direction ωi that is in the Cartesian coordinate

system, Km
l =

√
(1+2l)

4π
(l−|m|)!
(l+|m|)! is a normalization factor, and Pm

l are the associated Legendre

polynomials. Then, the incident radiance function L̃(ωi) can be computed using the SH basis

L̃(ωi) = F

(
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l=0

l∑
m=−l

cml Y m
l (ωi)

)
, (3)

where cml ∈ R3 are SH coefficients, lmax is the maximum SH band, and F(x) = max(0, x) ensures
non-negative incident radiance.

In each training iteration, we sample K = 64 random incident directions {ωi}Ki=1 and evaluate the
Y m
l (ωi). To reduce the computational cost, we reuse these incident directions and the evaluated

Y m
l (ωi) for all point samples along the primary rays of this batch.

C Additional Implementation Details of Our Method

Training details. We end-to-end train our model to learn a separate neural representation of each
scene. In each training iteration, we randomly draw a batch of 1200 primary rays across all training
views. Our visibility network is trained to match the learned scene geometry by the property network,
so it is optimized according to the visibility values computed from the volume density, without
requiring ground-truth visibility. We cut off the gradient from the render loss to the visibility network.
Meanwhile, we cut off the gradient from the visibility loss to the property network so that it does not
degrade its learning of the volume density.

Inference details. Our inference uses the same setting as the training. We draw 64 point samples
along each camera ray to query our model. The number of incident directions for computing indirect
illumination is 64. We set the number of shadow rays to 1 for the point light, whereas we use 32
shadow rays for the environment lighting.
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D Implementation details of the two baselines

For our comparisons, we implemented the Neural Reflectance Field [2] and NeRV [3] as our baselines.
Since they were designed for scenes with solid objects, we adapt them to cope with participating
media.

Our implementation of the Neural Reflectance Field [2] baseline uses the same neural network
architecture and positional encoding as in the original paper. Specifically, we implement the dual-
network design with a coarse network and a fine network. Each neural network is an MLP consisting
of 14 fully-connected ReLU layers with 256 neurons per layer. Also, we apply frequency-based
positional encoding to transform the input 3D coordinates with a maximum frequency 210. Different
from the eight-channel output in the original paper, we have a four-channel output consisting of a
1-D volume density and a 3-D scattering albedo. Along each ray, we draw 64 stratifed point samples
for the coarse network and 128 point samples for the fine network.

In our implementation of the NeRV [3] baseline, we utilize an MLP with 8 fully-connected ReLU
layers to compute the physical properties. Each layer has 256 neurons. In addition, we employ a
visibility MLP [3] to compute a 1-D visibility and a 1-D expected termination depth. The visibiliy
MLP firstly processes the encoded coordinates using 8 fully-connected ReLU layers with 256 neurons
per layer to get an 8-D output. The output, concatenated with the encoded directions, is further
processed by 4 fully-connected ReLU layers with 128 neurons per layer. The maximum positional
encoding frequencies for 3D coordinates and directions are 27 and 24, respectively. Along each
camera ray, we take 64 stratified samples, same as in our method. We trace one shadow ray for the
point light source and 32 shadow rays for the environment lighting. For the “point” illumination, we
uniformly take 128 random directions for the first indirect bounces at the termination depth along a
ray. For the “env + point” illumination, we set the number of first indirect bounces to 32.

E Additional images for the spherical harmonic band ablation

In the ablation study of the maximum spherical harmonic band (Sec. 5.3), we show the results
of SH-1, SH-5, and SH-9. We present the full comparison with SH-3 and SH-5 in Fig. 1. The
quantitative metrics are listed in the right table of Fig. 9 (Sec. 5.3 in the main paper). Note that SH-5
achieves the qualitative result that is similar to SH-7 and SH-9, but SH-5 gives higher numerical
performance than others (Fig. 1).

Figure 1: Qualitative comparisons of different settings of the maximum spherical harmonic band
from SH-1 to SH-9. “w/o SH” denotes without using spherical harmonics and “GT” denotes the
ground truth.

F Additional quantitative results for participating media scenes

F.1 Scenes trained on the “point”

Table 1 presents additional numerical results for the single Bunny and Buddha scenes when using the
“point” training illumination. Each test view has a new point light. The tabulated values are the mean
values over images of the test set. Our approach outperforms the two baselines quantitatively.
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Table 1: Quantitative comparisons on the test data. Image qualities are measured with PSNR (↑),
SSIM (↑) and ELPIPS (↓) [6]. ELPIPS values have a scale of ×10−2.

Point Bunny Buddha

Method PSNR SSIM ELPIPS PSNR SSIM ELPIPS

Bi et al. 22.46 0.933 0.720 23.62 0.951 0.518
NeRV 24.57 0.951 0.627 25.47 0.959 0.432
Ours 33.49 0.982 0.209 32.87 0.974 0.154

F.2 Scenes trained on the “env + point”

Accordingly, Table 2 presents quantitative results for the Bunny and the Buddha scenes when they are
trained with the “env + point” illumination. Each test view has a single novel point light. Our method
numerically performs better than the baselines.

Table 2: Quantitative comparisons on the Bunny and the Buddha scene when they are trained with
the “env + point” illumination. The PSNR (↑), SSIM (↑) and ELPIPS (↓) [6] values are averaged
over all images of a test set. ELPIPS values have a scale of ×10−2.

Env+Point Bunny Buddha

Method PSNR SSIM ELPIPS PSNR SSIM ELPIPS

Bi et al. 22.82 0.935 0.709 24.20 0.956 0.466
NeRV 25.24 0.959 0.597 27.36 0.968 0.345
Ours 32.93 0.980 0.293 32.74 0.976 0.204

G Quantitative results for scenes of solid objects

In Table 3, we show the quantitative results on the Dragon scene and the Armadillo scene that contain
glossy solid objects. Bi’s method and the NeRV method use the parameter settings as described in
Appendix D. Our method retains the same parameter settings as those for the participating media
scenes. “Ours + BRDF” is a variant of our method that uses a BRDF function as the scattering
function. We experimentally set its maximum spherical harmonic band to 1 and set the highest
positional encoding frequency to 27. Our method achieves higher quantitative metrics compared to
the baselines and the variant.

Figure 8 of the main paper shows a comparison on one test view of the Dragon scene. Bi’s method
recovers the highlights on surfaces, but it produces an overexposed appearance and leads to faint
shadows. Our method produces a smooth appearance and properly cast the shadow according to the
novel lighting.

Table 3: Quantitative comparisons on two scenes with glossy solid objects. The scenes are trained
with the “point” illumination and tested under novel lighting. The PSNR (↑), SSIM (↑) and ELPIPS
(↓) [6] are the averaged value over a test set. ELPIPS values have a scale of ×10−2.

Dragon Armadillo

Method PSNR SSIM ELPIPS PSNR SSIM ELPIPS

Bi et al. 19.60 0.897 1.358 19.19 0.897 1.243
NeRV 26.60 0.917 0.902 25.32 0.893 1.034
Ours + BRDF 28.32 0.931 0.692 26.46 0.917 0.847
Ours 28.50 0.942 0.564 26.60 0.924 0.753

3



GT
O
ur
s

R3 R5 R7 R10 L400 L800 L1200 L1600

Figure 2: Qualitative comparisons of generalization on light location and light intensity.

Bunny Light distance (m)

3 5 7 10

PSNR 31.39 29.87 23.14 16.96
SSIM 0.970 0.965 0.922 0.865
ELPIPS 0.359 0.388 0.923 1.740

Buddha Light intensity

400 800 1200 1600

PSNR 32.82 33.04 31.91 28.47
SSIM 0.982 0.984 0.981 0.974
ELPIPS 0.204 0.195 0.219 0.235

Figure 3: Quantitative results for investigating the generalization on the light locations and light
intensities. ELPIPS metrics have a scale of 10−2.

H Generalization quality

Generalization quality for light distance. We used the Bunny scene in this experiment. During
training, the point light’s distance to the center of the bunny is stratified sampled from the range (3, 5).
We then build four test sets, each with 20 views; we set the point light’s distance for the test sets as 3,
5, 7, and 10, individually. The light intensity is set to 600. We run the trained neural network on each
test set. The image results are presented on the left of Fig. 2 and the numerical performance is shown
in the left table of Fig. 3. The trained neural network performs relatively well when the test point
light’s distance is close to those in training, and the numerical performance gradually drops when the
test point light moves away from the training manifold.

Generalization quality for light intensity. We used the Buddha scene in this experiment. The
training intensity values were stratified sampled from 50 to 900. We generate four test sets with the
same 20 camera views. The point light is put at a distance 4 for all test sets. Also, we set the test
light intensity as 400, 800, 1200, and 1600, respectively. Same as before, we run the trained neural
network on each test set. The graphical comparisons and numerical metrics are shown on the right of
Fig. 2 and Fig. 3. We observed that the trained neural network achieves high numerical performance
when the test light intensity is within the range of the training intensity. For testing intensity outside
of the training range, the numerical performance decreases.
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