A Code

We have released our code at https://github.com/niniack/koopman_hybrid.

B Yin-Yang MLP Training Details

Dataset

The Yin-Yang dataset [Kriener et al., 2022] is a two-dimensional, publicly available classification
task consisting of three categories: “Yin", “Yang", and “Dot", allowing for easy visualization of the
model’s decision boundary. To begin with a problem which would prove straightforward for a neural
network, we removed the “Dot" class. Hence, in the modified dataset, each point in the dataset falls
in either one of the two sides in the*Yin-Yang” symbol, and we leave the dots on both sides of the
symbol empty.

Scaling and Embedding

Each time, before layer replacement, we insert 10 additional Linear+ReL U layers and train for 200
epochs to scale the network. We generate a trajectory by collecting the scaled network’s activations
as it runs inference.

Figure 6 provides an example of a trajectory generated by a layer in a trained network and its scaled
variant, where we note that the start and end states align between both networks. In addition, the final
values of states S7,8 (second column) are an augmented value set to —1. Here, we are scaling an
8 x 6 Linear + ReLU layer, hence the augmentation affects the last 2 states. The process generates a
matrix D € R®*12 where the number of rows is determined by the number of states and the number
of columns is determined by the number of scaling layers + 2. Repeating this process allows us to
take advantage of more data, in turn producing a better fit DMD model. For this layer, if we use r
trajectories, we obtain the data matrix D = [Dy Dy - -+ D,_1] € R8*127,

Architecture and Training

Table 1 displays the architecture for the original MLP used to train on the Yin-Yang dataset. The
MLP contains three hidden layers (IDs 1-3).

ID Type Input Dim Output Dim
0 Linear + ReLU 2 8
1 Linear + ReLU 8 6
2 Linear + ReLU 6 4
3 Linear + ReLU 4 3
4 Linear 3 2

Table 1: Architecture of the multi-layer perceptron (MLP) model for binary classification on the
Yin-Yang dataset.

We trained the original classifier on a single NVIDIA RTX 3080 using PyTorch for 5000 epochs to
an accuracy of 98.4%, using the Adam with decoupled weight decay (AdamW) optimizer. We used a
learning rate of 5e—3, 51 = 0.9, B2 = 0.999, and weight decay of 1le—2. We train on 2000 randomly
generated samples from the dataset, with a seed of 42 and a batch size of 1000 samples.

Hyperparameter Tuning and Scaling

To scale a hidden layer, we insert 10 additional Linear+ReLU layers directly before the layer we
are interested in replacing. Before training the new layers, we searched for a learning rate and the
AdamW betas, using Ray Tune (v2.34.0). Table 2 presents the search space.

We conducted this search for each hidden layer. Table 3 presents the final hyperparameters, along
with the accuracy each scaled model achieved on the dataset.

11

State Trajectories

1/\/\/\

o -

o n-

;
5]

>
-

State Values
o

I

0 -1
1
0
0 -1
N"l«”)b“)b’\‘b% N’l«”)b\‘ob’\‘b%\p\;\,\}
Steps
Original —— Scaled

Figure 6: A sample trajectory with 8 states (S1-8) from an original (orange) and scaled (greened)
8 x 6 Linear + ReLU layer in an MLP trained on the Yin-Yang dataset. States S7,8 are augmented
with —1 on the output to allow for a trajectory of system states with uniform dimensionality.

Hyperparameter Search Space
Learning rate QLogUniform(le—3, 5e—3, le—3)
51 QLogUniform(0.2,0.9, le—1)
Do QLogUniform(0.5,0.99, 1le—2)
Weight decay le—3
Batch size 512

Table 2: Hyperparameter search space for the Yin-Yang scaled MLPs.

ID LR [Values 6Decay Batch ’(I;;‘}S)t Acc.
: 98.89
_2 2e-3 [0.8,0.8] le-4 512 9883
> 0889

Table 3: Final hyperparameters and accuracy for scaled models trained on the Yin-Yang dataset,
where the original model achieves an accuracy of 98.88%.

C MNIST MLP Training Details

Dataset

We also conduct experiments with the MNIST digits dataset [Lecun et al., 1998], which is a 10-way
digit classification task containing 60, 000 training samples and 10, 000 test samples.

Scaling and Embedding.

We scale with 10 Linear+ReLU layers. With the original layers frozen, the new layers are trained on
the MNIST training set using the AdamW optimizer (see Appendix for a discussion on training and
hyperparameters). As before, we build trajectories by collecting the network’s activations as it runs

inference. For example, if we analyze the 32 x 16 Linear + ReLU layer, the augmentation affects the
last 16 states and the process generates a matrix D € R32%12_If we repeat the process for r samples,
we arrive at a data matrix D = [Dg D - -+ D,._1] € R32*!2"_For this network, we scale and replace
all three hidden layers.

Architecture and Training

Table 4 shows the architecture for the MLP, with three hidden layers, used to train on the MNIST
dataset.

ID Type Input Dim Output Dim
0 Linear + ReLU 784 256
1 Linear + ReLU 256 128
2 Linear + ReLU 128 64
3 Linear + ReLU 64 32
4 Linear 32 10

Table 4: Architecture of the multi-layer perceptron (MLP) model for 10-way classification on the
MNIST dataset.

We trained the MNIST classifer on a single NVIDIA RTX 3080 using PyTorch for 30 epochs to an
accuracy of 97.20% . We use AdamW with a learning rate of 1le—2, 81 = 0.9, 82 = 0.999, a weight
decay of le—1, and a batch size of 4096 samples. In addition, we use a learning rate scheduler, which
reduces the learning rate by a factor of 0.5 at a loss plateau with a patience of 2 epochs.

Hyperparameter Tuning and Scaling

Hyperparameter Search Space
Learning rate QLogUniform(le—3, 3e—3, le—3)
51 QLogUniform(0.6, 0.9, le—1)
Bo QLogUniform(0.7,0.99, le—2)
Weight decay le—2
Batch size 4096

Table 5: Hyperparameter search space for the MNIST scaled MLPs.

For scaling, once again, we insert 10 additional Linear+ReLU layers and conduct a hyperparameter
search before training. Table 5 presents the search space and Table 6 presents the final hyperparameters
and test accuracies.

ID LR (Values 0Decay Batch ;r,;:)t Ace.
1 263 [0.7,0.7] 96.63

2 [0.9, 0.85] le-2 4096 96.71

3 3e-3 [0.9,0.99] 96.82

Table 6: Final hyperparameters and accuracy for scaled models trained on the Yin-Yang dataset,
where the original model achieves an accuracy of 98.88%.

13

