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Appendix A: Background

This appendix offers an in-depth exploration of the technical aspects of TD3, HER, MHER, MHER(λ),
MMHER, Retrace(λ), and WGCSL. Additionally, we furnish a detailed derivation of the learning
objective of TD error in multi-step GCRL, as delineated in Eq. (3) from the main manuscript.

A.1 TWIN DELAYED DEEP DETERMINISTIC POLICY GRADIENT (TD3)

TD3 (Fujimoto et al., 2018) is an off-policy reinforcement learning method with an actor-critic
architecture designed for continuous control tasks. The actor πψ is parameterized by ψ, and there are
two critics Qθ1 and Qθ2 parameterized by θ1 and θ2, respectively. Given a data tuple (s, a, s′, r), the
target value is calculated as

y(s, a, s′, r) = r + γ min
i=1,2

Qθ̄i(s
′, πψ̄(s

′))

This approach is also known as the Clipped Double Q-learning (CDQ) algorithm used to mitigate
over-optimistic bias in the learning process. Unlike traditional actor-critic algorithms that update
the actor and critics simultaneously, TD3 proposes to delay the actor updates until the action-value
errors are small. This delay is typically implemented by setting the actor update period k to be larger
than one. The training loss for the critic is represented by the expected L2 loss between the Q-value
predictions and the target values y as

Lθi = E(s,a,s′,r)∼B[(y(s, a, s
′, r)−Qθi(s′, a))2], i ∈ {1, 2}

Every k training steps, the actor is optimized by maximizing the Q-value of the action output πψ(s)
for the given states, and the corresponding loss is

Lψ = −Es∼B[Qθ1(s, πψ(s))]

In the following discussion of algorithms, we omit parameters when they are not necessary, prioritizing
clarity and simplicity.

A.2 HINDSIGHT EXPERIENCE REPLAY (HER)

HER (Andrychowicz et al., 2017) proposes to tackle sparse learning signals in sparse-reward settings
via relabeling the goal as the actually achieved goals in the future. Consider a goal-conditioned data
tuple (sτt , a

τ
t , s

τ
t+1, g

τ ), extracted from the trajectory τ . The goals actually achieved in the future
constitute the set {ϕ(sτt′)}Tt′=t+1. Under HER, the original goal gτ is relabeled as ĝτ , selected from
the distribution p({ϕ(sτt′)}Tt′=t+1). This distribution is dependent on the hindsight relabeling strategy
and is typically a uniform distribution over {ϕ(sτt′)}Tt′=t+1.

Consequently, the agent learns from the relabeled data tuple (sτt , a
τ
t , s

τ
t+1, ĝ

τ ) with a recalculated
reward r(sτt+1, ĝ

τ ). This process ensures that the agent, at some point, receives valuable rewards
propagated from the relabeled goal ĝτ . The target value based on the relabeled goal is computed as:

y(sτt , a
τ
t , s

τ
t+1, ĝ

τ ) = r(sτt+1, ĝ
τ ) + γQπ(s

τ
t+1, π(s

τ
t+1, ĝ

τ ), ĝτ ), (A1)

where the subscript π of Qπ denotes that the target values for the action-value function are boot-
strapped with the action decision from policy π. With the hindsight relabeling strategy for trajectory
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τ at time t represented by a stochastic function h(t, τ), where the relabeled goal ĝτ is sampled from
the distribution defined by h(t, τ), the loss for the goal-conditioned action-value function can be
expressed as:

LQπ = E(sτt ,a
τ
t ,s

τ
t+1,g

τ
t )∼B,ĝτ∼h(t,τ)[(y(s

τ
t , a

τ
t , s

τ
t+1, ĝ

τ )−Qπ(sτt , aτt , ĝτ ))2]. (A2)

Then the goal-conditioned policy learns to optimize the expected Q-value function of π(sτt , ĝ
τ ) for

given states sτt and corresponding goals ĝτ as

Lπ = E(sτt ,g
τ
t )∼B,ĝτ∼h(t,τ)[−Qπ(sτt , π(sτt , ĝτ ), ĝτt )]. (A3)

A.3 MULTI-STEP HINDSIGHT EXPERIENCE REPLAY (MHER)

In comparison to HER, MHER (Yang et al., 2021) integrates HER into multi-step GCRL with
multi-step relabeling. Unlike Eq. (A1) that calculates the target value on a single-step transition,
MHER calculates the target values on n-step transitions with the goal g as follows

y(n)(t, τ, g) =

n−1∑
i=0

γir(sτt+i+1, g) + γnQπ(s
τ
t+n, π(s

τ
t+n, g), g). (A4)

MHER optimizes the actor and critic in similar ways as Eq. (A2) and Eq. (A3) except the target
values are calculated via Eq. (A4). MHER enables the agent to learn faster from n-step targets.

A.4 MHER(λ)

Inspired by TD(λ) (Sutton & Barto, 2018), MHER(λ) (Yang et al., 2021) provides a novel approach to
balance the trade-off between fewer-step targets that come with lower off-policy bias and multi-step
targets, which carry more reward information. This balancing act is achieved through the introduction
of an exponential decay weight parameter λ, where λ ∈ [0, 1]. The multi-step targets, balanced by
the λ parameter, are calculated using the following formula:

y
(n)
λ (t, τ, g) =

∑n
i=1 λ

iy(i)(t, τ, g)∑n
i=1 λ

i
. (A5)

In this formulation, y(n)λ leans towards the one-step target as λ → 0, while higher weights are
assigned to the n-step target as λ increases.

A.5 MODEL-BASED MHER (MMHER)

MMHER (Yang et al., 2021) calculates on-policy multi-step targets from multi-step transitions gener-
ated via a world-model M of the environment. The world-model M is trained by past experiences.
Given a one-step transition (sτt , a

τ
t , s

τ
t+1), the agent simulates (n − 1)-step on-policy transitions

starting from sτt+1, following policy π, in order to pursue the goal g through the world-model M .
Within these (n − 1)-step on-policy transitions, the ith (i = 1 · · ·n − 1) state generated from M
is denoted as Mπg

i (sτt+1), corresponding to the original sτt+1+i in the off-policy data. Then, the
multi-step target in MMHER is expressed as

y
(n)
M (sτt , a

τ
t , s

τ
t+1, g) = r(sτt+1, g)+

n−1∑
i=1

γir(M
πg

i (sτt+1), g)

+γnQπ(M
πg

n−1(s
τ
t+1), π(M

πg

n−1(s
τ
t+1), g), g). (A6)

However, y(n)M actually suffers from model bias caused by the prediction errors of M , which can be
severe when the problems are complex. To balance the model bias and learning information, Yang
et al. (2021) proposes to integrate n-step model-based target and one-step target via a hyper-parameter
α as

ȳ
(n)
M (sτt , a

τ
t , s

τ
t+1, g) =

αy
(n)
M (sτt , a

τ
t , s

τ
t+1, g) + r(sτt+1, g) + γQπ(s

τ
t+1, π(s

τ
t+1, g), g)

1 + α
. (A7)

The ȳ(n)M (sτt , a
τ
t , s

τ
t+1, g) will serve as the final n-step targets for the action-value function to learn.
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A.6 WEIGHTED GOAL-CONDITIONED SUPERVISED LEARNING (WGCSL)

The Weighted Goal-Conditioned Supervised Learning (WGCSL) algorithm, as delineated by Yang
et al. (2022), stands as a supervised learning methodology designed for the execution of goal-
conditioned tasks. This innovative algorithm employs goal relabeling techniques analogous to those
used in Hindsight Experience Replay (HER) (Andrychowicz et al., 2017).

The formal supervised learning objective, LWGCSL
ψ , is expressed as:

LWGCSL
ψ = E(sτt ,a

τ
t ,g

τ
t )∼B,ϕ(sτi )∼h(t,τ)[w

τ
t,i log π(a

τ
t |sτt , ϕ(sτi ))].

In this equation, sτi denotes the prospective state of sτt where i > t, with the relabeled goal represented
as ϕ(sτi ), and the weight wτt,i accentuating the prioritization of actions possessing a larger potential.

The weight wτt,i is further defined as:

wτt,i = γi−t · clip(exp(A(sτt , a
τ
t , ϕ(s

τ
i ))), 0,K) · ϵ(A(sτt , aτt , ϕ(sτi ))). (A8)

Here, γi−t, clip(exp(A(sτt , a
τ
t , ϕ(s

τ
i ))), 0,K), and ϵ(A(sτt , a

τ
t , ϕ(s

τ
i ))) symbolize the discounted re-

labeling weight (DRW), goal-conditioned exponential advantage weight (GEAW), and best-advantage
weight (BAW) respectively. The DRW prioritizes learning based on the actions of states temporally
closer to the relabeled goal. The GEAW emphasizes learning on actions with a higher advantage,
employing K to limit values in extreme cases. The BAW addresses the challenge of multi-modality
in goal-conditioned Reinforcement Learning (RL), guiding the policy towards the modal with the
maximal return, circumventing convergence to a weighted average of multiple modals. BAW is
specifically formulated as:

ϵ(A(sτt , a
τ
t , ϕ(s

τ
i ))) =

{
1, if A(sτt , a

τ
t , ϕ(s

τ
i )) > Â

ϵmin, otherwise

Within this context, Â denotes a threshold calculated from recent advantage statistics, while ϵmin
represents a minimal positive value.

A.7 RETRACE(λ)

Retrace(λ) is a reinforcement learning algorithm specifically designed for off-policy correction of the
value estimates (Munos et al., 2016). The algorithm employs importance sampling (IS) for correction,
incorporating a safety mechanism to ensure the stability and robustness of learning. This mechanism
involves truncating the importance sampling ratios to mitigate excessive variance in the estimates.

The n-step goal-conditioned target value based on Retrace(λ) is calculated as

y
(n)
ret (t, τ, g) =

n∑
i=1

γi−1

(
i−1∏
s=1

cs

)(
r(sτt+i, g) + γEπ[Qπ(sτt+i, ·)]− γciQ(sτt+i, a

τ
t+i)

)
,

where ci is the truncated importance sampling ratio. It is defined that
∏0
s=1 cs = 1 and cn = 0 as the

experience beyond the n steps is truncated. Specifically, the importance sampling ratio ct is:

ci = λmin

(
1,
π(aτt+i|sτt+i)
µ(aτt+i|sτt+i)

)
, (A9)

where µ(at|st) is the behavior policy that generated the action at at state st. The truncated importance
sampling enables the agent to safely use off-policy data to correct the estimates.

A.8 TD ERROR LEARNING OBJECTIVE IN MULTI-STEP GCRL

This section meticulously delineates the derivation of the objective, depicted as Eq. (3) in the main
text.
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Qθ(s
τ
t+1, a

τ
t+1, g)

= rt + γQθ̄(s
τ
t+1, πψ̄(s

τ
t+1, g), g)− δθ(s, a, g)

= rt + γQθ̄(s
τ
t+1, a

τ
t+1, g)− γAθ̄(sτt+1, a

τ
t+1, g)− δθ(s, a, g) (A10)

= rt + γ
[
rt+1 + γQθ̄(s

τ
t+2, πψ̄(s

τ
t+2, g), g)− δθ̄(sτt+1, a

τ
t+1, g)

]
− γAθ̄(sτt+1, a

τ
t+1, g)

− δθ(s, a, g) (A11)
= · · ·

=

n−1∑
i=0

γirt+i + γnQθ̄(s
τ
t+i, πψ̄(s

τ
t+1, g), g)−

n−1∑
i=1

γi[Aθ̄(s
τ
t+1, a

τ
t+i, g) + δθ̄(s

τ
t+1, a

τ
t+i, g)]

− δθ(s, a, g)

= y(n)(t, τ, g)−
n−1∑
i=1

γi
[
Aθ̄(s

τ
t+1, a

τ
t+i, g) + δθ̄(s

τ
t+1, a

τ
t+i, g)

]
− δθ(s, a, g). (A12)

In Eq. (A10), the highlighted term, γQθ̄(s
τ
t+1, a

τ
t+1, g), is purposefully added and then subtracted

by Qθ̄(s
τ
t+1, πψ̄(s

τ
t+1, g), g), resulting in γAθ̄(s

τ
t+1, a

τ
t+1, g), thereby initiating the unrolling process.

Following this, Eq. (A11) showcases the expanded form of the previous term, elucidating the unwind-
ing of the action-value function’s recursive definition. This expansion includes the subsequent reward
rt+1, the ensuing action-value function Qθ̄(s

τ
t+2, πψ̄(s

τ
t+2, g), g), and the TD error δθ̄(s

τ
t+1, a

τ
t+1, g).

Consequently, Eq.(3) from the main text is directly extrapolated from Eq. (A12).

Appendix B: Bias Resilient Algorithm

In light of the technical solutions elaborated in the main text, this work culminates in the creation
of an advanced algorithm named Bias-Resilient MHER (BR-MHER). This innovation stands as a
systematic approach to significantly mitigate the challenges posed by both shooting bias and shifting
bias. A concise summary of the BR-MHER algorithm is thoughtfully provided in Algorithm 1 for
comprehensive understanding and implementation.

The incorporation of MHER(λ) within the framework ensures that the target value aligns as a
truncated version of ŷ(n)λ (t, τ, g), a detailed discussion of which is available in Sect. A.4. This target
value is mathematically represented as:

ŷ
(n)
λ (t, τ, g) =

∑n
i=1 λ

iŷ(i)(t, τ, g)∑n
i=1 λ

i
. (A13)

In this equation, ŷ(i) denotes the truncated multi-step targets, as cross-referenced in Sect. 5.2 in the
main text. It is imperative to note the presentation of the BR-MHER algorithm in a generalized form,
ensuring its broad applicability to the actor-critic framework. This generalization makes it a suitable
and effective tool for algorithms such as TD3 (Fujimoto et al., 2018) and DDPG (Lillicrap et al.,
2015), reinforcing its utility and versatility in diverse contexts.

Appendix C: Experimental and Implementation Details

In this appendix, we furnish extensive details regarding our experimental tasks, implementation
specifics, hardware requisites of our experiments, and information pertinent to our released code.

C.1 ENVIRONMENTS AND TASKS

In this section, we provide comprehensive elaboration on the four unique task types incorporated into
our experimental procedures.
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Algorithm 1 Bias Resilient MHER (BR-MHER)

Require: Environment E, Replay buffer B, mini-batch size b, reward function r, hindsight relabel
proportion ph, policy πψ , the quantile ρ, Huber loss threshold κ, action-value functions Qρθ .

1: for episode = 1, . . . , N do
2: Reset E to get initial state s0 and desired goal g.
3: for t = 0, . . . , T − 1 do
4: Execute action at ∼ π(st, g) and observe st+1.
5: Store transition (st, at, st+1, g) in B.
6: Update st ← st+1.
7: end for
8: Sample a batch B = {(sτiti , a

τi
ti , : s

τi
ti+n), gτi}

b
i=1 from B.

9: Perform hindsight relabeling with gτi ← ĝτi , i = 1 . . . b at probability ph.
10: Calculate target ŷ(n)λ (ti, τi, gτi) by Eq. (A13).
11: Minimize the expected quantile regression loss LQR (defined in Eq. (7) in the main text)

between the target values and the action-value predictions to update θ.
Lcritic =

1
b

∑b
i=1 LQR(ŷ

(n)
λ (ti, τi, gτi), Q

ρ
θ(s

τi
ti , a

τi
ti , gτi); ρ, κ).

12: Maximize the expected actor loss to update πψ .
Lactor =

1
b

∑b
i=1Qθ(s

τi
ti , πψ(s

τi
ti , gτi), gτi).

13: end for

Fetch Tasks The Fetch robotic arm Plappert et al. (2018) represents an advanced, seven-degree-of-
freedom (7-DoF) robotic arm outfitted with a two-pronged parallel gripper. The goals are denoted by a
3-dimensional vector that specifies the Cartesian coordinates of the target endpoint. A goal is deemed
successfully achieved if the achieved goal resides within a 5cm radius of the intended coordinates.
Notably, the arm features a four-dimensional continuous action, which encompasses three Cartesian
dimensions to regulate the end effector’s movement, along with an additional dimension dedicated to
controlling the gripper. For the experimental tasks utilized for our study: i) FetchPickAndPlace:
The agent is required to grasp the target object, relocate it to the goal position and sustain its position
until the termination of the task; ii) FetchSlide: The task requires the agent to slide a small puck
across the table to a goal position that is outside of the reach of the robot, and ensure the object
remains within the goal location at the end of the task.

Hand Tasks The anthropomorphic robotic Plappert et al. (2018) hand is a 24-DoF robot hand with
a 20-dimensional action space. For the tasks used in our experiments: i) HandReach: The goal
of the task is a 15-dimensional vector corresponding to the desired Cartesian positions of all five
fingertips. The agent is required to manipulate the robot to reach the states where the mean distance
between five fingertips and the goal positions is less than 1cm. Its state is a 63-dimensional vector; ii)
HandManipulateBlockRotateXYZ: The agent is required to manipulate a block at the palm of
the robotic hand to achieve a target pose. The goal is a 7-dimensional vector including 3-dimensional
target positions and 4-dimensional target rotations. The agent succeeds in this task if the block differs
from the target rotation within 0.1 rad. Its state space is 61-dimensional.

Sawyer Tasks The Sawyer robotic arm Nair et al. (2018) is a 7-DoF robotic arm. Its end-effector
(EE) is constrained to a 2-dimensional rectangle parallel to a table. The movements and positioning
of this EE are dictated by actions relayed through a motion capture (mocap) system. For the tasks
used in our experimental study: i) SawyerPushAndReachEnvEasy: This task necessitates the
agent to push a small puck on the table to a target XY position specified by the 2-dimensional goal.
The task operates within a 2-dimensional action space corresponding to the X and Y axes. The state
space for this task, encapsulated in five dimensions, encompasses both the 3-dimensional coordinates
of the EE and the 2-dimensional positioning of the puck; ii) SawyerReachXYZEnv: This task
demands precise manipulation of the robotic arm’s EE towards a designated position indicated by
Cartesian coordinates. Both the state and the goal spaces are 3-dimensional, encompassing the current
and target coordinates of the EE. The action associated with this task is a 3-dimensional continuous
variable, each representing the velocity along an axis.
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Grid-World Task The grid-world tasks employed in this study have been adapted from Chevalier-
Boisvert et al. (2018) to suit GCRL contexts. In these tasks, the current state is defined by the
agent’s current 2-dimensional coordinates, while the goal corresponds to the desired coordinates
the agent aims to reach. For these grid-world tasks, we set the agent’s action space to consist
of five discrete actions: upward movement, downward movement, leftward movement, rightward
movement, and maintaining the current position. The tasks Simple-MiniGrid-Empty-25×25
and Simple-MiniGrid-Empty-50×50 are differentiated solely by scale, containing 25 and 50
grids along each edge respectively.

The horizon T varies based on the specific task at hand. For instance, the horizon for
tasks such as FetchPickAndPlace, FetchSlide, and HandReach is set at 50. In
contrast, the tasks HandManipulateBlockRotateXYZ, SawyerPushAndReachEnvEasy,
and SawyerReachXYZEnv have a larger horizon of 100. In the context of grid-world tasks, the
horizon is determined as three times the scale of their respective scales. Consequently, this results in
a horizon of 75 for the task Simple-MiniGrid-Empty-25×25, and extends to 150 for the task
Simple-MiniGrid-Empty-50×50.

C.2 IMPLEMENTATION DETAILS

In this section, we detail the implementation of our TD3, GCRL, and WGCSL methods, outlining the
network configurations and hyperparameters used.

TD3 TD3 serves as the primary framework for each GCRL method in our experiments, utilizing
CDQ, target networks and delayed actor updates as decribed in Sect. A.1 to ensure the stability
of the learning process. The hyper-parameters employed in the experiments are shown in Table 1.
Notably, in experiments on grid-world tasks, which operate within a discrete action space, we employ
the GumbelSoftMax activation (Jang et al., 2016) to the policy network outputs. This approach
ensures the action-value function’s differentiability relative to the actor outputs within these contexts.
Observations and goals, serving as inputs to the actor and critic, are normalized based on historical
statistics. Throughout the training phase, the target networks undergo soft updates with the parameters
of the present actor and critic networks. Each epoch contains varying numbers of cycles depending
on the task: Fetch and Hand tasks comprise 50 cycles per epoch, while Sawyer and grid-world tasks
include 10. For exploration, we apply ϵ-greedy strategies and additionally integrate Gaussian action
noises into the training rollouts of robotic tasks.

GCRL Methods The primary distinctions among GCRL methods stem from the calculation of
target values for the critic, as depicted in Section A. All GCRL methods share the same relabeling
probability of ph = 0.8, implying an average relabeling of four out of five data entries. For MMHER,
we set α = 0.5 in Eq. (A6) and utilize the configurations are outlined in Table 2, following the
suggestions from Yang et al. (2021). For both IS-MHER based on Retrace(λ) and MHER(λ), we
assign a value of 0.7 to λ in both Eq. (A9) and Eq.(A5). In IS-MHER where the importance sampling
necessiates a stochastic policy, we establish the stochstic policy via adding a clipped Gaussian
distibuted noises ϵa ∼ clip(N (0, 0.2),−0.5, 0.5) to the actions. Each experiment is conducted with
five distinct random seeds—{111, 222, 333, 444, 555}—and the statistics of the results are reported.

WGCSL Given the focus of WGCSL on supervised learning, we opt not to integrate TD3 into its
framework. Our experimental setup is based on the source code provided by the author (Yang et al.,
2022). The K used for the weight DRW in Eq. (A8) is set to 10. Apart from the non-application of
TD3-specific parameters and the substitution of Softmax for GumbelSoftmax in grid-world tasks, all
other hyperparameters are consistent with those utilized in other GCRL methods, see Table 1.

In general, we primarily adhere to the hyper-parameters proposed in the codebase (Yang et al., 2021;
2022) to maintain consistency and avoid parameter tuning. This decision stems from our central
aim: to determine if our methodologies can surpass both baseline and contemporary state-of-the-art
methods when subject to identical conditions. Importantly, our strategies are tailored to tackle the root
causes of bias issues, with the intention to elevate performance through an intrinsic comprehension
of these challenges.
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Table 1: The hyper-parameters used for TD3

Hyper-parameter Value

Actor learning rate 0.001
Critic learning rate 0.001
Optimizer Adam (Kingma & Ba, 2014)
Buffer size 106

Quadratic penalty on actions 1.0
Observation clip range [-200, 200]
Normalized observation clip range [-5, 5]
Random init episodes 100 (500 for MMHER)
Batch size 1024
Test episodes per epoch 120
Discount factor γ 1/T
ϵ for ϵ-greedy exploration 0.3
Gaussian action noise std 0.2 (robotics)
Relabeling probability ph 0.8
Episodes per cycle 12
Training batches per cycle 40
Target network update proportion 0.005
Delayed actor update interval k 2
Number of hidden layers 3
Hidden layer size 256 (robotics), 512 (grid)
Hidden layer activation ReLU
Actor output activation Tanh (robotics)

Softmax + GumbelSoftmax (grid-world)
Training cycles per epoch 50 (Hand and Fetch tasks)

10 (Sawyer and grid-world tasks)

Table 2: The hyper-parameters of the world-model used for MMHER

Hyper-parameter Value

Learning rate 0.001
Optimizer Adam
Number of hidden layers 8
Hidden layer size 256
Batch size 512
Warmup training times 500

7



Under review as a conference paper at ICLR 2024

C.3 HARDWARE

In conducting each experiment, we utilized the processing power of a V100 GPU coupled with eight
CPU cores, facilitating efficient model training and comprehensive data collection from environments.

C.4 CODE

We have adopted a modified OpenAI Baselines codebase (Dhariwal et al., 2017), adhering to the
guidelines put forth by Yang et al. (2021; 2022). Tensorflow (Abadi et al., 2016) serves as our
chosen deep learning framework for training. Recognizing the pivotal role of reproducibility in
scientific endeavors, we have rendered our code publicly accessible. Detailed instructions to aid
in the effective usage of the code are provided. This information can be accessed at https:
//github.com/BR-MHER/BR-MHER.
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Figure I: Comparative study of three-step (n=3) GCRL methods on both robotic tasks and grid-world
tasks. (a) Success rate. (b) ISB for measuring shooting bias. (c) TSB for measuring shifting bias.

8

https://github.com/BR-MHER/BR-MHER
https://github.com/BR-MHER/BR-MHER


Under review as a conference paper at ICLR 2024

Appendix D: Extended Experiments

In this appendix, we first enrich the comparative analysis of the BR-MHER application, initially
presented in the main text, by conducting a deeper examination of both the three-step (n=3) and
five-step (n=5) GCRL methods applied to the same set of tasks. Following this, we conduct an
ablation study to elucidate the components within BR-MHER.

D.1 MORE RESULTS OF BR-MHER

This section delineates the remaining comparative analysis of BR-MHER for n=3 and n=5, as
illustrated in Figs. I and II.

The robust advantages delineated in the main text persist for smaller step sizes such as 3 or 5. It is
observed that BR-MHER consistently mitigates off-policy bias, as evidenced by the ISB and TSB
levels in Figs. I(b, c) and II(b,c). Here, we can investigate a new research question following the three
in the main text: Q4) How does the performance of BR-MHER change as the step-size of multi-step
GCRl changes? How is it compared to other GCRL method? Instead of performing the one-to-one
comparison as the main text, we answer in a general perspective.

As depicted in Figs. I(a) and II(a), BR-MHER overtakes the learning efficiency of HER in
HandManipulateBlockRotateXYZ-v0, although it aligns with HER’s efficiency in a seven-
step learning context. This trend highlights that BR-MHER is similarly impacted by the detrimental
effects of off-policy biases with increasing step-size. Concurrently, BR-MHER reaps greater advan-
tages than other GCRL methods in grid-world tasks with step-size augmentation. No significant
performance shifts are noted for other tasks. An analysis of the performance differential among
various multi-step GCRL methods reveals expanding gaps in FetchPickAndPlace-v1, Hand
tasks, and grid-world tasks. This observation corroborates the enhanced robustness and resilience of
BR-MHER to alterations in step-size and escalating off-policy biases.

Moreover, we find the performance does not decrease monotonically as the step-size increases.
Each multi-step GCRL method seems to have the best step-size for learning. Take the
Simple-MiniGrid-Empty-25x25-v0 for example, MHER(λ) reaches around 75% success
rates with three-step learning, arising to 85% with five-step while dropping to 40% with ten-
step learning. In contrst, BR-MHER can stably reach 100%. In this case, BR-MHER offers
an robust option to the parameter of step-size. We also notice that there is an special case in
HandManipulateBlockRotateXYZ-v0 that IS-MHER keeps the same performance as HER
when n =3, 5 and 7. It probably reduce the multi-step learning to single-step learning via importance
sampling due to the relative low entropy of the policy.

Furthermore, the analysis discerns a non-monotonic performance degradation with step-size am-
plification. Each multi-step GCRL method appears to have an optimal step-size for learning. For
instance, in the Simple-MiniGrid-Empty-25x25-v0 task, MHER(λ) records approximately
75% success with three-step learning, which escalates to 85% with five-step learning, but falls
to 40% with ten-step learning. Contrarily, BR-MHER consistently achieves a 100% success rate,
underscoring its robustness relative to step-size parameterization. An anomalous observation in
HandManipulateBlockRotateXYZ-v0 shows that IS-MHER mirrors HER’s performance
for n =3, 5, and 7, potentially signifying a transition from multi-step to single-step learning via
importance sampling, attributed to the relatively low entropy of the policy.

D.2 ABLATION STUDY

This ablation study is systematically designed to unravel the unique contributions of each component
embedded within the BR-MHER algorithm. It chiefly emphasizes their roles in the reduction of bias
and enhancement of learning efficiency.

As delineated in the primary text, quantile regression and truncated multi-step targets emerge as
pivotal techniques, seamlessly integrated within the BR-MHER algorithm. To discern the solitary
impact of each, the study explores two algorithmic variants: QR-MHER and TMHER(λ). QR-MHER
singularly integrates quantile regression, while TMHER(λ) exclusively embodies truncated multi-step
targets, each within the foundational MHER(λ) framework. This methodical investigation aims to
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Figure II: Comparative study of five-step (n=5) GCRL methods on both robotic tasks and grid-world
tasks. (a) Success rate. (b) ISB for measuring shooting bias. (c) TSB for measuring shifting bias.

shed light on the nuanced influences each component imparts on the overarching performance of the
BR-MHER algorithm.

Advancing into the ablation study, six methods, namely HER, MHER, MHER(λ), TMHER(λ),
QR-MHER, and BR-MHER, are meticulously analyzed. The discerned outcomes are pictorially
represented in Figs. III-V.

From Figs. III-V(a), it is evident that MHER(λ) consistently enhances the stability of MHER across
diverse tasks and step sizes, thereby providing a more stable performance trajectory.

Our variant, TMHER(λ), stands as a further consistent enhancement of MHER(λ), universally
exhibiting positive advancements in success performance, learning efficiency, and off-policy bias
mitigation over MHER(λ) across all cases. This underscores the favorable impact of employ-
ing truncated multi-step targets. As delineated in Figs. III-V(a), significant improvements with
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TMHER(λ) are notably observed in three tasks: HandReach-v0 and two grid-world tasks. In
these scenarios, actions can inadvertently deflect the agent from goal coordinates, culminating in
negative rewards in the bootstrap path and an amplified shifting bias. The rectification of this issue
leads to substantial enhancement in task performance. It is imperative to note that TMHER(λ)
outperforms MHER(λ) in FetchSlide-v1, a task where the comprehensive integration of BR-
MHER falls short. This observation highlights the potential detrimental impact of quantile regression
on the performance within the FetchSlide-v1 context. Concurrently, despite the improve-
ments in off-policy biases with TMHER(λ) over MHER(λ), Figs. III-V(b,c) reveal that off-policy
biases, as indicated by ISB and TSB, maintain high levels in tasks such as FetchSlide-v1
and HandManipulateBlockRotateXYZ-v0. This highlights the circumscribed capacity of
TMHER in diminishing both shooting and shifting biases.

In the examination of QR-MHER’s performance as depicted in Figs. III-V(a), QR-MHER is ob-
served to markedly excel over TMHER(λ) within the contexts of FetchPickAndPlace-v1 and
HandManipulateBlockRotateXYZ-v0. This superiority highlights the advantageous em-
ployment of beneficial off-policy bias. Observations from Figs. III-V(b,c) denote that QR-MHER
markedly diminishes the off-policy biases of MHER(λ) across all tasks, with the exception of
HandReach-v0 and grid-world tasks. In these exceptional tasks, TMHER(λ) demonstrates su-
perior bias mitigation capabilities. This observed pattern indicates a possible constraint within
QR-MHER, specifically in its strategic capacity to exclude bootstrap paths encompassing detrimental
actions. This restriction notably leads to a swift accrual of shifting bias. Despite the evidence in
Fig. III(a) demonstrating QR-MHER’s augmented learning efficiency relative to TMHER(λ) in grid-
world tasks when n is 3, this efficiency superiority is overshadowed by TMHER(λ) as n augments.
This shift underscores the intensified source of bias within QR-MHER.

Consequently, our BR-MHER amalgamates the advantages of both QR-MHER and TMHER(λ)
seamlessly. This integration leads to a superior performance that transcends the peak efficiencies of
both QR-MHER and TMHER(λ). In HandReach-v0 and grid-world tasks, as depicted in Figs.III-
V(a), BR-MHER demonstrates an augmented performance compared to the two aforementioned
variants. Additionally, the magnitudes of both ISB and TSB are notably reduced, indicative of
enhanced off-policy bias mitigation, as evident in Figs.III-V(b,c). Notably, in these tasks where
TMHER(λ) surpasses QR-MHER, BR-MHER further diminishes both off-policy biases. This
highlights the effective management of both shifting and shooting biases by quantile regression when
paired with truncated multi-step targets. Despite a noted performance decline in FetchSlide-v1
due to quantile regression, BR-MHER maintains robust performance across a variety of tasks and
multi-step learning step sizes.

11



Under review as a conference paper at ICLR 2024

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s

FetchPickAndPlace-v1

0.0

0.2

0.4

0.6

0.8 FetchSlide-v1

0.0

0.2

0.4

0.6

HandManipulateBlockRotateXYZ-v0

0.0

0.2

0.4

0.6

0.8
HandReach-v0

0 10 20 30 40 50
Epoch

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s

SawyerPushAndReachEnvEasy-v0

0 10 20 30 40 50
Epoch

0.00

0.25

0.50

0.75

1.00
SawyerReachXYZEnv-v1

0 10 20 30 40 50
Epoch

0.00

0.25

0.50

0.75

1.00
Simple-MiniGrid-Empty-25x25-v0

0 10 20 30 40 50
Epoch

0.0

0.2

0.4

0.6

0.8
Simple-MiniGrid-Empty-50x50-v0

HER MHER MHER( ) TMHER( ) QR-MHER BR-MHER

(a)

10

5

0

IS
B

FetchPickAndPlace-v1

5

0

5

10
FetchSlide-v1

20

0

20

HandManipulateBlockRotateXYZ-v0

20

10

0
HandReach-v0

0 10 20 30 40 50
Epoch

0

10

20

30

IS
B

SawyerPushAndReachEnvEasy-v0

0 10 20 30 40 50
Epoch

0

10

20

30

SawyerReachXYZEnv-v1

0 10 20 30 40 50
Epoch

20

10

0

10

20

Simple-MiniGrid-Empty-25x25-v0

0 10 20 30 40 50
Epoch

25

0

25

50
Simple-MiniGrid-Empty-50x50-v0

(b)

7.5

5.0

2.5

0.0

TS
B

FetchPickAndPlace-v1

20

10

0
FetchSlide-v1

40

20

0
HandManipulateBlockRotateXYZ-v0

40

30

20

10

0
HandReach-v0

0 10 20 30 40 50
Epoch

2

1

0

TS
B

SawyerPushAndReachEnvEasy-v0

0 10 20 30 40 50
Epoch

0.4

0.3

0.2

0.1

0.0
SawyerReachXYZEnv-v1

0 10 20 30 40 50
Epoch

30

20

10

0
Simple-MiniGrid-Empty-25x25-v0

0 10 20 30 40 50
Epoch

80

60

40

20

0 Simple-MiniGrid-Empty-50x50-v0

(c)

Figure III: Ablation study of three-step (n=3) GCRL methods on both robotic tasks and grid-world
tasks. (a) Success rate. (b) ISB for measuring shooting bias. (c) TSB for measuring shifting bias.
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Figure IV: Ablation study of five-step (n=5) GCRL methods on both robotic tasks and grid-world
tasks. (a) Success rate. (b) ISB for measuring shooting bias. (c) TSB for measuring shifting bias.
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Figure V: Ablation study of seven-step (n=7) GCRL methods on robotic tasks and ten-step (n=10)
GCRL methods on grid-world tasks. (a) Success rate. (b) ISB for measuring shooting bias. (c) TSB
for measuring shifting bias.
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