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ABSTRACT
Enzyme design plays a crucial role in both industrial production
and biology. However, this field faces challenges due to the lack of
comprehensive benchmarks and the complexity of enzyme design
tasks, leading to a dearth of systematic research. Consequently,
computational enzyme design is relatively overlooked within the
broader protein domain and remains in its early stages. In this work,
we address these challenges by introducing MetaEnzyme, a staged
and unified enzyme design framework. We begin by employing a
cross-modal structure-to-sequence transformation architecture, as
the feature-driven starting point to obtain initial robust protein rep-
resentation. Subsequently, we leverage domain adaptive techniques
to generalize specific enzyme design tasks under low-resource con-
ditions. MetaEnzyme focuses on three fundamental low-resource
enzyme redesign tasks: functional design (FuncDesign), mutation
design (MutDesign), and sequence generation design (SeqDesign).
Through novel unified paradigm and enhanced representation capa-
bilities, MetaEnzyme demonstrates adaptability to diverse enzyme
design tasks, yielding outstanding results. Wet lab experiments fur-
ther validate these findings, reinforcing the efficacy of the redesign
process. The code and data will be publicly released.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence; • Ap-
plied computing→ Computational biology; Life and medical
sciences; Bioinformatics.

KEYWORDS
Protein Design, Functional Prediction, Mutation Effect, Sequence
Generation, Enzyme Engineering

1 INTRODUCTION
Enzymes, distinguished as specialized proteins, serve as biological
catalysts, expediting chemical reactions. Their capacity to catalyze
reactions ensures specificity and enables operation under mild
conditions, thus playing a crucial role in various industries. [1,
34, 47, 49]. Positioned at the forefront of industrial production
and the biological domain, enzyme design involves the deliberate
creation of modified variants through functional design, commonly
known as protein redesign [6, 21, 37], based on known structures
or sequences.
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Figure 1: The overall logical framework of MetaEnzyme and
the successive phases for various enzyme functional tasks.

Despite its critical role, computational enzyme design is still in
its early stages within the broader protein field. The scarcity of
comprehensive enzyme data, coupled with the diversity of enzyme
tasks and models [30, 52], has resulted in a lack of systematic re-
search and oversight in computational enzyme design. The inherent
complexity of tasks and the vast diversity of data pose challenges
for widespread adoption, contributing to relatively low attention
in the enzyme field.

To address the challenges inherent in enzyme design, it is im-
perative to confront issues stemming from data scarcity and model
generalization. Enzyme datasets often suffer from smaller scales
compared to the broader protein domain due to specific functional
categorizations, leading to inadequate model training. To mitigate
this challenge, we propose leveraging pretrained universal protein
models as intermediaries, replacing direct training of task-specific
enzyme functional models. These universal models benefit from
more extensive datasets in the general domain, resulting in stronger
representation capabilities in both sequence and structural modali-
ties. This could facilitates better domain adaptation to downstream
tasks through transfer learning manner.

Furthermore, functional enzyme tasks exhibit complex diversi-
ties, necessitating different modalities and data requirements, which
may require multi-modality pretrained model architectures as dri-
vers. However, this approach is not the more efficient or unified
solution. Given our concentration on essential low-resource en-
zyme redesign tasks—functional design (FuncDesign), mutation
design (MutDesign), and sequence generation design (SeqDesign)—
encompassing the primary tasks and paradigms of contemporary AI
research in enzymes, we underscore the significance of incorporat-
ing structural modality. This emphasis stems from the recognized
principle that structures dictate functions. Taking these considera-
tions into account, we aim to pursue both robust representation and
generalization while simplifying the enzyme design framework.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Through observing commonalities across all tasks, we propose a
novel MetaEnzyme framework, as illustrated in Figure 1. MetaEn-
zyme consists of a foundational universal protein design network
(UniProt-Net) and downstream enzyme redesign modules. In the
first stage, UniProt-Net undergoes pretraining to acquire robust
representation capabilities. We instantiate UniProt-Net with a cross-
modal structure-to-sequence network, as illustrated in Figure 2(a),
to bridge the gaps between various redesign tasks. To augment
structural and contextual representations, we introduce geometry-
equivariant modules, implicit energy-motivated data augmentation,
and multi-modal fusion, significantly enhancing generalization
capabilities for low-resource scenarios. In the second stage, all
enzyme redesign modes are driven by the cross-modal UniProt-
Net. Based on characteristics such as autoregressive (AR) vs. non-
autoregressive (NAR), non-parametric vs. parametric, etc., we ratio-
nalize different tasks and adopt meta-learning and domain-adaptive
techniques in low-cost and high-efficiency manners.

The main contributions are outlined as follows:
• The innovative unified enzyme design framework, MetaEn-

zyme, consolidates patterns across mainstream tasks, effectively
leveraging commonalities for enhanced adaptability. The frame-
work facilitates seamless transitions between universal protein
design network and in-domain design evaluation tasks.
• The proposed geometry-enhanced module, combined with

techniques such as data augmentation, multi-modal fusion, sig-
nificantly enhances representation capabilities for low-resource
settings, along with the extension of multiple enzyme tasks.
• A novel decoupled mutation scoring method is introduced for

evaluating mutation effects, greatly improving efficiency.
• Additional wet lab experiments for computational validation.

2 UNIVERSAL PROTEIN DESIGN NETWORK
2.1 Problem Statement
As shown in Figure 2(a), UniProt-Net aims to to generate amino
acid sequences conditioned on the protein backbones. UniProt-
Net comprises a Geometric-invariant Structure Encoder (GeoStruc-
Encoder), a Structure-Sequence Adapter (StrucSeq-Adapter), and a
Self-attention Sequence Decoder (SaSeq-Decoder). The GeoStruc-
Encoder and StrucSeq-Adapter collectively constitute the Encoder-
Adapter Module (EnAd-Module), responsible for ensuring trans-
formation equivariance. The StrucSeq-Adapter and SaSeq-Decoder
collectively constitute the Context-Module incorporating fully self-
attention layers.

Formally, given a protein backbone 𝑋 = {𝑋1, 𝑋2, · · · , 𝑋𝑛} with
a length of 𝑛, where 𝑋𝑖 ∈ R3×3 represents the atomic coordi-
nates of the i-th amino acid residue composed of N, C𝛼 , and C
atoms. The corresponding generated protein sequence is denoted
as 𝑌 = {𝑌1, 𝑌2, · · · , 𝑌𝑛} ∈ R𝑛 . And 𝑌 denotes the native sequence
𝑌 = {𝑌1, 𝑌2, · · · , 𝑌𝑛} ∈ R𝑛 . The function 𝑝𝑢𝑛𝑖𝑝𝑟𝑜𝑡 represents the
underlying UniProt-Net.

2.2 The Underlying Structure-to-Sequence
Network

2.2.1 Geometry-enhanced Structural Encoder. Definition 1. For
any transformationT ∈ 𝐸 (3), a geometric network𝜑 is E(3)-equivariant
if 𝜑 (T · 𝑋 ) = T · 𝜑 (𝑋 ), and 𝜑 is E(3)-invariant if 𝜑 (T · 𝑋 ) = 𝜑 (𝑋 ).

The core component of the GeoStruc-Encoder is the lightweight
GVP module [19], in which the vanilla GVP layers are overall
rotation-invariant for rigid bodies since GVP outputs a rotation-
equivariant vector feature 𝑣 through an equivariant function 𝑓 , and
a rotation-invariant scalar feature 𝑠 through an invariant function
𝑔 for each amino acid, thus for any arbitrary rotation R: R 𝑓 (𝑣) =
𝑓 (R𝑣), 𝑔(𝑠) = 𝑔(R𝑠), as shown in Figure 2(b).

Then to make the entire EnAd-Module rotation-invariant, a lo-
cal reference frame 𝑣𝑙 [15] is further introduced to fuse with the
rotating vector feature 𝑣 ′, resulting in enhanced rotation-invariant
features, which is rotation-invariant for any rotation R: 𝑓 (𝑣 ′⊕𝑣𝑙 ) =
𝑓 (R(𝑣 ′ ⊕ 𝑣𝑙 )). Additionally, the input features are translation-
invariant[20], making the overall EnAd-Module also translation-
invariant. Therefore, the concatenated features are invariant to
translations and rotations on the input coordinates. Thus for any
rotation/translation T of the input, the output of the entire EnAd-
Module 𝑝𝑒𝑛𝑎𝑑 can be invariant: 𝑝𝑒𝑛𝑎𝑑 (𝑣, 𝑠) = 𝑝𝑒𝑛𝑎𝑑 (T (𝑣, 𝑠)). To
obtain a better structural representation, we initialize the EnAd-
Module parameters as [15] which is trained on millions of proteins.

2.2.2 Energy-motivated Data Augmentation. Guided by biochem-
istry principles, atomic interactions are regulated by forces and
energy. This insight inspires the incorporation of energy and force
concepts into data augmentation[17, 18]. To achieve this, we in-
troduce an energy-driven Riemann-Gaussian geometric technique,
illustrated in Figure 2(c), which ensures that structural variations
maintain the energy dynamics of proteins, preserving pairing rela-
tionships and geometric characteristics. In essence, the augmented
structures guarantee structural invariance for the spatial distri-
bution of energy or force. In a nutshell, we obtain a noisy sam-
ple 𝑋 ′ from 𝑋 according to a certain conditional distribution, i.e.,
𝑋 ′ ∼ 𝑝𝑛𝑜𝑖𝑠𝑒 (𝑋 ′ |𝑋 ). Unlike conventional denoisingmethods applied
to images or other Euclidean data, the introduced noise in our 3D ge-
ometry is tailored to be geometry-aware rather than conformation-
aware, i.e., 𝑝 (𝑋 ′ |𝑋 ) should possess doubly E(3)-invariant:

𝑝 (T1 · 𝑋 ′ |T2 · 𝑋 ) = 𝑝 (𝑋 ′ |𝑋 ),∀T1,T2 ∈ 𝐸 (3). (1)

This is consistent with the observation that the behavior of proteins
with the same geometry should be independent of different con-
formations. A conventional choice of 𝑝𝑛𝑜𝑖𝑠𝑒 (𝑋 ′ |𝑋 ) is utilizing the
standard Gaussian with noise scale 𝜎 as 𝑝𝑛𝑜𝑖𝑠𝑒 (𝑋 ′ |𝑋 ) = N(𝑋, 𝜎2𝐼 ).
But this naive form fails to meet the doubly E(3)-invariant prop-
erty in Eq. 1. Specifically, considering the derived force target
∇𝑋 ′ log𝑝 (𝑋 ′ |𝑋 ) = −𝑋

′−𝑋
𝜎2 where 𝑋 ′ = R · 𝑋 s.t. rotation R ≠ 𝐼 ,

then ∇𝑋 ′ log𝑝 (𝑋 ′ |𝑋 ) = − 1
𝜎2 (R − 𝐼 )𝑋 ≠ 0, which imply that the

force between 𝑋 ′ = R · 𝑋 and 𝑋 is not equal although the same
geometry is shared. Hence, to devise the form with the symmetry
in Eq. 1, we instead resort to Riemann-Gaussian [7] as:

𝑝𝑛𝑜𝑖𝑠𝑒 (𝑋 ′ |𝑋 ) = Rie𝜎 (𝑋 ′ |𝑋 ) :=
1

𝜁 (𝜎) exp(−
𝛿2 (𝑋 ′, 𝑋 )

4𝜎2
), (2)

where 𝜁 (𝜎) is the normalization term, and 𝛿 is the metric that
calculates the difference between 𝑋 ′ and 𝑋 . Riemann-Gaussian is
a generalization version of typical Gaussian, by choosing various
distances 𝛿 beyond the Euclidean metric. To pursue the constraint
in Eq. 1:

𝛿 (𝑋 ′, 𝑋 ) = | |𝑋
′
𝑟

𝑇
𝑋
′
𝑟 − 𝑋𝑇𝑟 𝑋𝑟 | |2, (3)
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Figure 2: (a) The underlying UniProt-Net instantiation is based on a structure-to-sequence framework including a Geometry-
invariant Structural Encoder (GeoStruc-Encoder), a Structure-Sequence Adapter (StrucSeq-Adapter), and a Self-attention
Sequence Decoder (SaSeq-Decoder). (b) Elaborate featuremodules within the GeoStruc-Encoder. (c) Structural data augmentation
employing Riemann-Gaussian noise. (d) Initialization of the Context-Module (StrucSeq-Adapter & SaSeq-Decoder) in a self-
supervised manner.

where 𝑋𝑟 = 𝑋 − 𝜇 (𝑋 ) shifts 𝑋 to zero mean (𝜇 (𝑋 ) is the mean of
𝑋 ’s columns). The same transformation applies to 𝑋

′
𝑟 . The distance

function 𝛿 adheres to the doubly E(3)-invariance as in Eq. 1. Notably,
𝛿 is permutation-invariant concerning the order of the columns in
𝑋 ′ and 𝑋 .

2.2.3 ContextModule Initialization. The initialization of the Context-
Module, as shown in Figure 2(d), aims to incorporate prior language
knowledge into the modules[51]. The entire Context-Module func-
tions as an encoder-decoder Transformer[45], denoted as 𝑝𝑐𝑜𝑛𝑡𝑒𝑥𝑡
with linear output layers. To initialize the Context-Module ex-
clusively based on sequence data from the training set, we em-
ploy a sequence-to-sequence recovery task using an autoencoder
(AE) mode. This allows the Context-Module to acquire contextual
semantic knowledge, utilizing cross-entropy (CE) loss for learn-
ing. Formally, given an input protein sequence for the encoder
𝑆in = {𝑠1, 𝑠2, · · · , 𝑠𝑛} with 𝑛 amino acids, and the reference native
sequence as 𝑆native = 𝑆in = {𝑠1, 𝑠2, · · · , 𝑠𝑛}, the AE-based objec-
tive is to generate a sequence 𝑆𝑟 to recover 𝑆native as accurately as
possible:

LAE = CE
(
𝑝𝑐𝑜𝑛𝑡𝑒𝑥𝑡 (logits𝑆𝑟 |𝑆in), 𝑆native

)
. (4)

2.3 Training Pipeline in Initial Phase
We initialize the parameters of UniProt-Net based on prior knowl-
edge. To enhance the dataset, we incorporate Riemann-Gaussian
data augmentation, combining the original protein dataset 𝐷𝑜𝑟𝑖
with the augmented dataset denoted as 𝐷𝑟𝑖𝑒 , resulting in a new
dataset𝐷𝑎𝑢𝑔 = 𝐷𝑜𝑟𝑖 ∪𝐷𝑟𝑖𝑒 . In the processing flow, the protein back-
bone 𝑋 ∼ 𝐷𝑎𝑢𝑔 is initially input into the EnAd-Module, producing
geometric context features. These features are then fed into the

decoder to generate the sequence distribution logits𝑌 and derive
the generated sequence 𝑌 as:

𝑌 = argmax
(
𝑝𝑢𝑛𝑖𝑝𝑟𝑜𝑡 (logits𝑌 |𝑋 )

)
, 𝑋 ∼ 𝐷𝑎𝑢𝑔, (5)

and cross-entropy loss is used for training:

Lprimary = CE(𝑝𝑢𝑛𝑖𝑝𝑟𝑜𝑡 (logits𝑌 |𝑋 ), 𝑌 ). (6)

3 DOMAIN ADAPTION FOR LOW-RESOURCE
ENZYME DESIGN TASKS

Algorithm 1 Task-specific Meta Enzyme Learning
Require: 𝑇 : task distributions; 𝑇𝑖 : individual enzyme task s.t.
𝑖 ∈ [0, 𝑁 ); 𝐿𝑜𝑢𝑡 and 𝐿𝑖𝑛 : Update steps for outer and inner loop;
𝑏𝑡 instances in each batch of tasks; ℓ , ℓ′: learning rates; Randomly
initialize 𝜃 ;
repeat

if 𝐿𝑖𝑛 > 0 then
Sample batch of tasks 𝑇𝑖 ∼ 𝑇 .
for all 𝑖 ∈ [0, 𝑁 ) do

Evaluate ∇𝜃L𝑇𝑖 (𝑓𝜃 ) with respect to 𝑏𝑡 examples;
Compute adapted parameters with gradient descent 𝜃

′
𝑖
=

𝜃 − ℓ · ∇𝜃L𝑇𝑖 (𝑓𝜃 );
end for
Update 𝜃 ← 𝜃 − ℓ′ · ∇𝜃

∑
𝑇𝑖∼𝑇 L𝑇𝑖 (𝑓𝜃 ′

𝑖
);

𝐿𝑖𝑛 -= 1;
end if
𝐿𝑜𝑢𝑡 -= 1;

until 𝐿𝑜𝑢𝑡 == 0;
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3.1 Few-shot Learning for Functional Design
(FuncDesign)

We introduce a task-specific meta-learning framework [5, 11]for the
task distribution𝑇 , outlined in Algorithm 1. The UniProt-Net here is
regarded as a function 𝑓𝜃 with an initial pretrained parameter 𝜃𝑚𝑒𝑡𝑎
involving linear classification layers. The primary objective of the
meta-learner is to acquire updated parameters of 𝜃𝑚𝑒𝑡𝑎 containing
high-order meta-information, facilitating swift adaptation to a new
task drawn from 𝑇 . Upon adapting the meta-learner to a new task
𝑇𝑖 ∼ 𝑇 , the 𝜃𝑚𝑒𝑡𝑎 undergoes updates, transforming into the task-
specific parameter 𝜃𝑖 through a few gradient descent iterations.
These parameter updates, executed based on the support set 𝑆𝑖
for 𝑇𝑖 , are referred to as inner loops. The number of inner loops is
denoted as 𝐿𝑖𝑛 . And loss function J𝑚𝑒𝑡𝑎 is utilized in the inner-loop
updates as:

𝜃
(𝑖𝑛)
𝑖

= 𝜃𝑚𝑒𝑡𝑎 −
𝐿𝑖𝑛−1∑︁
𝑡=0
(ℓ · ∇

𝜃
(𝑡 )
𝑖

L (𝑡 )
𝑆𝑖
) 𝑠 .𝑡 .

L (𝑡 )
𝑆𝑖

= E
𝑋𝑖 ,𝑌𝑖 ,𝑐∼𝑆𝑖

(
J𝑚𝑒𝑡𝑎 (𝑓𝜃 (𝑡 )

𝑖

(𝑐𝑖 |𝑌𝑖 ;𝑋𝑖 ), 𝑐𝑖 )
)
,

(7)

where 𝜃 (𝑡=0)
𝑖

equals to 𝜃𝑚𝑒𝑡𝑎 , and 𝜃
(𝑡 )
𝑖

denotes the fold-specific
parameters after 𝑡 inner loops. ℓ is the learning rate.𝑋𝑖 , 𝑌𝑖 represents
the native structure-sequence pairs, with 𝑐𝑖 as labels in 𝑆𝑖 . The
optimization of 𝜃𝑚𝑒𝑡𝑎 occurs on the query set 𝑄𝑖 ∼ 𝑄 across tasks
𝑇 during outer loops. Consequently, the update for 𝜃𝑚𝑒𝑡𝑎 at one
step as:

𝜃𝑚𝑒𝑡𝑎 ← 𝜃𝑚𝑒𝑡𝑎 −
𝑄∑︁
𝑄𝑖

(ℓ′ · ∇𝜃𝑚𝑒𝑡𝑎
L𝑄𝑖
) 𝑠 .𝑡 .

L𝑄𝑖
= E

𝑋
′
𝑖
,𝑌
′
𝑖
,𝑐
′∼𝑄𝑖

(
J𝑚𝑒𝑡𝑎 (𝑓𝜃 (𝑖𝑛)

𝑖

(𝑐
′
𝑖 |𝑌

′
𝑖 ;𝑋

′
𝑖 ), 𝑐

′
𝑖 )
) (8)

where ℓ′ is the learning rate of the outer loop. 𝑋
′
𝑖
, 𝑌
′
𝑖
represent

protein pairs with 𝑐
′
𝑖
labels in 𝑄𝑖 , similarly. The meta-objective

function J𝑚𝑒𝑡𝑎 varies across functional tasks. For instance, in bi-
nary categorization, it can be expressed as:

J𝑚𝑒𝑡𝑎 = −𝑦 (1 − 𝑝)𝛾 log(𝑝) − (1 − 𝑦)𝑝𝛾 log(1 − 𝑝)

=

{
−(1 − 𝑝)𝛾 log(𝑝), 𝑦 = 1
−𝑝𝛾 log(1 − 𝑝), 𝑦 = 0

(9)

where𝛾 > 0 denotes an adjustable factor.While in amulti-classification
task, it can be expressed as :

J𝑚𝑒𝑡𝑎 = −
𝐾∑︁
𝑖=1

𝑦𝑖 log(𝑝𝑖 ), (10)

where 𝐾 is the number of classification categories.

3.2 Zero-shot Learning for Mutant Effect
Prediction (MutDesign)

Mutation effect prediction is a non-parametric zero-shot learning in
the NARmanner. Given the unique architecture of ourMetaEnzyme,
we introduce a novel mutation effect scoring method that decouples
mutation scoring approaches, as illustrated in Figure 3. Formally,
considering a wild-type enzyme structure 𝑋𝑤𝑖𝑙𝑑 ∈ R𝑛×3×3 with its

Figure 3: The proposed decoupled mutational effect scoring.

corresponding wild-type sequence 𝑌𝑤𝑖𝑙𝑑 ∈ R𝑛 , the non-parametric
mutation effect prediction task aims to query the mutation-related
ranking for the mutation sequence 𝑍𝑚𝑢𝑡 ∈ R𝑛 , which is scored
based on the marginal probabilities logits𝑤𝑖𝑙𝑑 and the reference
distribution logits𝑚𝑢𝑡 as:

𝜌 (𝑌𝑤𝑖𝑙𝑑 | |𝑍𝑚𝑢𝑡 ) = 𝛿𝑚𝑢𝑡
(
logits𝑤𝑖𝑙𝑑 , 𝐿𝑆 (logits𝑚𝑢𝑡 )

)
,

𝑠 .𝑡 . logits𝑤𝑖𝑙𝑑 = 𝑝𝑢𝑛𝑖𝑝𝑟𝑜𝑡 (𝑋𝑤𝑖𝑙𝑑 ;𝑌𝑤𝑖𝑙𝑑 ) ∈ R𝑛×𝑀 ,
= {𝑦0, 𝑦1, · · · , 𝑦𝑛}

logits𝑚𝑢𝑡 = 𝑂𝑛𝑒𝐻𝑜𝑡 (𝑍𝑚𝑢𝑡 ) ∈ R𝑛×𝑀 ,
= {𝑧0, 𝑧1, · · · , 𝑧𝑛}

(11)

where 𝛿𝑚𝑢𝑡 is a distance measure between distributions of the
wild-type and mutant. M=20 corresponds to 20 commonly used
amino acid types. 𝑂𝑛𝑒𝐻𝑜𝑡 is one-hot encoding, with 𝑧𝑖𝑘 ∈ {0, 1}
s.t. 𝑧𝑖𝑘 ∼ 𝑧𝑖 , 0 ≤ 𝑘 < 𝑀 . 𝐿𝑆 denotes the label smoothing function
with a constant 𝜖 = 0.1 as:

𝐿𝑆 (logits𝑚𝑢𝑡 ) = logits𝑚𝑢𝑡 × (1 − 𝜖)+

(1 − logits𝑚𝑢𝑡 ) ×
𝜖

𝑀 − 1 = {𝑧′0, 𝑧
′
1, · · · , 𝑧

′
𝑛}.

(12)

Instantiating 𝛿𝑚𝑢𝑡 with a weighted cross-entropy function:

𝜌 (𝑌𝑤𝑖𝑙𝑑 | |𝑍𝑚𝑢𝑡 ) = −𝑊 ·
𝑛∑︁
𝑖=1

𝑧′𝑖 log(𝑦𝑖 ), (13)

where𝑊 = {𝑤1,𝑤2, · · · ,𝑤𝑛} ∈ R𝑛×1 is a weight matrix:

𝑤𝑖 =

{ 1−𝛼∑𝑛
𝑗=1𝑀𝑢𝑡𝑆𝑒𝑡 𝑗

, 𝑀𝑢𝑡𝑆𝑒𝑡𝑖 = 1
𝛼∑𝑛

𝑗=1 (1−𝑀𝑢𝑡𝑆𝑒𝑡 𝑗 )
, 𝑀𝑢𝑡𝑆𝑒𝑡𝑖 = 0 (14)

where 𝑀𝑢𝑡𝑆𝑒𝑡 ← (𝑌𝑤𝑖𝑙𝑑 == 𝑍𝑚𝑢𝑡 ) ∈ R𝑛,∀𝑀𝑢𝑡𝑆𝑒𝑡𝑖 ∈ {0, 1}, and
𝑀𝑢𝑡𝑆𝑒𝑡 implies all mutant positions. 𝛼 = 0.5.

From Eq. 11, we observe that: 1) the computation of wild-type
and mutant proteins is independent; 2) deep network flow (such
as UniProt-Net) predicts only the wild-type proteins, requiring a
single inference due to the insight that mutant sequences stem from
unique wild-type proteins through evolution or modification; 3)
large-scale mutant sequences do not necessitate a network model,
and they can be converted to a distribution representation based
on one-hot encoding simply. This decoupling method provides a
significant advantage in terms of speed, particularly for sequence
datasets exceeding a million entries and for scenarios involving
multi-site/higher-order mutations. Additionally, as the computation
process relies entirely on the pre-trained parameters of UniProt-Net
and makes no distribution assumptions about the query mutant en-
zymes, it is non-parametric. Section 4.3.2 presents detailed analysis.
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3.3 Autoregressive Generalization for Sequence
Generation (SeqDesign)

For the conditional sequence generation, we shift the entire frame-
work to an AR mode. Specifically, when provided with a candidate
structure backbone 𝑋𝑐 , the objective is to generate an unknown
protein sequence 𝑌𝑠𝑎𝑚𝑝𝑙𝑒 as:

𝑌𝑠𝑎𝑚𝑝𝑙𝑒 =

𝑛∏
𝑖=0

𝑝𝑢𝑛𝑖𝑝𝑟𝑜𝑡 (𝑦𝑖 |𝑦𝑖−1, · · · , 𝑦0;𝑋𝑐 ). (15)

This density is represented using a Vanilla Transformer decoding
paradigm. AR decoding typically conducts SeqDesign tasks for
general proteins and functional enzymes.

4 IN SILICO EXPERIMENTS
4.1 Setups
Training Set. CATH dataset [16] is divided into training, valida-
tion, and testing sets, containing 18,204, 608, and 1,120 structure-
sequence pairs, respectively. The training set is utilized to train the
UniProt-Net in the pretraining stage.

Evaluation Sets. FuncDB𝑏𝑖 : Approximately 700 enzymes with
experimentally determined structure-sequence pairs across 10 folds
from RCSB are collected. Each fold is crafted with an equal num-
ber of enzymes and balanced with non-enzyme negative samples.
This dataset is used for enzyme function prediction and design.
FuncDB𝑚𝑢𝑙𝑡𝑖 is a subset of FuncDB𝑏𝑖 dataset, comprising solely pos-
itive samples, for multi-class functional prediction tasks—precisely
predicting the fold level towhich an enzyme belongs.MutDB𝑃𝑟𝑜𝑡𝐺𝑦𝑚
[36] is intricately designed for protein fitness, encompassing an
expansive collection of over 217 deep mutational scanning assays
and millions of mutant sequences. SeqDesignDB𝑃𝑒𝑡 comprises
178 proteins identified for the capability to degrade plastics [12].
SeqDesignDB𝐻𝑦𝑏𝑟𝑖𝑑 is the alias of FuncDB𝑚𝑢𝑙𝑡𝑖 for differentia-
tion. SeqDesignDB𝐴𝐿𝐿 is extracted from the testing set of CATH.
SeqDesignDB𝑇𝑠50 and SeqDesignDB𝑇𝑠500 correspond to Ts50 and
Ts500 [26] for validating generalization.

Implementation. The AdamW optimizer with a batch size of 5
and a learning rate of 1e-3 to train the UniProt-Net. The GeoStruc-
Encoder consists of 4 layers with a dropout of 0.1. The node hidden
dimensions of scalars and vectors are 1024 and 256. The adapter and
decoder have 8 multi-head self-attention layers, with an embedding
dimension of 512 and an attention dropout of 0.1. For meta-learning
configures, the number of inner loops is set to 5, and the batch sizes
of the support set and query set each are both 10. The updated
learning rates 𝑙 ′ and 𝑙 are set to 1e-3, and the Adam optimizer is
used. The parameters of EnAd-Module are fixed. And 1 NVIDIA
A100 80GB GPU is used.

4.2 Few-shot Learning for Function Prediction
(FuncDesign)

4.2.1 Fold-independent Prediction. Meta Learning for Fold inde-
pendent prediction aims to predict unseen enzyme fold classes.
Based on FuncDB𝑏𝑖 , data from 9 folds are used as the training set,
leaving one fold as the evaluation. Due to the limited samples in
each fold and their mutual independence, we treat each fold as
an independent task, leading to the application of meta-learning

Types Ours ESM-1F

M Z F M Z F

Fold\0 0.923 0.897 0.869 0.906 0.879 0.863
Fold\1 0.915 0.907 0.864 0.872 0.841 0.813
Fold\2 0.932 0.894 0.852 0.906 0.888 0.869
Fold\3 0.880 0.869 0.843 0.850 0.846 0.841
Fold\4 0.925 0.897 0.869 0.907 0.872 0.847
Fold\5 0.879 0.863 0.835 0.889 0.872 0.860
Fold\6 0.906 0.888 0.847 0.879 0.832 0.801
Fold\7 0.880 0.869 0.852 0.860 0.850 0.813
Fold\8 0.889 0.872 0.860 0.880 0.863 0.832
Fold\9 0.896 0.888 0.877 0.863 0.855 0.822

Avg. 0.903 0.884 0.857 0.881 0.860 0.836
(Std.) (0.020) (0.015) (0.013) (0.020) (0.018) (0.024)

Table 1: Comparison of enzyme function prediction at the
unseen fold level. M: Meta-finetuning; Z: Zero-shot learning;
F: General finetuning. Avg.(Std.) denotes the average and
standard deviation of results across all folds. Fold\i indicates
training on all folds except Fold-i and evaluating solely on
Fold-i.

for task-based learning. ‘Fold’ here denotes the three-dimensional
configuration of secondary structural elements, such as alpha he-
lices and beta sheets, that define a specific protein or protein group.
Proteins sharing similar folds usually exhibit substantial structural
resemblances, despite variations in their sequences and functions.
Classifying folds can provide valuable insights into the evolutionary
connections between proteins. As shown in the table 1, Ours(M)
involves meta-leaner as a base, followed by meta-finetuning for fur-
ther refinement. And Ours(Z) directly employs zero-shot learning
for trained meta-learner. Ours(M) yields superior results, highlight-
ing the significant improvement brought about by meta-finetuning.

4.2.2 Fold-agnostic Prediction. Ours(F) serves as a control group,
primarily comparing few-shot learning with conventional finetun-
ing methods. It represents fold-agnostic prediction, excluding
meta-learning learning. We combine positive and negative sam-
ples from 9 folds, randomly allocating 80% as the training set and
20% as the evaluation set, treating the remaining 1 fold as an out-
of-distribution generalization. For unseen folds, we observed that
task-specific learning based on meta-learning is more effective with
the average value of Ours(M) at 0.903 exceeding that of Ours(F) at
0.857. Additionally, ESM-IF, acting as a baseline due to its outstand-
ing representation and similar modalities, clearly demonstrates the
superiority of our model in terms of generalization.

4.2.3 Enzyme Fold Recognition. Furthermore, we conduct predic-
tions on more challenging fold types based on FuncDB𝑚𝑢𝑙𝑡𝑖 , essen-
tially involving a less data-intensive multi-task enzyme function
prediction, as shown in Figure 4. This setup aims to predict, within
enzymes with mixed folds, the specific fold to which an enzyme be-
longs. We select ESM-IF and GVP as structure-to-sequence models
as baselines, as they also utilize N, C𝛼 , and C as standard inputs.
These comparisons validate the superior structural representation
capabilities by a largemargin (Ours: 17.3%P@1,31.7%P@2,41.0%P@3).
We employ ESM-2 as a language modality input for comparison
to confirm its sequence-only representation capabilities. Although
ESM-2 (11.5%P@1,24.5%P@2,36.5%P@3) is a little better than the
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Figure 4: Comparing the folding prediction abilities of dif-
ferent models. P@k denotes the top-k precision.

earlier GVP, but is far below the performance of our models, which
demonstrates enhanced generalization ability due to the incorpora-
tion of structural information.

Overall, while we have undertaken initial explorations in the
few-shot setting, the overall accuracy remains relatively low. This
is attributed to limitations in the quantity of available data and the
diversity of fold types. This compels us to collect data encompassing
a broader range of categories.

4.3 Non-parametric Zero-shot Learning for
Mutation Effects (MutDesign)

Figure 5: Spearman’s rank correlation between predicted
scores and experimental measurements on ProteinGym.
Comparison among protein language models and inverse
folding models.

4.3.1 Mutant Effect Prediction. To ensure a comprehensive and un-
biased comparison, we selected prominent protein language models
and inverse folding models as benchmarks, as illustrated in Figure 5

(a). All baseline models employ zero-shot learning for mutation
effects evaluation through theMutDB𝑃𝑟𝑜𝑡𝐺𝑦𝑚 , which encompasses
millions of mutations. Note that our model consists of two configu-
rations: Ours(w/o finetune) directly infers based on UniProt-Net,
yielding an average 𝜌 of 43.9%; And Ours(w/ finetune) utilizes the
meta-finetuned UniProt-Net, resulting in an average 𝜌 of 44.5%,
which consistently achieves the best matching rank, implying that
the in-domain finetuning on enzyme data contributes to enhanced
overall performance in mutation prediction. In contrast, the opti-
mal protein language model (VESPA)[31] achieved an average 𝜌
of 43.7%, while the optimal inverse folding model (ESM-IF) scored
42.2%. This performance superiority can be attributed to ourmodel’s
dual advantage, encompassing both contextual and structural trans-
fer learning within the proposed training paradigm.

Throughputs FLOPs #Params
#Mutant 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Baseline 41.0 41.5 42.7 42.2 41.2 41.5 41.9 41.3 41.1 41.3 52.7k 124.82MOurs 17k 34k 51k 67k 83k 101k 116k 126k 131k 133k

Table 2: Space and time complexity analyses conducted with
an average input protein length 500. Throughputs: samples
per second; FLOPs: Gigabyte.

4.3.2 Complexity of Decoupled Scoring Mechanism. The complex-
ity analysis was carried out utilizing a single NVIDIA A100 80GB
GPU, as outlined in Table 2. We utilize the widely accepted fitness
scoring metric, as referenced in ESM-1v [32], as our baseline. By
maintaining a fixed batch size of 1 and an average protein length of
500 amino acids, we vary the number of mutant proteins from 500
to 5000. Space complexity is governed by the number of parameters,
where both the baseline and our decoupling method exhibit rela-
tively small parameter counts (124.82M). Regarding time complexity,
reflected through Throughputs and FLOPs, both the baseline and
our method showcase nearly identical FLOPs (52.7k). As we incre-
ment the average number of mutant proteins from 500 to 5000, our
decoupling method’s advantage further amplifies, although this as-
cent in advantage slows down due to hardware memory limitations.
Our approach requires only one inference step for the wild-type pro-
tein to acquire its probability distribution, subsequently facilitating
swift calculation of mutant differences between mutant sequences
and the inferredwild-type distributions. This significantly expedites
the process. In contrast, the baseline necessitates model inference
for each mutant protein, resulting in reduced speed. Overall, our
model demonstrates markedly enhanced throughput performance,
especially noticeable under conditions involving a substantial num-
ber of mutations. Compared to the mainstream baseline scoring
method, ours boasts a speed advantage ranging from 4k to 30k
times faster. This presents a promising avenue for future research,
particularly in multi-site/high-order mutation inference, thereby
expanding the possibilities for exhaustive exploration.

4.4 Parametric Conditional Protein Generation
(SeqDesign)

Switching to the NAR mode and coordinating with the lower tri-
angular mechanism, MetaEnzyme is employed for SeqDesign. The
amino acid recovery (AAR) metric is adopted.
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Figure 6: Comparison on the CATH, Ts50, and Ts500 datasets. The Short and Single-chain are subsets of CATH test set ALL.

4.4.1 Internal Validation of General Proteins. Figure 6 shows Se-
qDesign comparisons at general proteins, with detailed benchmarks
in Appendix.

In-domain Protein Assessment. In the evaluation of the com-
prehensive SeqDesignDB𝐴𝐿𝐿 (‘ALL’), ourMetaEnzyme demonstrates
superior performances, achieving an impressive AAR score of 54.94%.
This surpasses the mainstream ProteinMPNN, PiFold, and ESM-IF
consistently by a substantial margin. In alignment with [16], we fur-
ther assess specific subsets within ‘ALL’, namely the ‘Short’ dataset
(comprising protein sequences with a length ≤ 100 residues) and
the ‘Single-chain’ dataset (consisting of single-chain proteins cat-
aloged in the Protein Data Bank). Notably, MetaEnzyme exhibits
outstanding performance on both ‘Single-chain’ (39.17%) and ‘Short’
datasets (40.92%) compared to alternative methods.

Out-of-domain Generalization. For a comprehensive compar-
ison of the generalizability to out-of-domain datasets, we present
results for the SeqDesignDB𝑇𝑠50 and SeqDesignDB𝑇𝑠500 datasets.
Even in these diverse contexts, MetaEnzyme consistently demon-
strates improvements, achieving a remarkable AAR score of 62.68%
in Ts50 and a breakthrough AAR score of 60.77% in Ts500.

4.4.2 Generalization on Functional Enzymes. Conditional SeqDe-
sign for PET Enzymes. Polyethylene terephthalate (PET) is a
widely used synthetic plastic polymer globally, known for its chem-
ical inertness due to ester bonds and aromatic nuclei. This makes
PET resistant to degradation, raising environmental concerns. En-
zymatic degradation offers a promising and eco-friendly solution
to address the ecological challenge of plastic waste, particularly
polyester waste recycling. Despite the potential, our understanding
of PET-degrading enzymes is limited. Machine learning-aid tech-
niques [9, 29, 33] might accelerate the discovery of PET hydrolases.
To support this effort, we curated the SeqDesignDB𝑃𝑒𝑡 dataset for
SeqDesign analysis, serving as a valuable resource. Figure 7(PET)
illustrates AAR scores for PET hydrolases, showing performance
improvements up to 64.35% over baselines (62.56% ESM-IF, 45.40%

Figure 7: AAR evaluation of functional enzyme design.

GVP). This suggests strong generalization capabilities for unseen
functional enzymes, paving the way for future analysis and PET-
enzyme redesign.

Conditional SeqDesign for Fold-aware Enzymes. In the ex-
amination of enzyme performance across diverse fold levels within
the SeqDesign task, we systematically categorized them into 10
distinct classes utilizing SeqDesignDB𝐻𝑦𝑏𝑟𝑖𝑑 , as presented in Fig-
ure 7(HybridEnz).When compared to alternative SeqDesignmodels,
our attained AAR performance of 61.83% consistently outperforms
the baseline scores (60.31% and 44.68%). This noteworthy result
underscores a persistently elevated overall performance across a
spectrum of hybrid fold types, emphasizing the robustness and
effectiveness of our SeqDesign model.

4.5 Initialization Analysis and Ablation Study
To underscore the significance of pretrained modules, we conducted
an ablation study to assess the impact of the pretrained EnAd-
Module (PEM) and the pretrained Context-Module (PCM). The
results, outlined in Table 3, highlight their substantial contributions
to overall improvement. Specifically, when comparing #1 vs. #3
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# PEM PCM Perplexity Recovery(%)

Val Test Dev Test

1 ✗ ✗ 7.02 6.83 36.22 37.04
2 ✗ ✓ 6.13 6.40 40.11 42.21
3 ✓ ✗ 4.80 4.49 47.65 48.25
4 ✓ ✓ 4.03 3.88 53.15 54.94

Table 3: Ablation study of pretrained modules on CATH val-
idation and test set (PEM: Pretrained EnAd-Module; PCM:
Pretrained Context-Module). The best results are bolded.

and #1 vs. #2, it is evident that the pretrained structural features
play a pivotal role in boosting performance. This aligns seamlessly
with our rationale for incorporating prior structural knowledge.
Moreover, given that the PCM module operates downstream of
PSM, it is likely to directly benefit from the representation capa-
bilities of PSM. Surprisingly, in the isolated comparison of #1 vs.
#2, significant performance is enhanced even when utilizing only
the PCM without the initialization parameters of the PEM. This
intriguing finding, previously unexplored in SeqDesign studies,
suggests that the PCM has acquired substantial knowledge of the
protein language, thereby contributing significantly to improved
SeqDesign performance. This observation gains further support in
the comparison between #3 and #4, solidifying the conclusion that
the PCM’s acquired knowledge plays a vital role, diminishing the
reliance on initialization parameters. The comprehensive analysis
presented here highlights the logical and noteworthy advancements
brought about by these pretrained modules in protein design.

5 IN VITROWET EXPERIMENTAL
VALIDATION

Figure 8: Mutation effect analysis of P-protein. (a) The effects
predicted by ourmodel alongside the reference experimental
effects. (b) The normalized reference scores and predicted
scores offer an intuitive distribution trend. Light blue squares
indicate reference values, while orange circles represent pre-
dicted values.

To further validate the reliability, we selected a commercially
relevant enzyme with potential applications in production, the re-
versible glycine cleavage system (rGCS) [28, 39, 48], for wet lab
experimentation. rGCS, known for efficiently fixing carbon to pro-
duce glycine in vitro, currently exhibits relatively low yields in
glycine production. Traditional rational enzyme design for rGCS
has shown limited improvements in catalytic activity and other
attributes. The rGCS, consisting of three proteins (P-protein decar-
boxylase, T-protein aminomethyltransferase, and H-protein shut-
tle), can fix two different one-carbon carbon sources to synthesize
the two-carbon compound glycine. We focus on P-protein redesign
in this work. For details on the structure and mutation preparation
processes, please refer to Appendix.

Utilizing rational design principles, we strategically chose muta-
tion sites with anticipated substantial influence on mutation effects.
Wet lab experiments assessing carbon fixation were conducted for
approximately 40 guided mutations, and their effects are illustrated
in Figure 8. The wet lab outcomes exhibit close alignment with in
silico predictions, demonstrating a notable Spearman’s 𝜌 ranking
correlation of 70.1%. These results reinforce the practical efficacy
of MetaEnzyme, pinpointing crucial sites for subsequent iterations
in enhancing the P-protein’s carbon-fixing capabilities.

6 RELATEDWORK
In the dynamic landscape of protein design, AI-driven approaches,
exemplified by inverse folding [2, 13, 38, 50], have made signifi-
cant strides. Tools such as Structured Transformer [16] and GVP-
GNN [19] have pioneered conditional protein generation, while
recent models like ProteinMPNN [8], PiFold [8], and ESM-IF [15]
showcase advancements in sequence recovery. AlphaFold2 [20],
RosettaFold [3], OmegaFold [46], helixfold [10], ESMFold [27] stand
out as influential structure prediction models. In the niche domain
of enzyme engineering [4, 14, 21–25, 40, 43], language and structure
models such as DeepSequence [44],ESM-1v [32, 41, 42], Trancep-
tion [35], ESM-2 [27] employ few/zero-shot learning for mutation
fitness. Our work extends these innovations, leveraging learned
structural and linguistic insights, to encompass comprehensive de-
sign tasks, addressing challenges in general proteins and functional
enzymes. Notably, the field grapples with the need for broader gen-
eralization across diverse proteins and presents opportunities for
advancing functionality prediction.

7 LIMITATIONS AND CONCLUSIONS
This work presents a pioneering MetaEnzyme framework tailored
for crucial enzyme tasks, unveiling an architectural breakthrough
with far-reaching implications across diverse protein engineering
applications. MetaEnzyme underscores the prospect of transition-
ing from a universal to a unified enzyme design, enabling seamless
adaptation across various functionalities through straightforward
architectural modifications or lightweight adjustments. Despite the
resource-intensive wet lab validation in this study, certain lim-
itations are acknowledged: 1) restricted datasets of functional
enzymes; 2) the necessity for more robust models to enhance gener-
alization; and 3) a desire for additional wet lab experiments. Over-
coming these challenges is crucial for advancing the field, and
bolstering the applicability of enzyme design models.
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