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1 GENERAL PROTEINS FOR SEQDESIGN TASK
1.1 Baselines
The histogram depicted in Figure 5 within the main body, along
with the comprehensive information provided in Table 1, show-
cases a selection of noteworthy works in the field. These works,
predominantly open-source and easily reproducible, offer valu-
able insights into computational enzyme design. Notably, studies
falling into Group 1 and Group 3 of Table 1 have been trained on
a relatively modest-scale CATH training set, comprising approxi-
mately 18k training pairs. Despite the modest training data, earlier
benchmarks such as Structured Transformer [5] and GVP-GNN [6]
remain influential, boasting competitive performances and light-
weight architectures. Additionally, ProteinMPNN [1] by Baker’s
group has garnered attention for its advancements in performance
and speed, backed by impressive biological validation experiments.
PiFold [3] follows suit with further efficiency and effectiveness
enhancements. Noteworthy among the selections in Group 2 is
ESM-IF [4], distinguished by its robust open-source nature and
robust data augmentation strategies, trained on a vast dataset of
approximately 12M training pairs sourced from AlphaFoldDB [12].
It’s worth mentioning that our MetaEnzyme architectures share
similarities with ESM-IF, hence we choose ESM-IF as a primary
baseline for comparison in our study.

1.2 Detailed Comparison for General Protein
Sequence Design

Comparison of the CATH, Ts50, and Ts500 datasets using perplexity
and AAR metrics, as shown in Table 1.

2 DETAILS OF IN VITROWET EXPERIMENTS
A schematic representation of the structure of the reversible glycine
cleavage system (rGCS)[8, 10, 13] is shown in Figure 1.

2.1 Enzyme Preparation
The genes coding for H, P, and T proteins were amplified from E.
coli K12 genomic DNA, and then cloned into the expression vector
pET28a (NdeI and XhoI). Then synthesized the genes coding for
the mutants of P-protein. E. coli BL21 (DE3) harboring the resulting
constructs was cultured in LB medium supplemented with 50 mg/L
of kanamycin or 100mg/L of ampicillin at 37 °C until the OD600 of
the culture reached 0.6-0.8. Isopropyl-beta-D-thiogalactopyranoside
(IPTG) was added to a final concentration of 0.2mM to induce
protein expression for 12 h at 16 °C. The H-protein was expressed
with 150 𝜇𝑀 lipoic acid added exogenously to obtain lipoylated
H-protein directly.

All the proteins were purified using His-tag affinity chromatog-
raphy (ÄKTA,GE Healthcare, USA) equipped with a nickel column
(HisTrapTM HP, 5 mL). Buffer A containing 500mM NaCl, 50mM
Tris-HCl, and 20mM imidazole (pH = 7.4) was used to elute non-
target proteins, and buffer B containing 500mM NaCl, 50mM Tris-
HCl, and 500mM imidazole (pH = 7.4) was used to elute the target

Figure 1: Conceptual representation of the structure of the
reversible glycine cleavage system (rGCS). The glycine cleav-
age system comprises four proteins: T, P, L, and H proteins.
These proteins do not form stable complexes, with the in-
herent carbon-fixing role of the P protein being the primary
focus of our investigation. Specifically, T-protein is respon-
sible for fixing one carbon (formaldehyde), P-protein fixes
another carbon (carbon dioxide), and H-protein shuttles be-
tween the two enzymes to facilitate the transfer of amino
methyl groups.

protein adsorbed in the nickel column. The purified enzymes were
checked by SDS-PAGE.

2.2 Measurement of Glycine Production Rate
The rGCS reaction mixture contained 50 mM Tris-HCl (pH 7.5),
0.5 mM THF, 20 mM formaldehyde, 20 mM DTT, 0.5 𝜇𝑀 PLP, 50
mM NH4Cl, 50mM NaHCO3, 5 𝜇𝑀 P protein or mutant, 3 𝜇𝑀 T
protein, and 40 𝜇𝑀 H protein. Glycine concentration in the reac-
tion mixture was determined by HPLC after pre-column dansyl
chloride derivatization. To this end, 40 𝜇𝐿 of a reaction mixture was
mixed with 160 𝜇𝑀 of 0.2M NaHCO3 and 200 𝜇𝑀 of 20 mM dansyl
chloride in acetonitrile. Derivatization was carried out at 30℃ for
30 minutes. The samples were analyzed on an Agilent InfinityLab
Poroshell HPH-C18 4.6×100 mm, 2.7-Micron column (Agilent, USA)
and Agilent 1260 Infinity HPLC system at DAD 338 nm after OPA
derivatization (Agilent, USA) were used to measure the concentra-
tion of glycine. The mobile phase is composed of acetonitrile and
20mM potassium phosphate buffer pH6.0 (25:75 v/v) at a flow rate
of 0.8 mL/min.
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