
A Injective Change-of-Variable Formula and Stacking Injective Flows

We first derive (5) from (3). By the chain rule, we have:
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(
g†φ(x)

)
= J[fθ]

(
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)
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(
g†φ(x)

)
. (13)

The Jacobian-transpose Jacobian term in (3) thus becomes:
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where the second equality follows from the fact that J[hη]>(g†φ(x)), J[fθ]

>(f†θ (x))J[fθ](f
†
θ (x)),

and J[hη](g†φ(x)) are all square d× d matrices; and the third equality follows because determinants
are invariant to transpositions. The observation that the three involved matrices are square is the
reason behind why we can decompose the change-of-variable formula for gφ as applying first the
change-of-variable formula for hη , and then applying it for fθ.

This property, unlike in the case of square flows, does not always hold. That is, the change-of-variable
formula for a composition of injective transformations is not necessarily equivalent to applying the
injective change-of-variable formula twice. To see this, consider the case where g1 : Rd → Rd2
and g2 : Rd2 → RD are injective, where d < d2 < D and let g = g2 ◦ g1. Clearly g is injective by
construction, and thus the determinant from its change-of-variable formula at a point z ∈ Rd is given
by:

detJ[g]>(z)J[g](z) = detJ[g1]>(z)J[g2]> (g1(z))J[g2] (g1(z))J[g1](z), (15)

where now J[g1](z) ∈ Rd2×d and J[g2](g1(z)) ∈ RD×d2 . Unlike the determinant from (14), this
determinant cannot be easily decomposed into a product of determinants since the involved matrices
are not all square. In particular, (15) need not match:

detJ[g1]>(z)J[g1](z) · detJ[g2]>(g1(z))J[g2](g1(z)), (16)

which would be the determinant terms from applying the change-of-variable formula twice. Note
that this observation does not imply that a flow like g could not be trained with our method, it simply
implies that the detJ[g]>(z)J[g](z) term has to be considered as a whole, and not decomposed into
separate terms. It is easy to verify that in general, only an initial d-dimensional square flow can be
separated from the overall Jacobian-transpose-Jacobian determinant.

B Conjugate Gradients

We outline the CG algorithm in Algorithm 1, whose output we write as CG(A; ε) in the main
manuscript (we omit the dependance on the tolerance δ for notational simplicity). Note that CG
does not need access to A, just a matrix-vector product routine against A, mvp_A(·). If A is
symmetric positive definite, then CG converges in at most d steps, i.e. its output matches A−1ε
and the corresponding residual is 0, and CG uses thus at most d calls to mvp_A(·). This convergence
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holds mathematically, but can be violated numerically if A is ill-conditioned, which is why the τ < d
condition is added in the while loop.

Algorithm 1: CG

Input :mvp_A(·), function for matrix-vector products against A ∈ Rd×d
ε ∈ Rd
δ ≥ 0, tolerance

Output :A−1ε
u0 ← 0 ∈ Rd // current solution
r0 ← −ε // current residual
q0 ← r0
τ ← 0
while ||rτ ||2 > δ and τ < d do

vτ ← mvp_A(qτ )
ατ ← (r>τ rτ )/(q>τ vτ )
uτ+1 ← uτ + ατqτ
rτ+1 ← rτ − ατvτ
βτ ← (r>τ+1rτ+1)/(r>τ rτ )
qτ+1 ← rτ+1 + βτqτ
τ ← τ + 1

end
return uτ

C Automatic Differentiation

Here we summarize the relevant properties from forward- and backward-mode automatic differen-
tiation (AD) which we use in the main manuscript. Let f be the composition of smooth functions
f1, . . . , fL, i.e. f = fL ◦ fL−1 ◦ · · · ◦ f1. For example, in our setting this function could be fθ, so
that f1 = pad, and the rest of the functions could be coupling layers from a D-dimensional square
flow (or the functions whose compositions results in the coupling layers). By the chain rule, the
Jacobian of f is given by:

J[f ](z) = J[fL](f̄L−1(z)) · · ·J[f2](f̄1(z))J[f1](z), (17)

where f̄l := fl ◦ fl−1 ◦ · · · ◦ f1 for l = 1, 2, . . . , L − 1. Forward-mode AD computes products
from right to left, and is thus efficient for computing jvp operations. Computing J[f ](z)ε is thus
obtained by performing L matrix-vector multiplications, one against each of the Jacobians on the
right hand side of (17). Backward-mode AD computes products from left to right, and would thus
result in significantly more inefficient jvp evaluations involving L − 1 matrix-matrix products,
and a single matrix-vector product. Analogously, backward-mode AD computes vjps of the form
v>J[f ](z) efficiently, using L vector-matrix products, while forward-mode AD would require L− 1
matrix-matrix products and a single vector-matrix product.

Typically, the cost of evaluating a matrix-vector or vector-matrix product against J[fl+1](f̄l) (or
J[f1](z)) is the same as computing f̄l+1(z) from f̄l(z), i.e. the cost of evaluating fl+1 (or the cost of
evaluating f1 in the case of J[f1](z)) [3]. jvp and vjp computations thus not only have the same
computational cost, but this cost is also equivalent to a forward pass, i.e. computing f .

When computing f , obtaining a jvp with forward-mode AD adds the same memory cost as another
computation of f since intermediate results do not have to be stored. That is, in order to com-
pute J[fl](f̄l−1(z)) · · ·J[f1](z)ε, we only need to store J[fl−1](f̄l−2(z)) · · ·J[f1](z)ε and f̄l−1(z)
(which has to be stored anyway for computing f ) in memory. On the other hand, computing a
vjp with backward-mode AD has a higher memory cost: One has to first compute f and store all
the intermediate f̄l(z) (along with z), since computing v>J[fL](f̄L−1(z)) · · ·J[fl](f̄l−1(z)) from
v>J[fL](f̄L−1(z)) · · ·J[fl+1](f̄l(z)) requires having f̄l−1(z) in memory.

In practice, we use PyTorch’s implementation of backpropagation to compute vjps, and as mentioned
in the main manuscript, we use our own implementation of forward-mode AD for jvps. We achieve
this by having every layer and non-linearity fl in our networks not only take an input x, but also
a vector ε of the same length as x; and not just output the usual output fl(x), but also J[fl](x)ε
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(for linear layers, this is equivalent to applying the layer without the bias to ε, and for element-wise
non-linearities J[fl](x) is a straightforward-to-compute diagonal matrix and so J[fl](x)ε can be
obtained though element-wise products).

D Summary of our Proposed Methods

We summarize our methods for computing/estimating the gradient of the log determinant arising
in maximum likelihood training of rectangular flows. Algorithm 2 shows the exact method, where
jvp(f, z, ε) denotes computing J[f ](z)ε using forward-mode AD, and εi ∈ Rd is the i-th standard
basis vector, i.e. a one-hot vector with a 1 on its i-th coordinate. Note that ∂/∂θ log detAθ is
computed using backpropagation. The for loop is easily parallelized in practice. For density
evaluation, rather than returning ∂/∂θ log detAθ, the output of Algorithm 2 becomes log detAθ.

Algorithm 3 shows our stochastic method, where vjp(f, z, v) denotes v>J[f ](z) computed through
backward-mode AD. As mentioned in the main manuscript, the εk vectors can be sampled from any
zero-mean, identity-covariance distribution and not just a Gaussian. For added clarity, we change
the CG notation and use CG(mvp_A(·), ε, δ) to denote the output of the conjugate gradients method.
Backpropagation is once again used to compute ∂/∂θ(sθ/K), and the for loop is again parallelized.
Note that, unlike Algorithm 2, sθ/K is not a valid log determinant estimate, and Algorithm 3 should
only be used for gradient estimates during training, and not density evaluation at test time.

Algorithm 2: Exact method

Input :fθ : Rd → RD
x ∈ RD

Output :∂/∂θ log detJ>θ Jθ
z ← f†θ (x)
for i = 1, . . . , d do

vi ← jvp(fθ, z, εi)
end
Jθ ← (v1| . . . |vd)
Aθ ← J>θ Jθ
return ∂/∂θ log detAθ

Algorithm 3: Stochastic method

Input :fθ : Rd → RD
x ∈ RD
K ∈ N+

δ ≥ 0, CG tolerance
Output :Unbiased stochastic approximation of ∂/∂θ log detJ>θ Jθ
z ← f†θ (x)

mvp_A(·)← vjp(fθ, z, jvp(fθ, z, ·))>
sθ ← 0
for k = 1, . . . ,K do

εk ∼ N (0, Id)
sθ ← sθ + stop_gradient(CG(mvp_A(·), εk, δ)>) · mvp_A(εk)

end
return ∂/∂θ(sθ/K)

E Batch Normalization

We now explain the issues that arise when combining batch normalization with vjps. These issues
arise not only in our setting, but every time backward-mode AD has to be called to compute or
approximate the gradient of the determinant term. We consider the case with a batch of size 2, x1 and
x2, as it exemplifies the issue and the notation becomes simpler. Consider applying fθ (without batch
normalization) to each element in the batch, which we denote with the batch function Fθ:

Fθ(x1, x2) := (fθ(x1), fθ(x2)) . (18)
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The Jacobian of Fθ clearly has a block-diagonal structure:

J[Fθ](x1, x2) =

(
J[fθ](x1) 0

0 J[fθ](x2)

)
. (19)

This structure implies that relevant computations such as vjps, jvps, and determinants parallelize
over the batch:

(v1, v2)>J[Fθ](x1, x2) =
(
v>1 J[fθ](x1), v>2 J[fθ](x2)

)
(20)

J[Fθ](x1, x2)

(
ε1
ε2

)
=

(
J[fθ](x1)ε1
J[fθ](x2)ε2

)
detJ[Fθ]

>(x1, x2)J[Fθ](x1, x2) = detJ[fθ]
>(x1)J[fθ](x1) detJ[fθ]

>(x2)J[fθ](x2).

In contrast, when using batch normalization, the resulting computation FBNθ (x1, x2) does not have a
block-diagonal Jacobian, and thus this parallelism over the batch breaks down, in other words:

(v1, v2)>J
[
F

(BN)
θ

]
(x1, x2) 6=

(
v>1 J[fθ](x1), v>2 J[fθ](x2)

)
(21)

J
[
FBNθ

]
(x1, x2)

(
ε1
ε2

)
6=
(
J[fθ](x1)ε1
J[fθ](x2)ε2

)
detJ

[
FBNθ

]>
(x1, x2)J

[
FBNθ

]
(x1, x2) 6= detJ[fθ]

>(x1)J[fθ](x1) detJ[fθ]
>(x2)J[fθ](x2),

where the above 6= signs should be interpreted as “not generally equal to” rather than always not
equal to, as equalities could hold coincidentally in rare cases.

In square flow implementations, AD is never used to obtain any of these quantities, and the Jacobian
log determinants are explicitly computed for each element in the batch. In other words, this batch
dependence is ignored in square flows, both in the log determinant computation, and when back-
propagating through it. Elaborating on this point, AD is only used to backpropagate (with respect
to θ) over this explicit computation. If AD was used on FBNθ to construct the matrices and we
then computed the corresponding log determinants, the results would not match with the explicitly
computed log determinants: The latter would be equivalent to using batch normalization with a
stop_gradient operation with respect to (x1, x2) but not with respect to θ, while the former would
use no stop_gradient whatsoever. Unfortunately, this partial stop_gradient operation only with
respect to inputs but not parameters is not available in commonly used AD libraries. While our
custom implementation of jvps can be easily “hard-coded” to have this behaviour, doing so for vjps
would require significant modifications to PyTorch. We note that this is not a fundamental limitation
and that these modifications could be done to obtain vjps that behave as expected with a low-level
re-implementation of batch normalization, but these fall outside of the scope of our paper. Thus, in
the interest of performing computations in a manner that remains consistent with what is commonly
done for square flows and that allows fair comparisons of our exact and stochastic methods, we avoid
using batch normalization.

F FID and FID-like Scores

For a given dataset {x1, . . . , xn} ⊂ RD and a set of samples generated by a model {x(g)1 , . . . , x
(g)
m } ⊂

RD, along with a statistic T : RD → Rr, the empirical means and covariances are given by:

µ̂ :=
1

n

n∑
i=1

T (xi), Σ̂ :=
1

n− 1

n∑
i=1

(T (xi)− µ̂) (T (xi)− µ̂)
> (22)

µ̂(g) :=
1

m

m∑
i=1

T
(
x
(g)
i

)
, Σ̂(g) :=

1

m− 1

m∑
i=1

(
T
(
x
(g)
i

)
− µ̂(g)

)(
T
(
x
(g)
i

)
− µ̂(g)

)>
. (23)

The FID score takes T as the last hidden layer of a pre-trained inception network, and evaluates
generated sample quality by comparing generated moments against data moments. This comparison
is done with the squared Wasserstein-2 distance between Gaussians with corresponding moments,
which is given by: ∣∣∣∣∣∣µ̂− µ̂(g)

∣∣∣∣∣∣2
2

+ tr

(
Σ̂ + Σ̂(g) − 2

(
Σ̂Σ̂(g)

)1/2)
, (24)
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Table 4: Training times in seconds, “K > 1” means K = 10 for tabular data and K = 4 for images.

Dataset
RNFs-ML (exact) RNFs-ML (K = 1) RNFs-ML (K > 1) RNFs-TS

EPOCH TOTAL EPOCH TOTAL EPOCH TOTAL EPOCH TOTAL

POWER 53.8 4.13e3 67.4 6.76e3 136 1.14e4 45.1 3.83e3
GAS 37.3 2.51e3 62.7 4.51e3 80.1 5.24e3 43.2 3.49e3
HEPMASS 143 1.01e4 146 8.28e3 159 1.20e4 29.1 2.42e3
MINIBOONE 49.3 4.16e3 26.3 2.01e3 29.8 2.94e3 4.61 481
MNIST 2.40e3 2.59e5 1.71e3 1.57e5 3.03e3 3.20e5 2.13e2 3.90e4
FMNIST 2.34e3 2.59e5 1.72e3 1.50e5 3.15e3 2.10e5 1.04e2 1.11e4

which is 0 if and only if the moments match. Our proposed FID-like score for tabular data is computed
the exact same way, except no inception network is used. Instead, we simply take T to be the identity,
T (x) = x.

G Experimental Details

First we will comment on hyperparameters/architectural choices shared across experiments. The
D-dimensional square flow that we use, as mentioned in the main manuscript, is a RealNVP network
[15]. In all cases, we use the ADAM [27] optimizer and train with early stopping against some
validation criterion specified for each experiment separately and discussed further in each of the
relevant subsections below. We use no weight decay. We also do not use batch normalization in
any experiments for the reasons mentioned above in Appendix E. We use a standard Gaussian on d
dimensions as pZ in all experiments.

Compute We ran our two-dimensional experiments on a Lenovo T530 laptop with an Intel i5
processor, with negligible training time per epoch. We ran the tabular data experiments on a variety
of NVIDIA GeForce GTX GPUs on a shared cluster: we had, at varying times, access to 1080, 1080
Ti, and 2080 Ti models, but never access to more than six cards in total at once. For the image
experiments, we had access to a 32GB-configuration NVIDIA Tesla v100 GPU. We ran each of the
tabular and image experiments on a single card at a time, except for the image experiments for the
RNFs-ML (exact) and (K = 10) models which we parallelized over four cards.

Table 4 includes training times for all of our experiments. Since we used FID-like and FID scores
for ealy stopping, we include both per-epoch and total times. Per epoch times of RNFs-ML exclude
epochs where the Jacobian-transpose-Jacobian log determinant is annealed with a 0 weight, although
we include time added from this portion of training into the total time cost. Note throughout this
section we also consider one epoch of the two-step baseline procedure to be one full pass through the
data training the likelihood term, and then one full pass through the data training the reconstruction
term.

G.1 Simulated Data

The data for this experiment is simulated from a von Mises distribution centred at π2 projected onto
a circle of radius 1. We randomly generate 10,000 training data points and train with batch sizes
of 1,000. We use 1,000 points for validation, performing early stopping using the value of the full
objective and halting training when we do not see any validation improvement for 50 epochs. We
create visualizations in Figure 1 by taking 1,000 grid points equally-spaced between −3 and 3 as the
low-dimensional space, project these into higher dimensions by applying the flow gφ, and then assign
density to these points using the injective change-of-variable formula (2). In this low-dimensional
example, we use the full Jacobian-transpose-Jacobian which ends up just being a scalar as d = 1. We
commence likelihood annealing (when active) on the 500-th training epoch and end up with a full
likelihood term by the 1000-th.

For the D-dimensional square flow fθ, we used a 5-layer RealNVP model, with each layer having a
fully-connected coupler network of size 2× 10, i.e. 2 hidden layers each of size 10, outputting the
shift and (log) scale values. The baseline additionally uses a simple shift-and-scale transformation in
d-dimensional space as hη; we simply use the identity map for hη in this simple example.
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We perform slightly different parameter sweeps for the two methods based on preliminary exploration.
For the baseline two-step procedure, we perform runs over the following grid:

• Learning rate: 10−3, 10−4.
• Regularization parameter (β): 10, 50, 100, 200, 1,000, 10,000 (which for this method is

equivalent to having a separate learning rate for the regularization objective).
• Likelihood annealing: True or False.

For our method, we search over the following, although noting that our method was stable at the
higher learning rate of 10−3:

• Learning rate: 10−3, 10−4.
• Regularization parameter (β): 10, 50, 200.
• Likelihood annealing: True or False.

Empirically we found the two-step baseline performed better with the higher regularization, which
also agrees with the hyperparameter settings from their paper. Note that we have searched over 2
times as many runs for the baseline and still obtain better runs with our approach.

Divergences on RNFs-TS between our codebase and the implementation of Brehmer and
Cranmer [8] Although we were able to replicate the baseline RNF-TS method, there were
some different choices made in the codebase of the baseline method (available here: https:
//github.com/johannbrehmer/manifold-flow), which we outline below:

• The baseline was trained for 120 epochs and then selects the model with best validation
score, whereas we use early stopping over an (essentially) unlimited number of epochs.

• The baseline weights the reconstruction term with a factor of 100 and the likelihood term
with a factor of 0.1. This is equivalent in our codebase to setting β = 1,000, and lowering
the learning rate by a factor of 10.

• The baseline uses cosine annealing of the learning rate, which we do not use.
• The baseline includes a sharp Normal base distribution on the pulled-back padded coordi-

nates. We neglected to include this as it isn’t mentioned in the paper and can end up resulting
in essentially a square flow construction.

• The baseline uses the ADAMW optimizer [38] to fix issues with weight decay within ADAM
(which they also use). We stick with standard ADAM as we do not use weight decay.

• The baseline flow reparametrizes the scale s of the RealNVP network as s = σ(s̃+2)+10−3,
where s̃ is the unconstrained scale and σ is the sigmoid function, but this constrains the
scale to be less than 1 + 10−3. This appears to be done for stability of the transformation
(cf. the ResNets below). We instead use the standard parametrization of s = exp(s̃) as the
fully-connected networks appear to be adequately stable.

• The Baseline uses ResNets with ReLU activation of size 2 × 100 as the affine coupling
networks. We use MLPs with tanh activation function instead.

• The baseline uses a dataset which is not strictly on a manifold. The radius of a point on the
circle is sampled from N (1, 0.012). We use a strictly one-dimensional distribution instead
with a von Mises distribution on the angle as noted above.

In general, we favoured more standard and simpler choices for modelling the circle, outside of the
likelihood annealing which is non-standard.

Densities of all runs We note that, while the results reported in the main manuscript are represen-
tative of common runs, both for RNFs-ML (exact) and RNFs-TS; not every single run of RNFs-ML
(exact) obtained results as good as the ones from the main manuscript. Similarly, some runs of RNFs-
TS recovered better likelihoods than the one from the main manuscript. We emphasize again that the
results reported on the main manuscript are the most common ones: most RNFs-ML (exact) runs
correctly recovered both the manifold and the distribution on it, and most RNFs-TS runs recovered
only the manifold correctly. For completeness, we include in Figures 3, 4, and 5 all the runs we
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obtained, where it becomes evident that RNFs-ML consistently outperforms RNFs-TS across runs
and hyperparameter values. However we do note in Figure 3b that we get the perpendicular effect
that Brehmer and Cranmer [8] predicted might happen if optimizing the full objective, although this
is far from typical of our results.

(a) LW = F, β = 50, η = 10−3 (b) LW = F, β = 200, η = 10−4 (c) LW = F, β = 10, η = 10−4

(d) LW = T, β = 10, η = 10−3 (e) LW = F, β = 50, η = 10−4 (f) LW = F, β = 200, η = 10−3

(g) LW = T, β = 10, η = 10−4 (h) LW = T, β = 200, η = 10−4 (i) LW = T, β = 50, η = 10−4

(j) LW = T, β = 50, η = 10−3 (k) LW = T, β = 200, η = 10−3 (l) LW = F, β = 10, η = 10−3

Figure 3: Runs of RNFs-ML (exact), swept over the hyperparameter combinations
{Likelihood Warmup ∈ {True, False}} × {β ∈ {10, 50, 200}} × {η ∈ {10−3, 10−4}}
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(a) LW = T, β = 1000, η = 10−3 (b) LW = T, β = 100, η = 10−4 (c) LW = F, β = 10000, η = 10−3

(d) LW = T, β = 10000, η = 10−3 (e) LW = T, β = 100, η = 10−3 (f) LW = F, β = 100, η = 10−4

(g) LW = F, β = 100, η = 10−3 (h) LW = F, β = 1000, η = 10−3 (i) LW = T, β = 10000, η = 10−4

(j) LW = F, β = 1000, η = 10−4 (k) LW = T, β = 1000, η = 10−4 (l) LW = F, β = 10000, η = 10−4

Figure 4: Runs of RNFs-TS, swept over the hyperparameter combinations {Likelihood Warmup ∈
{True, False}} × {β ∈ {100, 1000, 10000}} × {η ∈ {10−3, 10−4}}
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(a) LW = F, β = 200, η = 10−4 (b) LW = F, β = 10, η = 10−4 (c) LW = T, β = 200, η = 10−4

(d) LW = T, β = 50, η = 10−3 (e) LW = F, β = 50, η = 10−4 (f) LW = F, β = 10, η = 10−3

(g) LW = F, β = 200, η = 10−3 (h) LW = T, β = 50, η = 10−4 (i) LW = T, β = 10, η = 10−4

(j) LW = F, β = 50, η = 10−3 (k) LW = T, β = 200, η = 10−3 (l) LW = T, β = 10, η = 10−3

Figure 5: Runs of RNFs-TS, swept over the hyperparameter combinations {Likelihood Warmup ∈
{True, False}} × {β ∈ {10, 50, 200}} × {η ∈ {10−3, 10−4}}

G.2 Tabular Data

For the tabular data, we use the GAS, POWER, HEPMASS, and MINIBOONE datasets, preprocessed
as in Papamakarios et al. [45]. We did not observe problems with overfitting in practice for any of
the methods. We use the FID-like metric with the first and second moments of the generated and
observed data as described in Appendix F for early stopping, halting training after 20 epochs of no
improvement.
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We again use a RealNVP flow in D dimensions but now with 10 layers, with each layer having a
fully-connected coupler network of hidden dimension 4× 128. The d-dimensional flow here is also a
RealNVP, but just a 5-layer network with couplers of size 2× 32.

In all methods, we use a regularization parameter of β = 50. We introduce the likelihood term with
low weight after 25 epochs, linearly increasing its contribution to the objective until it is set to its
full weight after 50 epochs. We select d as bD2 c, except for ML methods on D = 8 GAS which use
d = 2 (noted below). We use a learning rate of 10−4. For the methods involving the Hutchinson
estimator, we use a standard Gaussian as the estimating distribution. We also experimented with a
Rademacher distribution here but found the Gaussian to be superior.

Results reported on the main manuscript are the mean of 5 runs (with different seeds) plus/minus
standard error. Occasionally, both RNFs-ML and RNFs-TS resulted in failed runs with FID-like
scores at least an order of magnitude larger than other runs. In these rare instances, we did another
run and ignored the outlier. We did this for both methods, and we do point out that RNFs-ML did not
have a higher number of failed runs.

As mentioned in the main manuscript, GAS required slightly more tuning as RNFs-ML did not
outperform RNFs-TS when using d = 4. We instead use latent dimension d = 2, where this time
RNFs-ML did outperform. Since RNFs-TS did better with d = 4, we report those numbers in the
main manuscript. Otherwise, our methods outperformed the baseline out-of-the-box, using parameter
configurations gleaned from the image and circle experiments.

We also include the batch sizes here for completeness, which were set to be reasonably large for the
purposes of speeding up the runs:

• POWER - 5,000

• GAS - 2,500

• HEPMASS - 750

• MINIBOONE - 400

G.3 Image Data and Out-of-Distribution Detection

In this set of experiments, we mostly tuned the RNFs-ML methods on MNIST for K = 1 – applying
any applicable settings to RNFs-TS on MNIST as well – which is likely one of the main reasons that
RNFs-ML perform so well for K = 1 vs. the exact method or K = 4. The reason why we spent so
much time on K = 1 is that it was the fastest experiment to run and thus the easiest to iterate on. Our
general strategy for tuning was to stick to a base set of parameters that performed reasonably well
and then try various things to improve performance. A full grid search of all the parameters we might
have wanted to try was quite prohibitive on the compute that we had available. Some specific details
on settings follow below.

For the D-dimensional square flow, we mainly used the 10-layer RealNVP model which exactly
mirrors the setup that Dinh et al. [15] used on image data, except we neglect to include batch
normalization (as discussed in Appendix E) and we also tried reducing the size of the ResNet
coupling networks from 8 × 64 to 4 × 64 for computational purposes. For further computational
savings, we additionally attempted to use a RealNVP with fewer layers as the D-dimensional square
flow, but this performed extremely poorly and we did not revisit it. For the d-dimensional square
component, we used another RealNVP with either 5 or 10 layers, and fully-connected coupler
networks of size 4 × 32. We also looked into modifying the flow here to be a neural spline flow
[16], but this, like the smaller D-dimensional RealNVP, performed very poorly as well. This may be
because we did not constrain the norm of the gradients, although further investigation is required. We
also looked into using no d-dimensional flow for our methods as in the circle experiment, but this did
not work well at all.

For padding, we first randomly (although this is fixed once the run begins) permute the d-dimensional
input, pad to get to the appropriate length of vector, and then reshape to put into image dimension.
We also pad with zeros when performing the inverse of the density split operation (cf. the z to x
direction of Dinh et al. [15, Figure 4(b)]), so that the input is actually padded twice at various steps
of the flow.
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When we used likelihood annealing, we did the same thing as for the tabular data: optimize only the
reconstruction term for 25 epochs, then slowly and linearly introduce the likelihood term up until it
has a weight of 1 in the objective function after epoch 50.

We summarize our attempted parameters in Table 5. For some choices of parameters, such as
likelihood annealing set to False, d = 15, 30, β = 10,000, and CG tolerance set to 1, we had very
few runs because of computational reasons. However, we note that the run with low CG tolerance
ends up being the most successful run on MNIST. We have included “SHORT NAMES” in the table
for ease of listing hyperparameter values for the runs in Table 3, which we now provide for MNIST
and FMNIST in Table 6 and Table 7 respectively. We also include batch sizes in the table. Note that
∗ indicates that the run was launched on 2 GPU cards simultaneously, whereas ∗∗ indicates that the
run was launched on 4 GPU cards. For the CIFAR-10 parameters, we attempt several runs of the best
configurations below: we sent 1 run for RNFs-ML (exact), 2 runs for RNFs-ML (K = 1), and 4 runs
for RNFs-TS.

Table 5: Parameter combinations investigated for MNIST runs. Note that the final two rows are
irrelevant for RNF-ML (exact) and RNF-TS. We include "short names" for ease of listing parameters
for the runs in Table 3.

PARAMETER SHORT NAME MAIN VALUE ALTERNATIVES

Likelihood Annealing LA True False
Reconstruction parameter β 50 5, 500, 10000
Low dimension d 20 10, 15, 30
D-dim flow coupler D NET 8× 64 4× 64
d-dim flow layers d LAYERS 5 10
Hutchinson distribution HUTCH Gaussian Rademacher
CG tolerance (normalized) tol 1 0.001

Table 6: Parameter choices for the MNIST runs reported in Table 3.
METHOD LA β d D NET d LAYERS HUTCH tol BATCH

RNFs-ML (exact) True 5 20 8× 64 10 N/A N/A 100∗∗

RNFs-ML (K = 1) True 5 20 8× 64 10 Gaussian 0.001 200
RNFs-ML (K = 4) True 50 20 8× 64 5 Gaussian 1 100∗

RNFs-TS True 50 20 8× 64 5 N/A N/A 200

Table 7: Parameter choices for the FMNIST runs reported in Table 3.
METHOD LA β d D NET d LAYERS HUTCH tol BATCH

RNFs-ML (exact) True 50 20 8× 64 10 N/A N/A 100∗∗

RNFs-ML (K = 1) True 50 20 8× 64 5 Rademacher 1 200
RNFs-ML (K = 4) True 50 20 8× 64 10 Rademacher 1 200∗∗

RNFs-TS False 5 20 4× 64 10 N/A N/A 200

Visualizations As an attempt to visualize the learned manifold, we also trained our model with
d = 2, and show the samples obtained for different values of z ∈ R2 in Figure 6, where the spatial
location of each sample is given by the Cartesian coordinates of the corresponding z value. While
there are some abrupt changes, which we believe are to be expected since the true manifold likely
consists of several connected components, we can see that for the most part similar-looking images
have nearby latent representations.
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Figure 6: MNIST (left) and FMNIST (right) samples from RNFs-ML (exact) with d = 2. The
subindices in z1 and z2 index coordinates, not datapoint number.

Further Out-of-Distribution Detection Results Figure 7 shows RNFs-ML log-likelihoods for
models trained on MNIST (left panel), and we can see that indeed MNIST is assigned higher
likelihoods than FMNIST. We also include OoD detection results when using reconstruction error
instead of log-likelihoods, for models trained on FMNIST (middle panel) and MNIST (right panel).
We observed similar results with RNFs-TS. Surprisingly, it is now the reconstruction error which
exhibits puzzling behaviour: it is always lower on FMNIST, regardless of whether the model was
trained on FMNIST or MNIST. Once again, this behaviour also happens for RNFs-TS, where the
reconstruction error is optimized separately. We thus hypothesize that this behaviour is not due to
maximum likelihood training, and rather is a consequence of inductive biases of the architecture.

Trained on MNIST Trained on FMNIST Trained on MNIST

Figure 7: OoD log-likelihood histograms trained on MNIST (left), and OoD reconstruction error
histograms trained on FMNIST (middle) and MNIST (right). Log-likelihood results (left) are RNFs-
ML (exact), and reconstruction results (middle and right) are RNFs-ML (K = 1). Note that green
denotes in-distribution data, and blue OoD data; and colors do not correspond to datasets.
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