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A APPENDIX

A.1 ROCLBase (NO CURRICULUM) IN SECTION 2 AND FIGURE 2-10

Algorithm 2 RoCLBase (no curriculum)
1: input: {(xi, yi)}ni=1, h(·; ⌘), `(·, ·), f(·; ✓), T0:K ; � 2 [0, 1]
2: initialize: ✓0, l0(i) = c0(i) = 0 8i 2 [n], T�1 = 0
3: for k 2 {0, · · · ,K} do

4: for t0 2 {1, · · · , Tk} do

5: t t0 + Tk�1;
6: St  [n];
7: if k%2 = 0 then

8: ✓t  ✓t�1 + h
�
r✓

1
n

Pn
i=0 `t(i); ⌘

�
; {supervised learning using given labels}

9: Update lt+1(i) by Eq. (1); {update EMA loss}
10: else

11: ✓t  ✓t�1 + h
�
r✓

1
n

Pn
i=0 ⇣t(i); ⌘

�
; {self-supervised learning using pseudo labels}

12: Update ct+1(i) by Eq. (3); {update EMA consistency loss}
13: end if

14: end for

15: end for

Note the EMA metrics in line 9 and line 12 are not used for training in RoCLBase. They have been
updated and recorded for the purpose of empirical study presented in Section 2.

A.2 ADDITIONAL EXPERIMENTS

Figure 2: RoCL (Algorithm 1) vs. RoCLBase without any curriculum (Algorithm 2 in Appendix) during the
training of ResNet34 on CIFAR10 containing 60% symmetric noises on labels.

Figure 3: RoCL (Algorithm 1) vs. RoCLBase without any curriculum (Algorithm 2 in Appendix) during the
training of ResNet34 on CIFAR10 containing 80% symmetric noises on labels.
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Figure 4: RoCL (Algorithm 1) vs. RoCLBase without any curriculum (Algorithm 2 in Appendix) during the
training of ResNet34 on CIFAR100 containing 60% symmetric noises on labels.

Figure 5: RoCL (Algorithm 1) vs. RoCLBase without any curriculum (Algorithm 2 in Appendix) during the
training of ResNet34 on CIFAR100 containing 80% symmetric noises on labels.

Table 6: Extended version of Table 3 with two more baselines: NFL+RCE and NCE+MAE.
Dataset CIFAR10 CIFAR100

Noise Rate 40% 60% 80% 40% 60% 80%

MD-DYR-SH 92.3 86.1 74.1 70.1 59.5 39.5
MentorNet 91.2 74.2 60.0 68.5 61.2 35.5
MentorMix 94.2 91.3 81.0 71.3 64.6 41.2
O2U-net 90.3 - 43.4 69.2 - 39.4
RoG+D2L 87.0 78.0 - 64.9 40.6 -
PENCIL - - - 69.12± 0.62 57.79± 3.86 fail
GCE 87.62± 0.26 82.70± 0.23 67.92± 0.60 62.64± 0.33 54.04± 0.56 29.60± 0.51
SCE 85.34± 0.07 80.07± 0.02 53.81± 0.27 53.69± 0.07 41.47± 0.04 15.00± 0.04
NFL+MAE 83.81± 0.06 76.36± 0.31 45.23± 0.52 58.18± 0.08 46.10± 0.50 24.78± 0.82
NFL+RCE 86.05± 0.12 79.78± 0.13 55.06± 1.08 58.20± 0.31 46.30± 0.45 25.16± 0.55
NCE+MAE 84.19± 0.43 77.61± 0.05 49.62± 0.72 59.22± 0.36 48.06± 0.34 25.50± 0.76
NCE+RCE 86.02± 0.09 79.78± 0.50 52.71± 1.90 59.48± 0.56 47.12± 0.62 25.80± 1.12
RoCL (ours) 94.55± 0.12 92.06± 0.23 85.76± 0.26 74.64± 0.43 66.79± 0.58 47.24± 0.75

Table 7: Extended version of Table 4 with two more baselines: NFL+RCE and NCE+MAE.
Dataset CIFAR10 CIFAR100

Noise Rate 20% 30% 40% 20% 30% 40%

PENCIL 92.43 91.84 91.01 74.70± 0.56 72.52± 0.38 63.61± 0.23
Bootstrap 86.57± 0.08 84.86± 0.05 79.76± 0.07 63.44± 0.35 63.18± 0.35 62.08± 0.22
F-correct 89.09± 0.47 86.79± 0.36 83.55± 0.58 42.46± 2.16 38.13± 2.97 34.44± 1.93
GCE 86.07± 0.31 80.78± 0.21 74.98± 0.32 59.99± 0.83 53.99± 0.29 41.49± 0.79
SCE 83.92± 0.07 79.70± 0.27 78.20± 0.03 58.22± 0.47 49.85± 0.91 42.19± 0.19
NFL+MAE 86.81± 0.32 83.91± 0.34 77.16± 0.10 63.10± 0.22 56.19± 0.61 43.51± 0.42
NFL+RCE 88.73± 0.29 85.74± 0.22 79.27± 0.43 63.12± 0.41 54.72± 0.38 42.97± 1.03
NCE+MAE 86.44± 0.23 83.98± 0.52 78.23± 0.42 62.38± 0.60 58.02± 0.48 47.22± 0.30
NCE+RCE 88.56± 0.17 85.58± 0.44 79.59± 0.40 62.68± 0.79 57.82± 0.41 46.79± 0.96
RoCL (ours) 95.38± 0.21 94.19± 0.28 92.31± 0.35 80.03± 0.34 77.59± 0.45 73.28± 0.83
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Figure 6: Illustration of Eq. (9) and visualization of our choice for g(·) and the resulted ⌧t when T = 50. We
use g(·) = tanh(·) (which can be other “S”-shape functions) and � = 0.95 in our experiments. Here, we map
the points on the black curve in the left plot to the points on the red curve in the right plot. Each gray point on
the bottom of the left plot is from the T evenly spaced x-coordinates between the x-interval [g�1(��), g�1(�)].
We scale them to the T t-coordinates in the bottom of the right plot (i.e., t = 1, 2, · · · , 50), which associates
with T ⌧t values represented by the red points between [⌧1, ⌧T ] on the red curve.

Figure 7: Ablation study: RoCL vs. its variants during the training of ResNet34 on CIFAR10 containing
60% symmetric noises on labels.

Figure 8: Ablation study: RoCL vs. its variants during the training of ResNet34 on CIFAR10 containing
80% symmetric noises on labels.
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Figure 9: Ablation study: RoCL vs. its variants during the training of ResNet34 on CIFAR100 containing
60% symmetric noises on labels.

Figure 10: Ablation study: RoCL vs. its variants during the training of ResNet34 on CIFAR100 containing
80% symmetric noises on labels.

We present a more detailed analysis of the ablation study results with explanations of the observed
phenomenons below.

• Most variants (except RoCLBase, no RandAugment, and no ClassBalance) have similar perfor-
mance as the original RoCL and perform better than or competitive with the SoTA results achieved
by MentorMix. The differences compared to original RoCL become smaller under the lower noise
rate setting (60%). RoCLBase uses all data for training in each step without applying any curricu-
lum, showing that our proposed curriculum is the most critical component of RoCL in achieving
the appealing improvements. Note RoCLBase already outperforms most methods in Table 3, which
verifies the effectiveness of multi-episode training that alternates between supervised learning with
the given labels and self-supervision with the pseudo labels.

• Removing RandAugment degrades the performance, especially when the noise rate is very high
(e.g., 80%) because strong data augmentations are required by the self-supervision and the EMA
consistency loss in RoCL, while trivial data augmentations can result in error accumulation or
over-confidence in pseudo labels and inaccurate EMA consistency loss. The self-supervision
aims to encourage the model output consistency over different augmentations of the same sample.
Without augmentations with sufficient variations, self-supervision reduces to reinforcing the same
outputs on similar samples and thus carries little information and can even magnify/accumulate
errors (if any) in the original outputs. Also, the EMA consistency loss cannot generate meaningful
consistency measures if computed on the same data or its trivial augmentations. Note a strong
data augmentation is not always beneficial in all noisy label learning methods since it can increase
the uncertainty in the presence of wrong labels, making the detection of clean data and noise
correction more challenging. For example, we tried applying RandAugment to MentorMix (using
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the official implementations of both) but observed inferior performance compared to the results
using its original data augmentations.

• Class balance regularization is useful for the very high noise rate setting (80%), in which a wrong
label may dominate the learning on a mini-batch by a large chance. However, when the noise rate
is not that high (e.g., 60% on CIFAR10), removing it results in better performance.

• Although Mix-Up has been proved effective in previous methods, and for this reason, we followed
MentorMix by starting with a relatively strong Mix-Up (alpha = 8.0) and then gradually reducing
it to ↵ = 0.2. In the ablation study, we find that completely removing Mix-Up significantly
improves performance. Mix-Up is helpful when applied to mix a clean label with a noisy label
since the latter can be mediated with the former and thus softened. However, this is rarely the case
for RoCL since RoCL either mainly learns from clean data or wrongly-labeled data with correct
pseudo labels, and the transition between the two phases is short. When applied to two correct
labels/pseudo labels, Mix-Up weakens each label’s confidence, and we may lose information from
the inter-class probabilities in the soft pseudo labels.

• Replacing weighted sampling with top-k selection (“no RandSampling”) or replacing EMA metrics
with instantaneous metrics (“no EMA metrics”) causes less degeneration on the final test accuracies.
However, they are important to the early-stage exploration and accurate estimation of EMA metrics
on less-visited samples. In Figure 7-10, these two variants usually suffer from low accuracy and
convergence speed during early stages. The only exception is “no RandSampling” in Figure 10,
which performs better than the original RoCL. A possible reason is that the randomness brought
by high uniform label noises already bring sufficient randomness for exploration.

• Replacing pt(i), qt(i) or both with uniform probabilities over all samples reduces the final test
accuracies in all cases, e.g., the degradation is significant on CIFAR100 with 80% noise. In
Figure 7-10, we can see that by setting qt(i) = 1/n results in less degradation than the other two.
This is due to the more accurate pseudo labels generated for more data (even the ones with larger
EMA consistency loss) as training proceeds. Moreover, since we are conservative in setting �T

and ⌧T , the performance is not very sensitive to wrong pseudo labels.
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