
A Appendix: Pseudo-codes

Algorithm 1∞-AE model training

Input: User set U ; dataset X ∈ R|U|×|I|; NTK
K : R|I| × R|I| 7→ R ; regularization const.
λ ∈ R
Output: Dual parameters α ∈ R|U|×|I|

1: procedure FIT(U ,X,K)
2: K← [0]|U|×|U| ▷ Zero Initialization
3: Ku,v ← K(Xu,Xv) ∀u ∈ U , v ∈ U
4: α← (K+ λI)−1 ·X
5: return α

Algorithm 2∞-AE inference

Input: User set U ; dataset X ∈ R|U|×|I|; NTK
K : R|I|×R|I| 7→ R; dual params. α ∈ R|U|×|I|

; inference user history X̂u ∈ R|I|

Output: Prediction ŷ ∈ R|I|

1: procedure PREDICT(U ,X, X̂u,K, α)
2: K← [0]|U| ▷ Zero Initialization
3: Kv ← K(X̂u,Xv) ∀v ∈ U
4: ŷ ← softmax(K · α)
5: return ŷ

Algorithm 3 Data synthesis using DISTILL-CF

Input: User set U ; dataset X ∈ R|U|×|I|; NTK K : R|I| × R|I| 7→ R ; support user size µ ∈ R ;
gumbel softmax temperature τ ∈ R ; reg. const. λ2 ∈ R ; SGD batch-size b, step-size η ∈ R
Output: Synthesized data Xs ∈ Rµ×|I|

1: procedure SAMPLE(n,U ,X)
2: U ′ ∼ U ▷ Randomly sample n users from U
3: X′ ← Xu ∀u ∈ U ′ ▷ Retrieve corresponding rows from X
4: return U ′,X′

5: procedure SYNTHESIZE(U ,X,K)
6: Us,Xs ← SAMPLE(µ,U ,X) ▷ Sample support data
7: for steps = 0 . . . ξ do
8: X̂s ← σ [

∑γ
i=1 gumbelτ (softmax(Xs))]

9: αs ← FIT(Us, X̂s,K) ▷ Fit∞-AE on support data
10: Ub,Xb ← SAMPLE(b,U ,X)

11: X̃← [0]b×|I|

12: X̃u ← PREDICT(Us, X̂s,Xb
u,K, αs) ∀u ∼ Ub ▷ Predict for all sampled users

13: L← Xb · log(X̃) + (1−Xb) · log(1− X̃) + λ2 · ||X̂s||1 ▷ Re-construction loss

14: Xs ← Xs − η · ∂L

∂Xs
▷ SGD on Xs

15: return Xs

B Appendix: Experiments

B.1 Baselines & Competitor Methods

We provide a high-level overview of the competitor models used in our experiments:

• PopRec: This implicit-feedback baseline simply recommends the most popular items in the
catalog irrespective of the user. Popularity of an item is estimated by their empirical frequency
in the logged train-set.

• Bias-only: This baseline learns scalar user and item biases for all users and item in the
train-set, optimized by solving a least-squares regression problem between the predicted and
observed relevance. More formally, given a user u and an item i, the relevance is predicted as
r̂u,i = α+ βu + βi, where α ∈ R is a global offset bias, and βu, βi ∈ R are the user and item
specific biases respectively. This model doesn’t consider any cross user-item interactions, and
hence lacks expressivity.

• MF: Building on top of the bias-only baseline, the Matrix Factorization algorithm tries to
represent the users and items in a shared latent space, modeling their relevance by the dot-
product of their representations. More formally, given a user u and an item i, the relevance

15

Table 2: Brief set of statistics of the datasets used in this paper.

Dataset # Users # Items # Interactions Sparsity

Amazon Magazine [42] 3k 1.3k 12k 99.7%
ML-1M [15] 6k 3.7k 1M 95.6%
Douban [69] 2.6k 34k 1.2M 98.7%

Netflix [5] 476k 17k 100M 98.9%

is predicted as r̂u,i = α + βu + βi + (γu · γi), where α, βu, βi are global, user, and item
biases respectively, and γu, γi ∈ Rd represent the learned user and item representations. The
biases and latent representations in this model are estimated by optimizing for the Bayesian
Personalized Ranking (BPR) loss [49].

• NeuMF [18]: As a neural extension to MF, Neural Matrix Factorization aims to replace the
linear cross-interaction between the user and item representations with an arbitrarily complex,
non-linear neural network. More formally, given a user u and an item i, the relevance is predicted
as r̂u,i = α+βu+βi+ϕ(γu, γi), where α, βu, βi are global, user, and item biases respectively,
γu, γi ∈ Rd represent the learned user and item representations, and ϕ : Rd × Rd 7→ R is a
neural network. The parameters for this model are again optimized using the BPR loss.

• MVAE [32]: This method proposed using variational auto-encoders for the task of collaborative
filtering. Their main contribution was to provide a principled approach to perform variational
inference for the task of collaborative filtering.

• LightGCN [17]: This simplistic Graph Convolution Network (GCN) framework removes all
the steps in a typical GCN [28], only keeping a linear neighbourhood aggregation step. This
light model demonstrated promising results for the collaborative filtering scenario, despite its
simple architecture. We use the official public implementation3 for our experiments.

• EASE [59]: This linear model proposed doing ordinary least squares regression by estimating
an item-item similarity matrix, that can be viewed as a zero-depth auto-encoder. Performing
regression gives them the benefit of having a closed-form solution. Despite its simplicity, EASE
has been shown to out-perform most of the deep non-linear neural networks for the task of
collaborative filtering.

B.2 Sampling strategies

Given a recommendation dataset D := {(useri, itemi, relevancei)}ni=1 consisting of n user-item
interactions defined over a set of users U , set of items I, and operating over a binary relevance
score (implicit feedback); we aim to make a p% sub-sample of D, defined in terms of number of
interactions. Below are the different sampling strategies we used in comparison with DISTILL-CF:

• Interaction-RNS: Randomly sample p% interactions from D.

• User-RNS: Randomly sample a user u ∼ U , and add all of its interactions into the sampled set.
Keep repeating this procedure until the size of sampled set is less than p×n

100 .

• Head user: Sample the user u from U with the most number of interactions, and add all of its
interactions into the sampled set. Remove u from U . Keep repeating this procedure until the
size of sampled set is less than p×n

100 .

• SVP-CF user [57]: This coreset mining technique proceeds by first training a proxy model
on D for e epochs. SVP-CF then modifies the forgetting events approach [61], and counts the
inverse AUC for each user in U , averaged over all e epochs. Just like head-user sampling, we
now iterate over users in the order of their forgetting count, and keep sampling users until we
exceed our sampling budget of p×n

100 interactions. We use the bias-only model as the proxy.

3https://github.com/gusye1234/LightGCN-PyTorch

16

https://github.com/gusye1234/LightGCN-PyTorch

Table 3: List of all the hyper-parameters grid-searched for∞-AE, DISTILL-CF, and baselines.

Hyper-Parameter Model Amz. Magazine ML-1M Douban Netflix

Latent size

MF

{4, 8, 16, 32, 50, 64, 128}NeuMF
LightGCN

MVAE

Layers

MF

{1, 2, 3}NeuMF
LightGCN

MVAE
∞-AE {1}

Learning rate

MF

{0.001, 0.006, 0.01} {0.006}NeuMF
LightGCN

MVAE
DISTILL-CF {0.04}

Dropout

MF

{0.0, 0.3, 0.5}NeuMF
LightGCN

MVAE

λ
EASE {1, 10, 100, 1K, 10K}
∞-AE {0.0, 1.0, 5.0, 20.0 50.0, 100.0}

DISTILL-CF {1e-5, 1e-3, 0.1, 1.0, 5.0, 50.0}

λ2 DISTILL-CF
{1e-3, 10.0}

avg. # of interactions per user

τ DISTILL-CF {0.3, 0.5, 0.7, 5.0}

γ DISTILL-CF {50, 100, 200} {200, 500, 700} {500, 1K, 2K} {500, 700}

B.3 Data statistics & hyper-parameter configurations

We present a brief summary of statistics of the datasets used in our experiments in Table 2, and list all
the hyper-parameter configurations tried for∞-AE, DISTILL-CF, and other baselines in Table 3.

B.4 Additional training details

We now discuss additional training details about DISTILL-CF that could not be presented in the main
text due to space constraints. Firstly, we make use of a validation-set, and evaluate the performance
of the ∞-AE model trained in DISTILL-CF’s inner-loop to perform hyper-parameter search, as
well as early exit. Note that we don’t validate the inner-loop’s λ at every outer-loop iteration, but
keep changing it on-the-fly at each validation cycle. We notice this trick gives us a much faster
convergence compared to keeping λ fixed for the entire distillation procedure, and validating for it
like other hyper-parameters.

We also discuss the Gumbel sampling procedure described in Equation (3), in more detail. Given the
sampling prior matrix Xs, that intuitively denotes the importance of sampling a specific user-item
interaction, we intend to sample X̂s which will finally be used for downstream model applications.
Note that for each row (user) in Xs, we need multiple, but variable number of samples to conform
to the Zipfian law for user and item popularity. This requirement in itself rejects the possibility to
use top-K sampling which will sample the same number of items for each row. Furthermore, to
keep X̂s ∼ Xs sampling part of the optimization procedure, we need to compute the gradients of
the logistic objective in Equation (3) with respect to Xs, and hence need the entire process to be
differentiable. This requirement prohibits the usage of other popular strategies like Nucleus sampling
[19], which is non-differentiable. To workaround all the requirements, we devise a multi-step Gumbel
sampling strategy where for each row (user) we take a fixed number of Gumbel samples (γ), with
replacement, followed by taking a union of all the sampled user-item interactions. Note that the union

17

operation ensures that due to sampling with replacement, if a user-item interaction is sampled multiple
times, we sample it only once. Hence, the number of sampled interactions is strictly upper-bounded
by γ × |I|. To be precise, the sampling procedure is formalized below:

X̂s
u,i = σ

 γ∑ exp(
log(Xs

u,i)+gu,i

τ)∑
j∈I exp(

log(Xs
u,j)+gu,j

τ)

 s.t. gu,i ∼ Gumbel(µ = 0, β = 1) ∀u ∈ U , i ∈ I

Where σ represents an appropriate function which clamps all values between 0 and 1. In our
experiments, we use hard-tanh.

B.5 Evaluation metrics

We now present formal definitions of all the ranking metrics used in this study:

• AUC: Intuitively defined as a threshold independent classification performance measure, AUC
can also be interpreted as the expected probability of a recommender system ranking a positive
item over a negative item for any given user. More formally, given a user u from the user set U
with its set of positive interactions I+u ⊆ I with a similarly defined set of negative interactions
I−u = I\I+u , the AUC for a relevance predictor ϕ(u, i) is defined as:

AUC(ϕ) := E
u∼U

[
E

i+∼I+
u

[
E

i−∼I−
u

[
ϕ(u, i+) > ϕ(u, i−)

]]]
• HitRate (HR@k): Another name for the recall metric, this metric estimates how many positive

items are predicted in a top-k recommendation list. More formally, given recommendation lists
Ŷu ⊆ IK ∀u ∈ U and the set of positive interactions I+u ⊆ I ∀u ∈ U :

HR@k := E
u∼U

[
|Ŷu ∩ I+u |
|I+u |

]
• Normalized Discounted Cumulative Gain (nDCG@k): Unlike HR@k which gives equal

importance to all items in the recommendation list, the nDCG@k metric instead gives a higher
importance to items predicted higher in the recommendation list and performs logarithmic
discounting further down. More formally, given sorted recommendation lists Ŷu ⊆ IK ∀u ∈ U
and the set of positive interactions I+u ⊆ I ∀u ∈ U :

nDCG@k := E
u∼U

[
DCGu

IDCGu

]
; DCGu :=

k∑
i=1

Ŷ i
u ∈ I+u

log2(i+ 1)
; IDCGu :=

|I+
u |∑

i=1

1

log2(i+ 1)

• Propensity-scored Precision (PSP@k): Originally introduced in [22] for extreme classification
scenarios [46, 21, 37], the PSP@k metric intuitively accounts for missing labels (items in the
case of recommendation) by dividing the true relevance of an item (binary) with a propensity
correction term. More formally, given recommendation lists Ŷu ⊆ IK ∀u ∈ U , the set of
positive interactions I+u ⊆ I ∀u ∈ U , and a propensity model ϕ : I 7→ R:

PSP@k := E
u∼U

[
uPSPu

mPSPu

]
; uPSPu :=

1

k
·

k∑
i=1

Ŷ i
u ∈ I+u
ϕ(Ŷ i

u)
; mPSPu :=

∑
i∈I+

u

1

ϕ(i)

For ϕ, we adapt the propensity model proposed in [22] for the case of recommendation as:

ϕ(i) ≡ E
u∼U

[
P(ru,i = 1|r∗u,i = 1)

]
=

1

1 + C · e−A·log(ni+B)
; C = (logN − 1) · (B + 1)A

Where, N represents the total number of interactions in the dataset, and ni represents the
empirical frequency of item i in the dataset. We use A = 0.55 and B = 1.5 for our experiments.

18

B.6 Additional experiments

How does depth affect ∞-AE? To better understand the effect of depth on an infinitely-wide
auto-encoder’s performance for recommendation, we extend∞-AE to multiple layers and note its
downstream performance change in Figure 6. The prominent observation is that models tend to get
worse as they get deeper, with generally good performance in the range of 1− 2 layers, which also
has been common practical knowledge even for finite-width recommender systems.

1 2 3 5 7 10

99.6

99.7

99.8

99.9

100.0
%

m
ax

im
um

A
U

C

1 2 3 5 7 10
94

96

98

100

%
m

ax
im

um
H

R
@

10

1 2 3 5 7 10

96

97

98

99

100

%
m

ax
im

um
H

R
@

10
0

1 2 3 5 7 10

bottleneck layers

96

98

100

%
m

ax
im

um
N

D
C

G
@

10

1 2 3 5 7 10

bottleneck layers

96

98

100

%
m

ax
im

um
N

D
C

G
@

10
0

1 2 3 5 7 10

bottleneck layers

92

94

96

98

100

%
m

ax
im

um
P

S
P

@
10

Magazine ML-1M Douban

Figure 6: Performance of∞-AE with varying depths. The y-axis represents the normalized metric
i.e. performance relative to the best depth for a given metric.

How does∞-AE perform on cold users & cold items? Cold-start has been one of the hardest
problems in recommender systems — how to best model users or items that have very little training
data available? Even though∞-AE doesn’t have any extra modeling for these scenarios, we try to
better understand the performance of∞-AE over users’ and items’ coldness spectrum. In Figure 7, we
quantize different users and items based on their coldness (computed by their empirical occurrence
in the train-set) into equisized buckets and measure different models’ performance only on the
binned users or items. We note∞-AE’s dominance over other competitors especially over the tail,
head-users; and torso, head-items.

101

User frequency

0.50

0.55

0.60

A
vg

.
H

R
@

10
0

Amz Magazine

102 103

User frequency

0.2

0.4

0.6

A
vg

.
H

R
@

10
0

ML-1M

101 102 103

User frequency

0.1

0.2

0.3

0.4

A
vg

.
H

R
@

10
0

Douban

100 101 102

Item frequency

0.00

0.25

0.50

0.75

1.00

A
vg

.
H

R
@

10
0

102 103

Item frequency

0.00

0.25

0.50

0.75

1.00

A
vg

.
H

R
@

10
0

101 102 103

Item frequency

0.00

0.25

0.50

0.75

A
vg

.
H

R
@

10
0

EASE MVAE ∞-AE

Figure 7: Performance comparison of ∞-AE with SoTA finite-width models stratified over the
coldness of users and items. The y-axis represents the average HR@100 for users/items in a particular
quanta. All user/item bins are equisized.

19

0 1 2
% noise

0

20

40

60

80

100

%
us

er
s

de
-a

no
ny

m
iz

ed

ML-1M

0 1 2
% noise

Douban

Interaction RNS Distill-CF

Figure 8: Amount of noise added in D′ vs. % of
users de-anonymized.

0 50
% data revealed

0

20

40

60

80

100

%
us

er
s

de
-a

no
ny

m
iz

ed

ML-1M

0 50
% data revealed

Douban

Interaction RNS Distill-CF

Figure 9: Amount of data revealed in D′ vs. %
of users de-anonymized.

How anonymized is the data synthesized by DISTILL-CF? Having evaluated the fidelity of distills
generated using DISTILL-CF, we now focus on understanding its anonymity and syntheticity. For the
generic data down-sampling case, the algorithm presented in [38] works well to de-anonymize the
Netflix prize dataset. The algorithm assumes a complete, non-PII dataset D along with an incomplete,
noisy version of the same dataset D′, but also has the sensitive PII available. We simulate a similar
setup but extend to datasets other than Netflix, by following a simple down-sampling and noise
addition procedure: given a sampling strategy s, down-sample D and add x% noise by randomly
flipping x% of the total items for each user to generate D′. We then use our implementation of the
algorithm proposed in [38] to match the corresponding users in the original, noise-free dataset D.

However, if instead of a down-sampled dataset D′, a data distill of D (using DISTILL-CF), let’s say
D̃, is made publicly available. The task of de-anonymization can no longer be carried out by simply
matching user histories from D′ to D, since D is no longer available. The only solution now is to
predict the missing items in D′. Note that this this task is easier than the usual recommendation
problem, as the user histories to complete in D′ do exist in some incoherent way in the data distill
D̃, and is more similar to train-set prediction. To test this out, we formulate a simple experiment:
given a data distill D̃, an incomplete, noisy subset D′ with PII information, and also hypothetically
the number of missing items for each user in D′ — how accurately can we predict the exact set of
missing items in D′ using an∞-AE model trained on D̃.

We perform experiments for both the cases of data-sampling and data-distillation. In Figure 8, we
measure the % of users de-anonymized using the aforementioned procedures. We interestingly note
no level of de-anonymization with the data-distill, even if there’s no noise in D′. We also note the
expected observation for the data-sampling case: less users are de-anonymized when there’s more
noise in D′. In Figure 9, we now control the amount of data revealed in D′. We again note the
same observation: even with 90% of the correct data from D revealed in D′ with 0% of noise, we
still note a very tiny 0.86% of user de-anonymization with data-distillation, whereas 96.43% with
data-sampling for the Douban dataset.

How does DISTILL-CF compare to data augmentation approaches? We compare the quality
of data synthesized by DISTILL-CF with generative models proposed for data augmentation. One
such SoTA method is AR-CF [9], which leverages two conditional GANs [36] to generate fake users
and fake items. For our experiment, we focus only on AR-CF’s user generation sub-network and
consequently train the EASE [59] model only on these synthesized users, while testing on the original
test-set for the MovieLens-1M dataset. We plot the results in Figure 11, comparing the amount
of users synthesized according to different strategies and plot the HR@10 of the correspondingly
trained model. The results signify that training models only on data synthesized by data augmentation
models is impractical, as these users have only been optimized for being realistic, whereas the
users synthesized by DISTILL-CF are optimized to be informative for model training. The same
observation tends to hold true for the case of images as well [67].

Additional experiments on the generality of data summaries synthesized by DISTILL-CF.
Continuing the results in Figure 2, we now train and evaluate MVAE [32] on data synthesized by
DISTILL-CF. Note that the inner loop of DISTILL-CF still consists of∞-AE, but we nevertheless

20

train and evaluate MVAE to test the synthesized data’s universality. We re-use the heuristic sampling
strategies from Figure 2 for comparison with DISTILL-CF. From the results in Figure 10, we observe
similar scaling laws as EASE for the heuristic samplers as well as DISTILL-CF. A notable exception
is interaction RNS, that scales like∞-AE. Another interesting observation to note is that training
MVAE on the full data performs slightly worse than training MVAE on the same amount of data
synthesized by DISTILL-CF. This behaviour validates the re-usability of data summaries generated
by DISTILL-CF, because they transfer well to SoTA finite-width models, which were not involved in
DISTILL-CF’s user synthesis procedure.

1.0 10.0 100.0

% Users sampled

0

5

10

15

20

25

H
R

@
10

1.0 10.0 100.0

% Users sampled

0

5

10

15

20

25

N
D

C
G

@
10

1.0 10.0 100.0

% Users sampled

0

10

20

30

N
D

C
G

@
10

0

1.0 10.0 100.0

% Users sampled

0.0

0.5

1.0

1.5

2.0

2.5

P
S

P
@

10

Interaction RNS Head User SVP-CF User User RNS Distill-CF

Figure 10: Performance of the MVAE model trained on different amounts of users (log-scale) sampled
by different samplers on the ML-1M dataset.

Additional experiments on Continual learning. Continuing the results in Figure 5, we plot the
results stratified per period for the MovieLens-1M dataset in Figure 12. The results are a little
noisy, but we can observe that exemplar data distilled with DISTILL-CF has better performance for a
majority of the data periods. Note that we use the official public implementation4 of ADER.

1.0 10.0 100.0

% Users sampled

0

10

20

H
R

@
10

Interaction RNS

User RNS

AR-CF

Distill-CF

Figure 11: Performance of EASE on varying
amounts of data sampled/synthesized using vari-
ous strategies for the MovieLens-1M dataset.

0 5 10 15
Period

5.0

7.5

10.0

12.5

H
R

@
20

Joint

Indiv.

ADER

Distill-CF

Figure 12: Per-period evaluation of the MVAE
model on various continual learning strategies as
discussed in Section 5.

Additional plots for the sample complexity of∞-AE. In addition to Figure 1 in the main paper,
we visualize the sample complexity of∞-AE for all datasets and all metrics in Figure 13. We notice
similar trends for all metrics across datasets.

Additional plots on the robustness of DISTILL-CF &∞-AE to noise. In addition to Figure 3 and
Figure 4 in the main paper, we plot results for the EASE model trained on data sampled by different
sampling strategies, when there’s varying levels of noise in the original data. We plot this for the
MovieLens-1M dataset and all metrics in Figure 13. We notice similar trends for all metrics across
datasets. We also plot the sample complexity results for EASE and∞-AE over the MovieLens-1M
dataset and all metrics in Figure 15. We observe similar trends across metrics.

4https://github.com/doublemul/ADER available with the MIT license.

21

https://github.com/doublemul/ADER

1.0 10.0 100.0

% Users sampled

0.5

0.6

0.7

0.8

0.9

A
U

C
Amazon Magazine

0.1 1.0 10.0 100.0

% Users sampled

0.5

0.6

0.7

0.8

0.9

A
U

C

ML-1M

1.0 10.0 100.0

% Users sampled

0.5

0.6

0.7

0.8

0.9

A
U

C

Douban

0.01 0.1 1.0

% Users sampled

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

Netflix

1.0 10.0 100.0

% Users sampled

0

10

20

30

H
R

@
10

0.1 1.0 10.0 100.0

% Users sampled

0

10

20

30
H

R
@

10

1.0 10.0 100.0

% Users sampled

0

5

10

15

20

25

H
R

@
10

0.01 0.1 1.0

% Users sampled

0

10

20

30

H
R

@
10

1.0 10.0 100.0

% Users sampled

0

20

40

60

H
R

@
10

0

0.1 1.0 10.0 100.0

% Users sampled

20

40

60

H
R

@
10

0

1.0 10.0 100.0

% Users sampled

5

10

15

20

25

30

H
R

@
10

0

0.01 0.1 1.0

% Users sampled

0

10

20

30

40

50

H
R

@
10

0

1.0 10.0 100.0

% Users sampled

0

10

20

N
D

C
G

@
10

0.1 1.0 10.0 100.0

% Users sampled

0

10

20

30

N
D

C
G

@
10

1.0 10.0 100.0

% Users sampled

0

5

10

15

20

25

N
D

C
G

@
10

0.01 0.1 1.0

% Users sampled

0

10

20

30

N
D

C
G

@
10

1.0 10.0 100.0

% Users sampled

0

10

20

30

N
D

C
G

@
10

0

0.1 1.0 10.0 100.0

% Users sampled

10

20

30

40

N
D

C
G

@
10

0

1.0 10.0 100.0

% Users sampled

5

10

15

20

25

N
D

C
G

@
10

0

0.01 0.1 1.0

% Users sampled

0

10

20

30

N
D

C
G

@
10

0

1.0 10.0 100.0

% Users sampled

0

5

10

15

P
S

P
@

10

0.1 1.0 10.0 100.0

% Users sampled

0

1

2

3

P
S

P
@

10

1.0 10.0 100.0

% Users sampled

0.00

0.25

0.50

0.75

1.00

1.25

P
S

P
@

10

0.01 0.1 1.0

% Users sampled

0

1

2

3

4

P
S

P
@

10

Interaction RNS Head User SVP-CF User User RNS Distill-CF

Figure 13: Performance of∞-AE with the amount of users sampled according to different sampling
strategies over different metrics. Each column represents a single dataset, and each row represents an
evaluation metric.

22

0 0.5 1 2 5

0

10

20

30

40

50

%
dr

op
in

A
U

C

80% Users

0 0.5 1 2 5

40% Users

0 0.5 1 2 5

10% Users

0 0.5 1 2 5

5% Users

0 0.5 1 2 5

2% Users

0 0.5 1 2 5

0

20

40

60

80

100

%
dr

op
in

H
R

@
10

0 0.5 1 2 5 0 0.5 1 2 5 0 0.5 1 2 5 0 0.5 1 2 5

0 0.5 1 2 5

0

20

40

60

80

100

%
dr

op
in

H
R

@
10

0

0 0.5 1 2 5 0 0.5 1 2 5 0 0.5 1 2 5 0 0.5 1 2 5

0 0.5 1 2 5

0

20

40

60

80

100

%
dr

op
in

N
D

C
G

@
10

0 0.5 1 2 5 0 0.5 1 2 5 0 0.5 1 2 5 0 0.5 1 2 5

0 0.5 1 2 5

0

20

40

60

80

100

%
dr

op
in

N
D

C
G

@
10

0

0 0.5 1 2 5 0 0.5 1 2 5 0 0.5 1 2 5 0 0.5 1 2 5

0 0.5 1 2 5

% Noise

0

20

40

60

80

100

%
dr

op
in

P
S

P
@

10

0 0.5 1 2 5

% Noise
0 0.5 1 2 5

% Noise
0 0.5 1 2 5

% Noise
0 0.5 1 2 5

% Noise

Head User SVP-CF User User RNS Distill-CF

Figure 14: Performance of the EASE model trained on data sampled by different sampling strategies
when there’s varying levels of noise in the data. Each column represents a user sampling budget, and
each row represents the % drop w.r.t a single evaluation metric. All results are on the MovieLens-1M
dataset.

23

0 50 100

0.80

0.85

0.90

0.95

A
U

C

ML-1M

0 50 100

ML-1M (0.5% noise)

0 50 100

ML-1M (1% noise)

0 50 100

ML-1M (2% noise)

0 50 100

ML-1M (5% noise)

0 50 100

15

20

25

30

H
R

@
10

0 50 100 0 50 100 0 50 100 0 50 100

0 50 100

30

40

50

60

H
R

@
10

0

0 50 100 0 50 100 0 50 100 0 50 100

0 50 100

15

20

25

30

35

N
D

C
G

@
10

0 50 100 0 50 100 0 50 100 0 50 100

0 50 100

20

25

30

35

40

N
D

C
G

@
10

0

0 50 100 0 50 100 0 50 100 0 50 100

0 50 100

% Users sampled

1.5

2.0

2.5

3.0

P
S

P
@

10

0 50 100

% Users sampled
0 50 100

% Users sampled
0 50 100

% Users sampled
0 50 100

% Users sampled

User-RNS + EASE User-RNS + ∞-AE Distill-CF + EASE Distill-CF + ∞-AE

Figure 15: Performance of∞-AE on data sampled by DISTILL-CF and User-RNS when there’s
noise in the data. Results for EASE have been added for reference. Each column represents a specific
level of noise in the original data, and each row represents an evaluation metric. All results are on the
MovieLens-1M dataset.

24

