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A PROOFS OF BASIC PROPERTIES OF SEMI-NORM

Proof of Lemma[2.1} The first property is a direct consequence of the definition of the projection
matrix Px.

Notice that
é(L(W +eAW) — L(W)) = é(L(WPX + AW Py) — L(WPy)).

By letting ¢ — 0, the definition of the directional derivative implies
(VL(W),AW)p = (VL(W Px), AW Px) p = (VL(W Px) Px, AW) p, VAW € R™X"

since Px = PL. This completes the proof of the second property.
The third property is obtained based on the fact that the orthogonal projection matrix satisfies Px =
PL = P2 = P}, since
(VL(W),V)p = (VL(WPx)Px,V)p
=(VL(WPx)P%,VPx)r = (VL(WPx)Px,V)x = (VL(W),V)x.

Set V.= VL(W). Then the fourth property is implied by the third property.

For the last property, first recall that [|W ||y = ||[WPx|| and Px = X(XTX)TXT. X is of full
row rank if and only if Py is identity matrix, which completes the proof.

O

Proof of Lemma[2.2] Because X is not full row rank, we know that I — Py # 0. There exists W
such that W (I — Px) # 0. Applying the first property in Lemma[2.1] we have

1 1 1 1 1 1

2
provided W # W Px.
Hence, L is not strictly convex, which implies L is not strongly convex.

a(l)Amf:l(XXT) ||WH§( is

To prove the second property, it suffices to show that g(W) = L(W) —
convex. It is obvious that

907) = L07) = S0 S s = il + WX =¥ = Aan XX W), (1)

L(W) — % Ztm1 ||W:172,y1||§7 is convex, since I(-,y;) is strongly convex. The Hessian of

HWX Y||2F Amin(WIW) |[W Px |3 ‘ has no negative eigenvalue, thus the second term in ( .
is also convex. This completes the proof.

B THE EXACT STATEMENTS OF THE MAIN THEOREMS

Define some quantities as follows:

1 —an(2 —nea), 0<*_a
q{ 7:(2 = n.) m < 3 as)

1 — B, (2 —n.p), gy < < %
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2 - rank(X)
By = (21 )

Co
(10 — 1) /15
Cy = nyk?’BsCo+In N,

C
O + Coln(N),
0

C1 = nyk?Bs +In N,

Cs =nyk’By—
TN o — )2/
1
(1m0 — 77)2/77(2J7
Cs = nNKJQBgCO + Cop hl(ﬁ),

_ 2
Ce¢ = nyK"Bs,

04 = nNKJQB(s

where N denotes the number of distinct elements in the set {ny,--- ,ny_1}, m = 2](%, and
Ny = ;ff\,"ﬁ with ¢ > 0.

Theorem B.1. Given any ¢ > 0, and 0 < § < 1/2, define ng = 62237]%, and consider the learning
rate n < 1. There exists a constant C = C/(c), such that if

then with probability at least 1 — & over the random Gaussian initialization, we have

(] )
gDLN(t) <|1-— Je—co > Mo’
K

) 5DLN(O)~

Theorem B.2. Given any ¢ > 0, and 0 < ¢ < 1/2, define ng = eill—gN, and consider the learning

rate n) < no. There exists a constant C := C(c), such that if
Nnin > C - Cs, (17)

then with probability at least 1 — § over the random one peak projections and embeddings initial-
ization, we have

21— Ly\*
SDLN(t) S 1—4€_Cu EDLN(O)-
K
Specially, if ny = ng = -+ = ny—1 = n > min{ny,ng}, then the requirement can be
replaced by
n>C-Cy. (18)
Remark 7. Assume L(axWy -+ Wi) = L layWy - Wi X = Y|[3, andng = -+ = ny_q =

n. Then for Gaussian initialization, our Theorem leads to Theorem 4.1 in |Du & Hu| (2019).
Similarly, for orthogonal initialization, our Theorem @]leads to Theorem 4.1 in Hu et al.| (2020).

Next, we present a version of the theorem related to balanced initialization.

Theorem B.3. Assume ny = --- = ny_1 = n. Givenanyc > 0, and 0 < 0 < 1/2, define
no = egZ’TJ\EV, and consider the learning rate n < no. There exists a constant C := C(c), such that
as long as

n>C-Cy. (19)
then with probability at least 1 — § over special balanced initial, we have

gDLN(t) < (1 4GCM> EDLN(O)-

R
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C INEQUALITIES IN CONVEX OPTIMIZATION

Convex optimization has been studied for about a century. Recall the definitions and basic inequali-
ties for a—strongly convex and 5—Lipschitz functions.

Definition C.1. A continues differentiable function f is said to be S— Lipschitz if the gradient V f
is f— Lipschitz, that is if for all x, y,

IVi(y) = V@) <Blly -, (20)
f is said to be av—strongly convex if for all z, y, we have
!
F@) = f@) +(Vf(@),y =) + 5 ly =] 1)

Proposition C.1. If f is a—strongly convex and V f is f—Lipschitz with respect to a (semi-)norm,
then a < 3 and

(V@) =)+ Sy =2l < f) - f@) < (Vi@hy -2+ 5y -, @)

(V1@ - VW= ) 2 2 o -l + g V@ - VW, @)
IV/(@) = Vi@ 2 alle -~y @)
@) = 1) < (V@) —) = 55 IV5@) = TS es)

Proof of Proposition We only proof the last inequality.
Letz =y — %(Vf(y) — Vf(z)). Since f is convex S—Lipschitz, we have

f(z2) = f(2) =2 (V[(z), 2z — z)

and
F(2) — 1) < (TF@). 2~ 9)+ 5 12— wl.
Thus,
F@) ~ F() =F (@)~ 1) + 1)~ 1)
(VS @)~ 2) + (VI = — o)+ D)z P

—(Vf(x)z—y) — %nvms) VW)

Before we start to prove Lemma|D.1] let us first include and prove the following result.

Lemma C.2. 1. Assume L is a—strongly convex, o > 0. Denote a global minimizer of L by W,.
Then for any W,

1
L(W.) = L(W) > = VL) - (26)
2. Assume V L is B—Lipschitz, then
1

L(W.) = L(W) < =55 IVLW)]% - 27)

Proof of Lemma|C.2] 1. First, we know that VL(W,) = 0. L is a—strongly convex, which implies
the inequality (22)) holds. Thus

L(V) = L(W) > (VL(W),V = W)x + 5 IV = W% = (V).

Minimizing both sides in terms of V" gives (26).

14
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Now we focus on minimizing g(V'). Since g(V) € C' and the global minimizer exits, we have
Vg(V*) =VL(W)Px + a(V* = W)Px =0,

where V* is a global minimizer for g(V'). Thus,

1
g(V*) = =5 [VLW)% (28)

2. Applying proposition [C.I]to a S—Lipschitz function V L, we obtain
L(W.) — L(W)

(VL(W.), W — W)x — % IVLOW) = VLW %

1 :
=~ 55 IVLOVI.

D CONVERGENCE REGION

In this section, we study a class of the convergence region for deep linear neural networks, which
works for deterministic initialization. Define A|zx) = AXT(XXT)"X = APx, and view

Al (x) as alinear operator on R(X).

Recall the optimization problem
m

1
minimize LN(W17 - Wy) = o Zl(aNWN:lei,yi) = L(anWhn1), (29)

e W
! N i=1

and GD

where 262 (W7, -+, W) = an(Wij41) TV L(an Wi ) (W 11)7,
-1

The following theorem generalizes the idea from the recent work (Du & Hu, [2019; |Hu et al.| [2020).
For notational convenience, we denote W;.;(t) = W;(t)---W;(t), Ly = L(anWn.1(t)), VL, =
VL(anWn.1(t)) etc.

Lemma D.1. Assume the initialization satisfies the following conditions simultaneously:
Omaz(Whiit1(0)) < e/ (ny_1)V/2, 1 <i < N -1,

Tmin(Wi41(0)) > e/ 2 (ny_1.)/2,1 <i < N — 1,

Tmaz (Wi-1.1(0)|r(x)) < €/2(ni—1.1)"/%,2 <i < N,
Tmin(Wi—1:1(0)|r(x)) > e72/%(n;_1.1)Y/?,2 <i < N,

Wi (0)] < M/2- N°(TTicpejy e - max{ni—1,n; /2,1 <i < j < N,
Lo— L(W.) < 8By =: B,

where c1,co, M are positive constant and 6 > 0.

Notice that By is a proper upper bound for HaNWN:l(O)H?X + |W, Hi(

where the normalization factor ay =

3D

(176)271,N

lze)iny 2e%leaN
ebc1+3co ﬁN’

nN

Set the learning rate n = where 0 < ¢ < 1. Define v =

Assume that

C(Cl, 62)M2:‘$2B0

>
e2

Nmin 2

N?ny. (32)

Then the GD (30) satisfies
Le— LW.) < (1 —1)" (Lo = L(WW)),t = 1,2, -+ .

15
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Definition D.1. For given c¢1,co, M, By > 0, and # > 0, we define the convergence region
R(c1,c2,0, M, By) by the set of initialization that satisfies the inequality system (31).

Remark 8. The condition (1)) describes the convergence region for initialization and the condition
(32) describes the overparameterization for deep linear neural networks. At this time, it is not
clear how large this convergence region is. Later, we will show that the properly scaled random
initialization with some extra mild overparameterization conditions will fall into this convergence
region with high probability.

Proof of Lemme[D.1| To prove Lemma [D.1] it suffices to show that the following three properties
hold A(t), B(t), and C(¢) forall t = 0,1, ---

1. A(t):
Ly — L(W.) < (1 =)' (Lo — L(W.)).
2. B(t):
Umaz(WN 2+1(t)) < ecl(nN 1: )1/ 1<i<N-1,
0mzn<WN 'Hrl(t)) >e C2(n]\[ 1: 1)1/2 1<i< N -— 1,
U’mou( i— 11(t)|R(X)) 1(”1— 1:1 ) /Q,QSZSN,
szn( i—1: 1( )|R(X)) 2 € c2(”1’—1:1)1/272 S 1 S N7
IWya(Il < M- N (=TT cpey ) /21 <0 <G < N
3. C(t):

2e2°1,/28B

[Wi(t) = Wi(0)|| < N

=R, 1<i<N.

Using simultaneous induction, the proof of Lemma[D.T]is divided into the following 3 claims.

Claim 1. A(0),--- , A(t), B(0),- -, B(t) = C(t+1).

2.2
Claim?2. C(t) = B(t), if nyin > WN%%N, where C(c1, ¢2) is a positive constant
only depend on ¢y, cs.

Claim 3. A(t),B(t) = A(t + 1), if npin > Clc1,c2)M?BoN?ny, where C(cy,co) is a
positive constant only depend on ¢y, cs.

O

Proof of Claim[I} As a consequence of Lemma|C.2]and Lemma2.1} and A(s), s < ¢, we have

IVL(ay W ()5 = IVLs — VLW, Px)ll%
<2B[Ls — L(W,)] (33)
<28(1-ny)" B.

From A(0), - - , A(t), B(0),--- , B(t), we have forany 0 < s < ¢,

oL
3] = o Iser IV Waa D e [Wecra o |
i F
62(:1
< S IV L)l 34
6201 5
S\/ﬁ 26 (1 —nvy)" B.
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Then,
¢
Wit +1) = Wi(0)| p <> [Wils + 1) = Wi(s) ||
s=0
t
oL
= N (8)
2 1w, )],
62(11 i /2
<n——=v28B ) (1—ny)*
nN s=0
6201 t
< 26B 1-— 2)8
"nVﬁEV\/ B s:o( n7/2)
2(}1
< 2e“1\/26B R
AVIUNTY
This proves C(t + 1). O

Proof of Claim[2] Let §; = W;(t) — W;(0),1 < i < N. Using C(t), we have [|&;]| » < R,1 <14 <
N. Sete; = e~ /2 min{e®t — e1/2 e72/2 —e7c2 1/2}.
It is suffices to show that

[Wii(t) — Wi (0)]| < e/ %er(ny—1nn—1---ni—1)"/?, 1 <i <N, (35)
|(Wia (t) = Wit (0) lr ) || < e/ 2ei(ning - --ni—1)?,1 <i <N, (36)
and
1/2
1
[Wyi(t) = Wy (0| < M/2-N° | —  J[ mx| 1<i<j<N, (37
N —1<k<]

because 0,in(A+ B) > 0min(A) — 0maz(B) = 0min(A) — || Bl and 000 (A+ B) < 0pmaa(A) +
Omaz(B) = ||A]| + || B]| (e.g. see Theorem 1.3 in|Chafai et al.|(2009)).

Case 1. We first prove (37)).

For1l <i < j < N, we can write W,;(t) = (W;(0) 4+ 6;) - - - (W;(0) + &;).

Expanding the above product, each term has the form:

Wiitkot1)(0) = Oy Wik, —1):(hs—1+1)(0) = Ok _y =+ Oy - Wige, —1):4(0), (38)
where i < k; < --- < kg < j are positions at which perturbation terms Jj, are taken out.
Notice that the convergence region assumptions (3T)) implies that forany 1 < i < j < N,

1/2

[W;.4(0)]| < M/2-N° H ng - max{n;_1,n;} < M-N? (
i<k<j—1

1/2

Hi—lgkgj "k)
Nmin

(39)
WLOG, assume M > 1. If i = j + 1, then

”WJZ(O)H = HIH S M - No(nj/nnzin)l/2-
Assume i > 1,j < N, applying inequality as well as the following inequality

j—i+l .
> (j o 1) o= (142 1< (1 +a)N —1,¥z >0,
s=1

we obtain that
[W;.i(t) — W;. (0)]]

j—itl
—i+1 s s —s
= Z <j ; ) R (M ’ NG) +1nmi7/12(ni—1 t nj/nmin)l/2

s=1

<M -NP(ni_1 -1 /Mmin) 2[(1 4+ R- M - N/ \fropim )N — 1]
§81M . Ne(’ni,1 . ~nj/nmm)1/2.
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The last line holds due to the following reasons:
there exists absolute constant Ay, A5 > 0 such that

(1 —|—17)N — 1< AszN,

ifx >0, N >1,and zN < A;. Since there exists positive constant C(cy, ¢2), which only depends

on ¢y, o, such that when

C’(Cl7 CQ)MQFCQB()
22

R-M - N/ fliin < A,

>

Nomin 2

Ny (40)

we can have

as well as
[(1 +R M - Ne/,/nmm)N — 1} S A2 -M-R- N0+1/\/nmin S g1 = 51(01,02).

Case 2. The proof of is similar. Set j = N, we can save the factor M - N? from previous
calculation, which means

Wi (t) = Wi (0)]

N—i+1 .
<en/? ) (N _8Z ’ 1) R (M - N°)*n, 3% (g - ony 1)/
s=1

<e2(niy - -nn-1)2[(1+R- M- N/ /riin)™ — 1]
<e?ei(ni_y - -ny_1)?i > 2,

where the last line is implied by equation (40).
Case 3. Similarly, we have

Wi ()R x) — Wi (0)lrex) ||
i,
<y (i) R*(M - N%)*n, 3% (g - -mj) /2
s=1

<2 (ny )21+ R M- N/ i) — 1]
<ePei(ny--omy)' % j <N -1
This proves B(t).

Proof of Claim[3] The GD (7)) implies
Wyaa(t+1)

_ (WN(t) - ngﬁvaw) (WN_l(ﬂ - astNl <t>) ” (Wl(w - ng’;j (t))

N
=Wxa(t) =1+ an D Wrsiet (W1 (OVLax Wt (8)) Wiz (8) T (Wic1a (1) + E(1),

i=1

where E(t) contains all high-order terms (those with % or higher). Define a linear operator

N
P@)A] = a} Y Wit (OW 1 () (AP) (Wisia (B)lrx) Wicia Blrix), @D

i=1
for any A € R~V >0,
Now we have

anWna(t+1) =anWna(t) —n- P(t)[VL(anWna(t)Px)] + an E(t). (42)
Easy to check that P(t)[-] is a sum of positive semidefinite linear operator.

The following proposition describes the eigenvalues of the linear operator P(t)[].

18
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Proposition D.2. Let Sy, So be symmetric matrices. Suppose Si = UAUT, Sy = VA, VT,
where U = [uy,ug, -+ ,Upm), and V. = [v1,v9, - ,v,] are othogonal matrices, and Ay =
diag(M1, Ao, -+, Am) and Ao = diag(pa, po, -+, pn) are diagonal matrices. Then the linear
operator L(A) := S1ASs is orthogonally diagonalizable, and L(A;;) = \ipjAij, where \;pui;
represent all eigenvalues corresponding to their eigenvectors A;; = uZUJT

Applying this proposition and the assumption B(¢), we obtain the upper bound and lower bound for
the maximum and minimum eigenvalues of positive definite operator P(t), respectively,

N
)\max %\7 Z Umaz i—1:1 )|R(X)) ! o-rznam(WNliJrl(t)) < 56201,
and
al N
)\mzn 2 ?\] g Wi_1a )|R(X)) 'szn(WN:iJrl(t)) > E€_202. (43)

In conclusion, we have

N N
Anaz(P(t)) < —e21 and Apin (P(t)) > —e ™22, (44)
nn ny
With learning rate n = 7, = %, 0 < e <1, we have

L1 — Ly

< (YL, ~aPOVLDx + (VL axBO)x + 5 InPOIVL] - an B

B
= (VLi, =nP(O)[VL) + 5n* | P(¢ HIVLI% + F(t) 43)
B
< = (Mo (P(O) = SN2 (PO ) IV LI + FO)
N N
< —6_202777 (1 4C1+202 B ) HVLtHX + F( )
nn Tl
where
B B
F(t) = (VL anE(t)x + 5 [1P®)[VL] — an E®)|x = 507 [POIVLI -
We claim that F'(t) is small enough, such that
Ly — Ly
< —e‘hﬁn (1 - 6401+202577N> IVL|% + F(t)
nn 2
46
S 767362 ﬂn (1 661+362/B N ) ||th||X ( )
ny

—eoene ELoD o3

Assuming this claim for the moment, we complete the proof. Combining (26)) and (46), we have

Liy1 — Ly < — (cl+52)& ||VLt||X )
LW.) =Lt > —54 ||VLt||x,

which implies

Ligyy — L(W,) < (1 - 6_6(“*”)45(1,{_5)) (Le — L(W.)), 47
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that is
—6(c1+c )48(1 — 8) ' t
Li—L(W,) < [|1—e %aTe — (Lo — L(W,)) = (1 —ny)" (Lo — L(W,)). (48)
Estimate F'(t)
Notice that
[F ()]

<IVEL x llan E@) x + g(znAmaz(P(t)) IVLlx lav B x + lanE@®)%)

=11+ I>.
From (34), we have
oL e2 e2
—(t L W (t = ——||VL W (t =: K.
FIAL LS \/W”V (anWia (1)l p \/WHV (anWna ()l
Expanding the product

Waalt+1) = (W) =n g (0)) (Was() = nzoe— (0 ) -+ (Wile) — 550,

each term has the form:

oL oL oL
A=Wy (k,+1)(?) 'Um(t) Wik, —1):(ka_y+1) (1) oW, (t)"'an () - Wi, —1)a(#),

s—1

where 1 < ki <ky<---<kg <N.

As a direct consequence of inequality B(t) and inequality , we obtain

1 M-NO\T!
Al = |APx|p <  (nK)*
[Allx = X”F—aN\/me (k) (wm) ’

Recall that E(t) contains all high-order terms (those with n? or higher) in the expansion of the
product. Thus, E(t) can be expressed as follows:

N

oL oL oL
> > W +1) (8) 1170 = (O Wi = 1): a1y (8) =) - 03— () Wi, —1)a (8)-
§=2 1<ky <ka<--<ks<N ks kst k1

Set{ _ min{(e*%? o 67302)/e4c1+1’ %(6601 o 6461)/6651+1, %(6651 o 6401)1/2/e4cl+1, 1}

Recall the inequality ({Z) < (eN)®. Thus, we have

an [ E@®)]x
() e s ()

<
o V1IN V min 5—2 vV min (49)
KM - N6+1 vV ''min
< e*1(neKN) e /v/Mm:
NS 1—neKM - N1/ /Min

Sf%n AT |V L(ay W (1)) (i pe KM - NOTY) i < €/(1 + €))

g ot (név) IV L(an W ()] x -
N

Using and the upper bound of 7, we know that there exists constant C'(¢1, ¢2), such that
Ninin = O(Cl, CQ)M2 . BQNQQHN,

20
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and

2v2M - e t2/BoN /ny 1 PRI
5 =

eKM - N/ o < - .
K / o vV Nmin C/(Cl, CQ) + f

Using [@#9), we have

Bsee s (2 ) IVEI < @ e (02 ) IR, 60)
and
I
<2 (2 +( VIV 4o () 19 )
B 5 N2

<(66(;1 _ 64C1)

37 o IV Ll

Thus, @6) valid.
This proves A(t).

As a direct consequence of the proof Lemma [D.T] we can obtain the following lemma.

Lemma D.3. Assume all assumptions in Lemma [D| hold. For any 7 > 0, we can choose new
constants ¢y, ce as well as C' := C(cy, ¢a) such that the overparameterization assumption in
LemmalD 1 hold and

IRO)x < 7llanWna(t) — Wil x, (51

where N
anWia(t+1) = ayWa.(t) — EUVL(GNWNq(t)) + R(t).

Proof of Lemma([D.3| Due to (33), @2), (#4), (@9), and lemma [C.2] we have

1ROy = lavE@® +7 ( VL~ <t>[wt1) HX
< JlanE(®)]y +nmax {Amazw(t» SEX Amm<P<t>>} 1YL

N
<(C7- €+ max{e® — 1,1 —e7%2}) oy VL[ x

2B(Ly — L(W5))
ebc1+3ca . ﬁ

(O - € +max{e?t — 1,1 — e 22},

Due to the fact that L; — L(W,.) is non-increasing in ¢, and C’ is a constant only depend on ¢y, ¢,
we can choose small enough positive ¢, co and £, which depends on 7, such that

268(Ly — L(W+))

IR x < 3

<TllanWaa(t) = Wil x -

Lemma D.4. Assume 7 € [0,1). Consider a discrete dynamical system V (t) such that,
Vit+1)=V(E) —nVLV () + R(),
where ||R(t)|| x < 7|V (t) — Wil x. If ne < 2/0, we have
V() = WelX < (@+77)" IV(0) = Wl
where q is defined in (I3).
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Proof of Lemma[D4] Set A(t) = V(t) — W, and 7/ = 7 ||A(t)|| . Notice that
At +1)=A(t) —n.(VL(V(t)) — VL(W,)) + R(t),

and
lAG+ D%
< [|[VL(V(#) = VI(W.) X — 2. (A(1), VL(V(t)) = VL(W.)) x
+ADI% + CIAW®)x + 20 VLV () = VL(W.) || x +7')7’
By inequality (23)),

1A+ D)%
<IIA@®) 5 — 20 (A1), VL(V () — VL(W.)) x
+ 02 |[VL(V (1) = VLW 5 + 77 | A%
=(1+77) | A5 — 20 (A(E), VLV (1)) — VL(W.))x
+n? [IVL(V () = VL. %

S e L INGI

+ (a2 = 2 ) VLV 0) - VLGV

.2 2
Case. 1: o < < 3
In this case, we have

1A+ DIk

<+ T 1AON - 202225 1AWI + (1 - 25 ) IV (0) - VIS

21,
<+ T 1AW - 20205 1801 + (o - 225) 1Al

a+p
<1477 = B2 = n.B) 1AW I%
=g+ 77 IA®)% -

Case2: 0 < 7, < o%rﬂ
Similarly, we have

A+ D)% < (1477 — a2 =) [[AD) 5 = (g +77) [A@)II -
In both cases, we have [|A(t 4+ 1) |5 < (¢ + 77) [|A®)])% -
AWDN% < @+ 77" AO0)]% -

O

Next, we will show that the trajectories of the GD (30) for deep linear neural networks (29) are close
to those of GD (2)) for the corresponding convex problem (T)).

Lemma D.5. Consider the GD for the deep linear neural networks with learning rate n < 171
SJorayWn.a(t),t =0,1,- -, and the GD (2) with learning rate 1, = o nfor W(t),t=0,1,--

Assume C(cy, c2) exists in Lemma for any ci,co > 0. Forany T € (0, 1), n < m1 (m defined in
%}we can choose ¢y, co > 0 and the constant C = C(c1,¢2) = C'(1,1m/m), such that inequality

holds, given initialization condition (@, and overparameterization condition

Nmin > CM?K2BoN*ny. (52)
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Furthermore, we have

lan Wi (t) = W% < D(7,q,t) \|aNWN.1< ) - WX, (53a)
IEpLn(t) — E(H)] < 5( VD(7,q,t) + D (1,9,1) ) lanWn:1(0) — W*H§( , (53b)
Eprn(t) <38(q+7)" [lay Wi (0) — W*||X, (53¢)

where D(7,q,t) = min { ,2(q+ 1)t } with q defined in .

Proof of Lemma([D.3] Using Lemma we obtain that for any 7 € (0,1) and n < 7, we can
find small enough positive constant ¢y, ¢, which are only depend on 7,7/7, and constant C' =
C(c1,¢2) = C"(7,n/m) mentioned in Lemma|[D.3] such that

~ (1—¢)2ny
bt N
where 0 < € < 1, as well as
V(t+1)=V(t) —nVLV () + R(t),
where V() = ayWn.1 (), 0. = 2on, and [|[R(t)|| x <7/ =7 ||V (t) = Wa| x-

and /19 = 1 — €, where 1y = —-22.

66c1+3L2BN .

Notice that 8y :=n/m =

o
For the right hand side of inequality (32), we have

0(01702)M2H2B0N29 _ C"(1,n/m)M?k%B,

N29
g2 g2

To show that inequality (32) is equivalent to inequality (52), it suffices to show that & only depend
on 7, 1/m. Notice that
e=1-n/n =1- 0o’ 73,
and c1, ¢ only depend on 7 and 7/7;, which implies € only depend on 7,7 /7;.
Now, we start to prove the three inequalities in (53).
Recall the GD (2) for W (¢). Define A(t) = V(t) — W(t) = anWn.1(t) — W(¢). Notice that
A(t+1)=A(t) —n(VL(V(t)) = VL(W(t))) + R(t),

and

1A+ D)%

< (IVL(V (1)) = V(W (D)% — 20 (A1), VL(V (1)) = VLW (1)) x

+A®IX + @IAG)x + 20 [VLV () = VLWV (1)) || x +7)7"
Letly =2||A(t) || + 204 |[VL(V(t)) = VLW ()|l x + 7'
Now, we aim to find an upper bound for /;.

Applying lemmawith the assumption 0 < 7, = %n < %, we know that
e < (6AM)]x +7) < TUW(E) = Wallx + IV (E) = Wallx)- (54)
Thus

W' <Tr V() = Wellx (V) = Wallx + W () = Wallx) = Upr.
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By inequality (23)),
lAE+ D%
<[IA@% = 2. (A1), VI(V (1)) = VLW (£))) x
+ 0l VLV () = VLW (0))IIx + Ut
= [A@®)I% = 20V (1) = W(2), VLV (1)) = VLW (1)) x
+ 0} (IVL(V (1) = VLW (1)) |5 + Usr

<8I - 217 18O

+ (a2 = 225 ) IVEW @) - VIOV O + Ui

.2 2
Casefl. ot <M < 3
In this case, we have

2
1A+ DIl

<IAOI - 20222 1A + (a2 -

+5
21,
a+p

<1AOI - 21,225 1801 + (1 = 255) P11 + Uir

<1 =B (2= nB) |AW5 + Uer
=:q|A®)% + Usr.

Case2: 0 <n, <
Similarly, we have

_2
a+p”

1A+ DI < (1= an(2 = na)) [AG)x + Usr = ¢ AR + Uir.

In both cases, we have 0 < g < 1.

First of all, since U; < Up and ||A(0)|| y = 0, we obtain that

Uor Uot Uopt
201 < 2T+ (180 - 22 ) < 2

<
“1—q 1-—

Applying Lemmamfor V(t) and W (t), we obtain ||V (£) — W.||% < (1+¢)'q!

and ||[W(t) — W, |5 < ¢'[|[W(0) — W.||%, respectively. Thus,
IL(W (1)) — Lan W1 (1))]

<YLV (1), M) x|+ 2 a0l
<BIW () — Wy - 1AW + 2 1A0I%

147 T
<6 (a2 72+ 5 ) IV ) - Wl

Generally speaking, (53) implies

t—1
IABIY <7 a7 U;.
=0

‘We have
t—1
A < 1473 (g +Tr)g" 1 [V (0) — Wall%
j=0
t . q t _ 2
2+ 77 (1= (L)) Vo) - W

24
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. [V(0) =

2
Wellx -

IV(0)

) VLV (6) — VEW @)% + Usr

(55)

2
- Willx
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Thus, we have
. 147
JaWxa(0) - WO < min {27 20+ 70y V(o) - w2

as well as
IL(W(t)) — LanWna (1))

<BIW )~ Wl - 1AW + 2 1A0I%

14 1 14
<8 <\/min (T g} gmin{ 2 200+ W}) ORAS

By triangle inequality as well as L(W (t)) — L(W,) < gqt IV (0) — W*|\§(, we have
|L(an Wi (t) = LOW.)| < 38(a +77)" |V (0) = W% -

Without loss of generality, we replace all 147 and 77 by 7, which completes the proof.

E GAUSSIAN INITIALIZATION FALL INTO THE CONVERGENCE REGION

In this section, we first establish some spectral properties of the products of random Gaussian ma-
trices. The spectral properties lead to the conclusion that overparameterization guarantees that the
random initialization will fall into the convergence region with high probability.

Gaussian initialization:

Denote by N(0,1) the standard Gaussian distribution, and x? the chi square distribution with &
degrees of freedom. Let S9! = {x € R%; ||z||, = 1} be the unit sphere in R%.

The scaling factor ay = \/ﬁ ensures that the networks at initialization preserves the norm
of every input in expectation.

Lemma E.1. For any x € R™°, the Gaussian initialization satisfies

2 2
E|[lanWn.1(0)z|[5| = [|2]5 -

Proof of Lemma(E7]] For random matrix A € R™*™i~1 with i.i.d N(0,1) entries and any vector
2
0 # v € R™-1, the distribution of 142

lloll3
Wit ()3 / Il = ZnZn—1-+- 21,

where Z; = Wi (0)z] / [Wi11 (0)]|”.

Then we know that the distribution of random variable Z; ~ x2 , and conditional distribution of

random variables Z;|(Z1,- -+, Z;—1) ~ x5, (1 <i < N). Thus, Zy,-- - , Zy, are independent. By
law of iterated expectations, we have

is x,,2. We rewrite

N
E([Wwaa(0)z]3/ ]3] = ] ] -

j=1

O

Define A; = Zj\;l 1/ n;. Now, we introduce a new notation {2 (A%)’ which means that there
. 1 k
exists k > 0, such that ) (A—l) > A

Lemma E.2. Consider real random matrix A; € R">"-1 1 < j < g with i.i.d N(0,1) entries
and any vector 0 # x € R™.

Define A1(q) = 321 n—lj and Ny, = Ming<j<q n;. Then
2
P(||AgA4—1 - ~-A1m|\§ / ||x||§ > eng - -ng) < exp {—} =: f1(c),Ve > 0. (56)
8A1(q)
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When 0 < ¢ <3In2, A1(q) < ¢/(121n2), we have

02

2 2 _ ¢
P(|AgAg—1--- Avzlly / [lzlly < e “ni---ng) < exp {_WM

} — h(0. 6

Q(—L—
(AM)), we have

Hence, for any © € S™ ! with probability at least 1 — e~
e 2/?(n, - ..nq)l/2 <Ay Az, < ,361/2(n1 . .nq)l/2’

when 0 < ca <3In2, Ay(q) < c2/(12In2).

Proof of Lemma[EZ] For random matrix A; € R"™*™i-1 with i.i.d N (0, 1) entries and any vector

) . A3
0 # v € R™-1, the random variable I ”v}"L‘z
2

2 2
[Ag - Avzlly /lzlly = ZgZg—1 -+ 21,

is distributed as x2 . We rewrite

where Z; = | Aiz|” / |Aim1a2]|®. Wehave Z1 ~ x2 ., Zi|(Z1, -, Zio1) ~ X2, (1 < i < q).
Recall the moments of Z ~ x2 :
22T(2 + A
E[Z*] = %,VA > -
I'(3) 2

Now, we aim to find the Chernoff type bound.
Case 1: We define ratio of Gamma function
L(z+A)

R(z,\) = )

,A> 0,z > 0.

In Jameson| (2013)), we have
Rz, \) <z(z + NP <(@+MNMNA>0,2>0. (58)

Fixed ¢ > 0, for any A\ > 0 we have

P(Z,-Zy > e“ny---ng) <P(Z,- Z1) > er(ny -- ~nq)/\)
< e’)‘c(nl . nq)ka[(Zq .. Zl)A] (Markov inequality)

q
=exp{—Alc+In(ni---ng))} H 2*R(n;/2,)\) (Law of total expectation)
j=1

q
<exp{—-Ac+1n(n;---ng)) +grln2 + Z )\ln(% + A) }(Inequality (58))
j=1

! 2\
= exp{—-Ac+ )\Zln(l + n—)}

j=1 J

q

1
< exp{—Ac+2)\? E n—}
J

j=1
Define constant A;(q) = ?:1 n% Set A = gx775y- We obtain .
Case 2: Let 5, = ming<j<q ny.
P(Z,-Z1 < e “ny-ng) <P(Zy---Z1) > e (nyg - nq)/\)
<exp{Ac—In(ny---ng)) +gA\ln2 + zq:lnR(%, A}

j=1
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Define
q . .
FO) = Ae—In(ng---ng)) + gAln2 + Y I R(ZZ, ), - 2w <\ <,
= 2 2
Notice that f(0) = 0. Define digamma function,

¥ = 50 = -

Qi et al.| (2006) proved the following sharp inequality of digamma function,

1 1 1
In(x + 5) - <Y(z) <In(z+e7)— ek > 0,

where ~ is the Euler-Mascheroni constant, and e~7 =~ 0.561459.

Thus,
f’()\)—c—i—i[—ln(&)—l—d)(&—i—)\)} >c+§q:1n(1+’\+1/2)—§q:;
B g 2 2 A n;/2 o2+ N
Since In(1 + z) is concave, we have
In(1+z) > 2In(2)x, 2 € [-1/2,0].
If —#mim < X <0, then
0
fX) = f(0) - A f'(@)da
A 4 q
x+1/2 1
§c)\+/ In(1 + — — | dx
0 ; ( n;/2 ) j;nj/%%“
q
A+1/2 A A
= In(1 i/24+1/2)In(l4+ ————=) - A —In(l + —
cx+;[x L+ 2 ¢ (/24 1/2) (1 4 ) A= a1+ o)
! A
< —1)In(1
_c)\+Z(>\ ) In( +nj/2)
Jj=1
<eA+4In(2)AN - 1)A1(g).
Assume 0 < ¢ < 3In2. Let A = 121n2, and \* = —m. Since nminA1(g) > 1, we have
)\* Z _nmin/4-
Assume Aq(q) < ¢/(121n2).
Thus ) ) @ )
c c Ai(q 1) c
AN)<—————+4In2 + - <. 59
0= (0 ) S s O
Thus, we obtain (37). 0O

Lemma E.3. There exists a positive constant C(c1, ca) which only depends on c1, ca, such that if
nyA1 < C(cy,co), then for any fixed 1 < i < N, with probability at least 1 — exp {—Q (A%)}

we have
Omax(Whi(0)) < e (ni_1ni---ny_1)"?, (60)

and
Tumin(Wni(0)) > €72 (n_yn; - -nn_1)Y2. (61)

Proof of LemmalE3} Let A= W (0). We know that
Omaz(A) = [|A = sup ) [ Avl|,

vESTN
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and
Omin(A) = inf |Av|,.

,UGS”N—I

Applying lemma we know that with probability at least 1 — exp {—Q (A%) },

||A'U||2 / ||UH2 € [G_CZ/Q_P7 601/2P],

where P = (n;_1---ny_1)"/2.

Set ¢ = min{1 — e=“1/2 (e=%2/2 —e¢=¢2)/(e~/2 4 ¢°1)}. Take a ¢-net Ny for S"~ ! with size
INs| < (3/¢)™~. Notice that with this size we can actually cover the unit ball, not only the unit
sphere.

Thus, with probability at least 1 — [Ny| exp {—Q (A%) }, for all u € N, simultaneously we have

1Aully / [lull, € [e*/2 P, e*/2 P).

Fixed v € S™~~1 there exists u € Ny such that |ju — v||, < ¢. WLOG, we assume 1 — ¢ <
|lully < 1. We obtain

1Av]l, < [|Aully + | A(u = v)ll, < e/2P + ¢ [|A] .
Taking supereme over ||v||, = 1, we obtain

601/2

1-9¢

Uma:r(A) = ||A|| < P < el P.

For the lower bound, we have
1A4v]ly > [|Aully = [|A(u = 0)ly = e=/2P||u]| — ¢ || A]] > [(1 —¢)e /% — et | P> e 2P,
Taking the infimum over ||v||, = 1, we get

Omin (A) 2 e P

The conclusions hold with probability at least

ien{a ()

21 —exp{ny In(3/¢)} exp {_Q (A11> }

onf a4}

since nNAl < C(Cl,Cg). O]

Lemma E.4. There exists a positive constant C(c1,co) which only depends on cq,ca, such
that if rank(X)A; < C(c1,¢2), then for any fixed 1 < j < N, with probability at least

1 —exp{—Q (A%)} we have

O—max(szl(O)‘R(X)) S e (nan"'nj)1/27 (62)
and

Omin(W;1(0)|r(x)) > € 2 (nang - -- nj)1/2- (63)

Proof of Lemma The proof is similar to that of previous lemma. The only difference is that now
we consider the p—net to cover the unit sphere in R(X ) NR™, with dim R(X ) NR"™ = rank(X),
where R(X) represents the column space of X. O
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Lemma E.5. Set C = nyas /Mmin < 00, 8 = 1/2. Assume Q(1/A;) > Ail, where 0 < k < lisa
constant and /A1 satisfies

. k k
A1 < min { 5In(6)’ 5In(5n(6)e/k) }
. k k
A In(C) < mm{m’ 5
A In(N%) < k/5.

Given1 < i < j < N, with probability at least 1 — 2=/ (581) = 1 — ¢=R(1/21) ye haye
IW;:(0)[| < MgvVON®(ny -y - max{n;_1,n;})"/,

where My, is a positive constant that only depends on k.

Proof of Lemma[E-3] WLOG, assume n;_1 < n;. Let A = W;;(0). From lemmal[E.2] we know
that fixed v € S™i-1~1, with probability at least 1 —e~(1/21) we have || Av||, < 4/3(n; - --n;)1/2.

. _ ENZ20 k .
Take a small constant ¢ = 5T (6) AT > 5W(6)C Let v1,:--,v,, , be an orthonormal basis

for R"™i-*. Partition the index set {1,2, -+ ,v,,_,} = S1 U S2 U -+ U Syy26/.), where S| <
[eni_1/N?%] foreach 1 <1 < [N?%/c].

The following discussion is similar to the proof of lemma[E.3] hence we omit some details. For each
I, taking a 1/2— net \V; for the set Vs, = {v € S™-171:v € span{v;;i € S;}}, we can get

||Au||2 < 4(77’1' o 'nj)1/2’ u € VSH
with probability at least

1— [Nife™ /81 > 1 — exp{—k/A1 + (cni_1/N +1)In6} > 1 — e~ 2H/ G2,

: k
since A; < (o)

Therefore, for any v € R™~1, we can write it as the sum v = > ; avy, where o € Rand v; € Vg,
for each [. We also know that ||UH§ =3 o]
Then we have

[Avlly < o | Avlly < 4(n;- "”j)l/Q\/sz"/d D laif? < MgVON® (i -+ )" o]l -
l

l

Thus,
|A] < Mk\FC’N(’(ni . nj)1/2_
Notice that when C < e, A < 51n(51rlf(6)e/k) < 51n(51n]f6)_c/k), and when C > e, we have

k kn(C)
S mE)e/k) " 5} = 5B 1n(6) - C/k)

Ay In(C) < min {

The success probability is at least
1— |‘N29/C‘| -6_3k/(5A1)

>1 —exp {]n (5111(2)0) + ln(NQG) _ 3k/(5A1)} _ 673k/(5A1)

>1 — 9e—k/(5A1),

since

and A In(N%) < k/5.

k
Ars 5In (51n(6) - C/k)
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Proof of Lemma[2.3] Set r = rank(X), and uq,--- ,u, be an orthonormal basis of the column
space of X.

Then, Px = Y ;_, u;ul.
Notice that
2 2 2
lanWn:1 (0)[[x = llan Wi (0)Px |7 = Z lan Wi (0)uill5 -

i=1

By assumption, we have

2 2
EllanWaa(0)1% =B llanWaa (0)uil; = r.
i=1

The Markov inequality implies

2 2r 1)
P(llanWna(0)llx = 5) < 5-
Therefore, we can bound the initial loss value as
Lo~ L(W.) < (VLOW.), an Wi (00X — W.) 4+ [lax Wi (0) ~ W%
= 2 lax W (0) - W%
2 2
< BllanWina (0)[Ix + [[Willx)
2r 2
< 8L+ W),
with probability at least 1 — §/2.
O
Proof of Theorem The requirement on size {ny,n2, -+ ,ny_1, N} in makes sure that

lemma [E.3} [E.4] and [D:T]hold.

WLOG, we set ¢; = ¢/6,c2 = ¢/3, M = 2M;\/Cy, By = Bs, and g =: U522 then with

e2cBN
probability at least
1— N2~ UY/A) _5/9>1 -4, since Ay < LIS (IS
- ’ ~ C(c) In N’ In(1/6) |’

the random initialization satisfies the initialization assumption (3I) and the overparameterization
assumption (32). Applying Lemma|[D.I] we complete the proof.

O

F ORTHOGONAL INITIALIZATION FALL INTO THE CONVERGENCE REGION

There are some basic facts for random projections and embeddings. Most of the following properties
can be found in [Eaton| (1989).

Proposition F.1.

1. A'is a random embedding if and only if A” is a random projection.

2. If A is a square matrix, then random projection, random embedding and random orthogo-
nal matrix are equivalent.

3. The uniform distribution on the group is a left and right invariant probability measure, that
is, if A is a random orthogonal matrix, then A, U A, AU are all random orthogonal matrix,
where U is a non-random orthogonal matrix.
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4. Assume X is an x q(q¢ < n) random matrix whose entries are i.i.d. N(0,1) random
variables. Then A := X(XTX)™'/2 is a random embedding, since AT A = I, and the
distribution of A is left invariant, which means that A and U A have the same distribution,
where U is a non-random orthogonal matrix.

5. If A is a uniform distribution over an orthogonal group of order n and A is partitioned as
A= (Ay, Ay), where Ay isn x qand Ay isn x (n—q), then AT and AT are both random
orthogonal matrix.

6. The columns of uniform distribution over orthogonal group of order n, and

(517"' agn)
VE+G -+ + 8

have the same distribution, where &1, - - , &, are i.i.d. N(0, 1) random variables.

7. Assume A = Ay xp,n < pis a random orthogonal projection. For any v € SP™1, Av||§
and (337, €2)/ (25—, &2) are both following beta distribution with o = n/2, 8 = (p —
n)/2, where &1, -+ &, are ii.d. N(0,1) random variables.
Remark 9. There are several ways to construct random matrix A = (aij)qxn7 q < n, which is
uniformly distributed over rectangular matrices with AA” = ¢%I,,¢ > 0. Let O,, be uniformly
distributed over real orthogonal group of order n, and O, is partitioned as O,, = (AT, AT)T, where
Ay is ¢ x n. Assume X = (;)qxn. and z;; are independent standard normal random variables.
Then A, cA;, and ¢(X XT)~1/2X have the same distribution.

Lemma F.2. For any x € R™°, the one peak random projections and embedding initiation satisfies

E |laxWxa(0)z|3| = || .

Proof. Let D = W).1(0)/ /ninz---n,. Then D is an embedding matrix. Thus, ||Dac||§ = ||JJH§
Let A; = Wi.p41(0)//mpnpy1 - - - ni—1, where ¢ > p+1,and A, = I.

Set B; = ||A1Dx||§ / ||Ai_1D1:||§, i > p+ 1. Then, B; follows beta distribution B(n;/2, (n;—1 —
n;)/2) given B;_1, Bi_2, -+, Bpy1,1 > p+ 1. If n; = n;_y, then B;[(B;_1,Bi_2, -+ ,Bpt1) =
1, a.s.
If B ~ B(a,b), then the expectation is given by the following equation,

a

EB = .
a+b

Thus, by law of total expectation, we have
n n
2B [laxWa(0)zll; = E | Ay Dally; = EBy By -+ Bpan [ Dally = = |5
D D
This completes the proof. O

Next, we introduce sub-Gaussian random variables, associated with bounds on how a random
variables deviate their expected value.

Definition F.1. A random variable X with finite mean p = EX is sub-Gaussian if there is a positive
number ¢ such that:
2,2

Elexp(A(X — p))] < exp ()\ ) forall A € R (64)

Such a constant o2 is called a proxy variance, and we say that X is o2-sub-Gaussian, and we write
X ~ SG(0?).

Example F.1. Normal distribution N (11, o2) of course is o2 sub-Gaussian.

For beta distribution, |[Elder| (2016)) showed that B(a, b) 5 -sub-Gaussian and later,[Marchal

. 1
18 Tatb)+
& Arbel|(2017) concluded -sub-Gaussian.

I
4(a+b+1)
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The Hoeffding bound for random variable X with mean p and sub-Gaussian parameter o is given
by,

2
(X —p > ] < 2exp{— s b V> 0. (65)
202

Simply applying the Chernoff bound for B(a, b), we obtain the following lemma.

Lemma F.3. Assume random variable B distributed as beta distribution B(a,b) with two positive
shape parameters a and b. Then

]P’(‘B

a+b‘ >y) < 2exp{—2(a+b)y*},y>0.

Hence,

P (‘B— aib‘ < eaib) > 1 - exp{-Q(a2/(a + )},

where §(+) only depend on e.
For the upper tail, we can obtain a better bound,

]P’(Bz (1+5)aib> <exp{—(e —In(e +1))a}. (66)

Proof of Lemma([F3] We only need to prove the third inequality. Assume random variable B ~
B(a,b). Setv =a+b,(1+1)% <y <1,t>0,and7r > 0.
We are going to estimate the Chernoff bound for B, which is

P(B>y) < e~ (ry=ImEe™) _. —L.(y),
The moment generating function of B is given by
L a(a+1)-- (a+k-1)r" = +k—1)
Ee'® =1 ;7> 0.
‘ +Zv(v—|—1) (w+k—1)k Z: k!

k=1 =

Recall that the Maclaurin series of (1 — r/v)~® over (—v,v), is given by equation

= ala < (a —1)rk
(177"/v)7“:1+z (at1) U( k=D

k k!l
k=1

Thus,
I(y) =ry —InEe™® > ry + aln(l —r/v).
Setr =v —a/y € (0,v). We obtain

P(B > y) < exp{—(vy —a+aln(a/(vy)))} =: exp{—vy - g(a/(vy))}, (1 + t)% <y<1
where g(z) = 1 — x4+ zln(x), x = a/(vy) € (0,1/(1 + t)]. Notice that g(1) = 0 and ¢'(x) =

In(z) < Ooverz € (0,1).
We know that

g(x) > g(1/(1+1)) = t_iniilﬁt),t > 0.
Thus,
P(B = y) < exp {—vy~ t_?f;rt)} =exp{—(t —In(l +¢))a},y=(1 +t)% <1

Sety = (1+¢)-% - We obtain the inequality O
Remark 10. 1t is trivial to check
Wi (0)]] = (nimigr -+ ny)/2,1<i < j<p,
IW5i(0)]| = (ni—imi---mj—1)2p+1<i<j<N,
W, (0)]| < (Rinigr - mj—1)(ny) /2
n 1/2
< (m) (niniy1---nj_1-max{n;_1,n; N2 1<i<p<j<N,(i,5) #(1,N).

Nomin
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Remark 11. As a special case, if ny = ny = --- = ny_1 = n, we know that |[W;,;(0)| =
(niflni « e nN71)1/2 — n(N_i+1)/2.

Lemma F4. Assume n,/ min{ni,ny_1} < Cy < co. Set e > 0. Let C(¢) represent the constant
depend only on e. If n1/Co > C(e)ny, then with probability at least 1 — e~*(1/C0)

Tmaz(Wn:i(0)) < (L+€)(ni—ing - -ny—1)/2,2<i<p
Tmin(Wh:i(0)) = (1= €)(ni—ani - -ny—1)"/%,2 < i < p.
Similarly, if ny_1/Co > C(e)rank(X), then with probability at least 1 — e~ Hnx-1/Co)
Tmae (Wi (0)|lr(x)) € (1 +€)(nang - n)/2p+1<j< N
Tmin(Wi1(0)|r(x)) = (1 —¢€)(ning - )2 p+1<j<N.

Proof of Lemma[F4) Let D = (ny_1nn—_2 - - ~np)_1/2W£:p+1(0) and

A; = (npnp_1 - -n;)"/2WE (0). Assume v € S"¥ 1. Easy to see that A; is a product of random
orthogonal projections and D is a random embedding.

Lete; = (1,0,0,---,0)” € R™. There exists orthogonal matrix 7" such that TDv = ey, ||e1], =
ITDolly = [[vll, = 1.

Since random orthogonal projections are right invariant, we have

P(|4:Dolly > y) = E [E (Igare .20 | D)] = E [E (Igaseu,zn] D)] = Bl dierll, > y).

This proves that ||AiDv||§ and || A;e1 Hg have the same distribution.

Claim: If v # 0, then || A, Dv]l3 / |v]l3 = || (ninis1 - --n§~-~nN_1)_1/2W§:isz /Jvl3 follows
beta distribution B(n,—1/2, (n, — n;—1)/2).

Define B, = |[4,e1]l5, Bi = |Aserlls / || Airieals i =p—1,p=2,--- 1.

Then B, ~ B(np-1/2,(np —np-1)/2), Bp1|Bp ~ B(np—2/2,(np-1 — np-2)/2), -+,
Bi|(Bp, -+, Biy1) ~ B(ni-1/2, (ni — ni—1)/2).

If n;+1 = n;, we know that B;|(By,--- , Biy1) = 1,a.s.
If B ~ B(a,b), then the moments are given by the following equations,
a a a+1 a+k—1
EB = ——, and EB* = . 67
PEE atbatb+1l atb+k—1 67
By law of total expectation, we have
EB;Bis, - B, = i1 M Tp-1 7”61'—17
N M1 nyp np

as well as ) 51 o k1
E(B;Bis, - - - Bp)k _ ni—1/2n,-1/2 + . ni—1/2+k— .
ny/2 np/2+1 ny/2+k—1
Notice that all integer moments of B; B, 1 - - - B, match those of B(n;_1/2, (n, — n;—1)/2). We
can verify that beta distribution satisfies Carleman’s condition, which implies that B; B; 1 - - - B}, ~
B(ni_l/Q, (np — ni_l)/2).
Thus, | A;Dv|3 / |[v]|5 ~ B(ni_1/2, (n, — ni_1)/2), which proves the claim.

With probability at least 1 — exp{—(n1/Cy)}, we have

(1 -t < ADo]3 < (14 )2 o], = 1.
np np
Using the ¢—net technique which has already been used to prove lemma|[E.3] we know that

Omin(AD) > (1 - ¢) (”)/

Np

and
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with probability at least 1 —exp{ny In(3/¢(¢))} exp{—Q(n1/Co)} > 1 —exp{—(n1/Co), since
nl/C'o Z C(E)nN,fOI‘Q S 7 S p.
Hence, with probability at least 1 — e~ Un1/Co) e have

Tmin(Wi:i(0)) > (1 — ) (i1 -+ ny_1)"?,

and s
Omaz(Wn:i(0)) < (1+¢€) (ni—1---ny-1) /2
The other part of the proof is similar to that of lemmal[E.4] so we omit it.
O

Proof of Theorem[B.2]. Setc > 0, ¢c; = ¢/6,¢2 = ¢/3. In lemma we can pick a e > 0, such
thatl+e < e“/2and1 —e > e~2/2, Set M = 2/Cy,60 = 0, By = By, and n = %

The requirement on size {ni,ns, -+ ,ny_1, N} in make sure that the remark lemma
lemma[2.3] and lemma|[D.1]all hold.

Notice that even though we need the conclusions in lemma [F4] simultaneously hold for 2 < i < p,
p+ 1 < 7 < N, it suffices to apply lemmaoveri € Iand j € J, such that {n;;¢ € I} and
{n;;j € I} both have distinct values. Since |I| < N and |J| < N, with probability at least

1 —2Ne mmin/Co) _§5/2 > 1 -,

the one peak random orthogonal projections and embeddings initialization satisfies the initialization
assumption (3T)) and the overparameterization assumption (32).

Under assumption n; = ng = --- = ny_j, We can use remark@to replace lemma@ Thus, with
probability at least 1 — §/2 > 1 — 4, holds. Applying lemma [2.3| and we complete the
proof.

O

Proof of Theorem[B.3] Let Wx (0) = /nUy|I,,,, 0]V, -+, W;(0) = /nU; I, VT, 2 <i < N —

1, and W1 (0) = /nU;[I,,,,0]T VL. Now, we want to verify . By simply calculation, we have
Uma:c(WN:iJrl(O)) = Umin(WN:i+1(0)) = n(N_i)/le S 1 S N — 17
O-maw(Wi—lzl(O)_h%}(X)) = amax(Wi—1:1(0)|R(X)) = n(i_l)/Q, 2 S 7 S ]\77 (68)
[W;a(0)]] = nU=H#D/2 1 < i < j < N.

Notice that forany 1 <p <m

n 2 n 2
lan W (0)z||5 = - |UN[ILn, . 0lVN Un L, , 0] Vi ||, = - |UN[In,, 0 Va 2],

where @' = Un[L,. .01V, [la]l, = /],
Since the distribution of Un[[,,, , 0] VL is right invariant under multiplying orthogonal matrices, we

have
n — ny

U [Fa, V|5 / el ~ BEE 572,

Thus,
B [llan W (0)2]3] = 1213
Applying lemma[2.3] we have

zo - nw) < 5 (2 ).

with probability at least 1 — 6/2.
Applying LemmaD.1|with ¢ > 0, ¢; = ¢/6,c2 = ¢/3, § = 0, we complete the proof. O

Proof of Theorem[3.1] Theorem [3.1]is a special case of Theorem [B.T]and Theorem [B.2] Hence, we
omit the proof. O
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Proof of Theorem[3.2] In Theorem [B.T] [B.2] and [B.3] we proved that for given constant c1, ¢z > 0
and 0 < £,0/2 < 1/2 as well as learning rate 7, there exists constant C' = C(cy, ¢2) such that all
three kinds of random initializations will fall into the convergence region with probability at least
1 — . Applying Lemma[2.3] we complete the proof.

O

G TABLES

In this section, we provide some empirical evidence to support the argument in Section ffWhy do

bad saddles not affect GD for overparameterized deep linear neural networks? Consider the
£ W) —Wi(0)ll .
Wi (0l ¢

following procedures for tables o
a) We consider X € R128x1000 and W, € R10*128 and set Y = W, X + ¢, where the entries
in X and ¢ are drawn i.i.d. from N(0,1).

b) We consider the loss function % lanWn.aX — Y||§,

c) For the given deep linear networks, we apply orthogonal initialization, which are denoted
as W;(0),1 <j < N.

d) We set the learning rate n = for the deep linear neural networks.

nnN
N1 x|?
Wi (8) =W (0)l
e) We make the tables for W
Let n; = ng = ng = 2000, N = 4. Assume W, are drawn i.i.d. from N(0,25). We obtain the
following table:

i=1 1 =2 1=3 1=4

t=1 |0.05161 0.00826 0.00826 0.18464
t= 0.08779 0.01389 0.01389 0.31396
t= 0.11335 0.01781 0.01779 0.40435
t=4 |0.12109 0.01894 0.01889 0.42920
t=>5 |0.12527 0.01956 0.01948 0.44282
t=6 |0.12611 0.01967 0.01958 0.44476
t="7 10.12755 0.01988 0.01978 0.44955
t=28 |0.12745 0.01986 0.01975 0.44876
t= 0.12819 0.01997 0.01987 0.45136
t =101 0.12793 0.01992 0.01982 0.45018

Let ny = ny = 10000, N = 2. Assume W, are drawn i.i.d. from N (0,4). We obtain the following
table:

1=1 1=2 1=3

t=1 |0.02708 0.00153 0.04844
t=2 |0.04319 0.00244 0.07727
t=3 |0.056296 0.00299 0.09474
t=4 |0.05888 0.00333 0.10533
t=25 |0.06248 0.00353 0.11176

t= 0.06468 0.00365 0.11569
t=7 ]0.06603 0.00373 0.11811
t= 0.06688 0.00377 0.11962
t= 0.06741 0.00380 0.12057

t =101 0.06775 0.00382 0.12117
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Let ny = ng = 4000, N = 2. Assume W, are drawn i.i.d. from N(0,1). We obtain the following
table:

1=1 =2 1=3

t=1 [0.01622 0.00290 0.05802

t= 0.02684 0.00480 0.09601

t=3 |0.03411 0.00609 0.12202

t=4 10.03919 0.00700 0.14018

t=>5 |0.04280 0.00764 0.15306

t= 0.04539 0.00810 0.16232
t= 0.04729 0.00844 0.16908
t= 0.04869 0.00868 0.17408
t= 0.04974 0.00887 0.17782

t =10 | 0.05054 0.00901 0.18066

Let ny = ng = 8000, N = 2. Assume W, are drawn i.i.d. from N(0,1). We obtain the following
table:
1=1 =2 1=3

t=1 [0.01173 0.00148 0.04195
t=2 ]0.01944 0.00246 0.06955
t=3 |0.02470 0.00312 0.08838
t=4 |0.02838 0.00358 0.10151
t=>5 |0.03098 0.00391 0.11083

t= 0.03287 0.00415 0.11758
t= 0.03426 0.00432 0.12253
t=238 |0.03530 0.00445 0.12624
t= 0.03608 0.00455 0.12904

t =10 | 0.03668 0.00463 0.13118

Let ny = ny = 12000, N = 2. Assume W, are drawn i.i.d. from N (0, 1). We obtain the following
table:
1=1 =2 1=3

t=1 ]0.00965 0.00099 0.03453
t=2 1]0.01597 0.00164 0.05712
t=3 |0.02025 0.00208 0.07244
t= 0.02323 0.00239 0.08310
t=>5 |0.02535 0.00261 0.09069
t=6 |0.02690 0.00277 0.09621

t= 0.02804 0.00289 0.10029
t= 0.02890 0.00297 0.10336
t= 0.02955 0.00304 0.10570

t =10 | 0.03006 0.00309 0.10750

Let ny = ny = 20000, N = 2. Assume W, are drawn i.i.d. from N (0, 1). We obtain the following
table:
1=1 1=2 1=3

t=1 ]0.00713 0.00057 0.02551
t= 0.01181 0.00095 0.04225
t=3 |0.01499 0.00121 0.05362
t=4 |0.01720 0.00138 0.06154
t=>5 |0.01878 0.00151 0.06720
t=6 |0.01994 0.00161 0.07132
t=7 10.02079 0.00168 0.07438
t=8 ]0.02144 0.00173 0.07668
t= 0.02193 0.00177 0.07844
t =10 0.02231 0.00179 0.07981

H FIGURES

In this section, we provide some empirical evidence to support the results in Section [4f Numerical
Experiments. We will show how the trajectories of the non-convex deep linear neural networks are
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related to a convex optimization problem for GD under different initialization schemes. Consider
the following procedures for plots of the logarithm of loss as a function of number of iterations:

a) We choose X € R128%x1000 and 17/, € R10%128 gpnd set Y = W, X + ¢, where the entries
in X, W, and ¢ are drawn i.i.d. from N(0, 1).

b) We consider the loss function $ [lay W X — Y||2F

c) For the given linear networks, we apply the Gaussian initialization and the one peak random
orthogonal projections and embeddings initialization, which are denoted as ;(0),1 <
j<N.

d) For the convex optimization problem , we set the initialization to be W(0) =
aNWN(O) s Wl(O)

. N .
e) We set the learning rate 7 = W and 7, = ;-7 for the deep linear neural networks
and the convex problem, respectively.
f) We draw the loss function through 25 iterations.
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Loss function for deep linear network and convex problem
—— DLN
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Figure 1: Plot of Loss as a function of number of iterations with n; = no = ng = 128 (First), 200
(Second), 2000 (Third) for Gaussian initialization, respectively.
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Loss function for deep linear network and convex problem
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Figure 2: Plot of Loss as a function of number of iterations with n; = ny = ng = 128 (First), 200
(Second), 5000 (Third) for Orthogonal initialization, respectively.
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