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A PROOFS OF BASIC PROPERTIES OF SEMI-NORM

Proof of Lemma 2.1. The first property is a direct consequence of the definition of the projection
matrix PX .

Notice that

1

ε
(L(W + ε∆W )− L(W )) =

1

ε
(L(WPX + ε∆WPX)− L(WPX)).

By letting ε→ 0, the definition of the directional derivative implies

⟨∇L(W ),∆W ⟩F = ⟨∇L(WPX),∆WPX⟩F = ⟨∇L(WPX)PX ,∆W ⟩F ,∀∆W ∈ Rny×nx ,

since PX = PT
X . This completes the proof of the second property.

The third property is obtained based on the fact that the orthogonal projection matrix satisfies PX =
PT
X = P 2

X = P 3
X , since

⟨∇L(W ), V ⟩F = ⟨∇L(WPX)PX , V ⟩F
=⟨∇L(WPX)P 2

X , V PX⟩F = ⟨∇L(WPX)PX , V ⟩X = ⟨∇L(W ), V ⟩X .

Set V = ∇L(W ). Then the fourth property is implied by the third property.

For the last property, first recall that ∥W∥X = ∥WPX∥F and PX = X(XTX)†XT . X is of full
row rank if and only if PX is identity matrix, which completes the proof.

Proof of Lemma 2.2. Because X is not full row rank, we know that I − PX ̸= 0. There exists W
such that W (I − PX) ̸= 0. Applying the first property in Lemma 2.1, we have

L(
1

2
W +

1

2
WPX) = L((

1

2
W +

1

2
WPX)PX) = L(WPX) =

1

2
L(W ) +

1

2
L(WPX),

provided W ̸=WPX .

Hence, L is not strictly convex, which implies L is not strongly convex.

To prove the second property, it suffices to show that g(W ) = L(W ) − α(l)λmin(XXT )
m ∥W∥2X is

convex. It is obvious that

g(W ) = L(W )− α(l)

m

m∑
i=1

∥Wxi − yi∥22 +
α(l)

m
(∥WX − Y ∥2F − λmin(X

TX) ∥W∥2X). (14)

L(W ) − α(l)
m

∑m
i=1 ∥Wxi, yi∥2F is convex, since l(·, yi) is strongly convex. The Hessian of

∥WX − Y ∥2F − λmin(W
TW ) ∥WPX∥2F has no negative eigenvalue, thus the second term in (14)

is also convex. This completes the proof.

B THE EXACT STATEMENTS OF THE MAIN THEOREMS

Define some quantities as follows:

q =

{
1− αη∗(2− η∗α), 0 < η∗ ≤ 2

α+β

1− βη∗(2− η∗β),
2

(α+β) < η∗ <
2
β ,

(15)
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Bδ =

(
2 · rank(X)

δ
+ ∥W∗∥2X

)
,

C1 = nNκ
2Bδ

C0

(η0 − η)2/η20
+ lnN,

C2 = nNκ
2BδC0 + lnN,

C3 = nNκ
2Bδ

C0

(η0 − η)2/η20
+ C0 ln(N),

C4 = nNκ
2Bδ

1

(η0 − η)2/η20
,

C5 = nNκ
2BδC0 + C0 ln(N),

C6 = nNκ
2Bδ,

where N denotes the number of distinct elements in the set {n1, · · · , nN−1}, η1 = 2nN

Nβ , and
η0 = 2nN

e2cNβ with c > 0.

Theorem B.1. Given any c > 0, and 0 < δ < 1/2, define η0 = 2nN

e2cNβ , and consider the learning
rate η < η0. There exists a constant C := C(c), such that if

nmin ≥ C · C1 ·N, (16)

then with probability at least 1− δ over the random Gaussian initialization, we have

EDLN (t) ≤

(
1− 4e−c

η
η0
(1− η

η0
)

κ

)t

EDLN (0).

Theorem B.2. Given any c > 0, and 0 < δ < 1/2, define η0 = 2nN

e2cβN , and consider the learning
rate η < η0. There exists a constant C := C(c), such that if

nmin ≥ C · C3, (17)

then with probability at least 1 − δ over the random one peak projections and embeddings initial-
ization, we have

EDLN (t) ≤

(
1− 4e−c

η
η0
(1− η

η0
)

κ

)t

EDLN (0).

Specially, if n1 = n2 = · · · = nN−1 = n ≥ min{nN , n0}, then the requirement (17) can be
replaced by

n ≥ C · C4. (18)

Remark 7. Assume L(aNWN · · ·W1) = 1
2 ∥aNWN · · ·W1X − Y ∥2F , and n1 = · · · = nN−1 =

n. Then for Gaussian initialization, our Theorem B.1 leads to Theorem 4.1 in Du & Hu (2019).
Similarly, for orthogonal initialization, our Theorem B.2 leads to Theorem 4.1 in Hu et al. (2020).

Next, we present a version of the theorem related to balanced initialization.

Theorem B.3. Assume n1 = · · · = nN−1 = n. Given any c > 0, and 0 < δ < 1/2, define
η0 = 2nN

e2cβN , and consider the learning rate η < η0. There exists a constant C := C(c), such that
as long as

n ≥ C · C4. (19)

then with probability at least 1− δ over special balanced initial, we have

EDLN (t) ≤

(
1− 4e−c

η
η0
(1− η

η0
)

κ

)t

EDLN (0).

13



Under review as a conference paper at ICLR 2023

C INEQUALITIES IN CONVEX OPTIMIZATION

Convex optimization has been studied for about a century. Recall the definitions and basic inequali-
ties for α−strongly convex and β−Lipschitz functions.

Definition C.1. A continues differentiable function f is said to be β− Lipschitz if the gradient ∇f
is β− Lipschitz, that is if for all x, y,

∥∇f(y)−∇f(x)∥ ≤ β ∥y − x∥ , (20)

f is said to be α−strongly convex if for all x, y, we have

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ α

2
∥y − x∥2 . (21)

Proposition C.1. If f is α−strongly convex and ∇f is β−Lipschitz with respect to a (semi-)norm,
then α ≤ β and

⟨∇f(x), y − x⟩+ α

2
∥y − x∥2 ≤ f(y)− f(x) ≤ ⟨∇f(x), y − x⟩+ β

2
∥y − x∥2 , (22)

⟨∇f(x)−∇f(y), x− y⟩ ≥ αβ

α+ β
∥x− y∥2 + 1

α+ β
∥∇f(x)−∇f(y)∥2 , (23)

∥∇f(x)−∇f(y)∥ ≥ α ∥x− y∥ , (24)

f(x)− f(y) ≤ ⟨∇f(x), x− y⟩ − 1

2β
∥∇f(x)−∇f(y)∥2 . (25)

Proof of Proposition C.1. We only proof the last inequality.
Let z = y − 1

β (∇f(y)−∇f(x)). Since f is convex β−Lipschitz, we have

f(z)− f(x) ≥ ⟨∇f(x), z − x⟩

and

f(z)− f(y) ≤ ⟨∇f(y), z − y⟩+ β

2
∥z − y∥2 .

Thus,
f(x)− f(y) =f(x)− f(z) + f(z)− f(y)

≤⟨∇f(x), x− z⟩+ ⟨∇f(y), z − y⟩+ β

2
∥z − y∥2

=⟨∇f(x), x− y⟩ − 1

2β
∥∇f(x)−∇f(y)∥2.

Before we start to prove Lemma D.1, let us first include and prove the following result.

Lemma C.2. 1. Assume L is α−strongly convex, α > 0. Denote a global minimizer of L by W∗.
Then for any W ,

L(W∗)− L(W ) ≥ − 1

2α
∥∇L(W )∥2X . (26)

2. Assume ∇L is β−Lipschitz, then

L(W∗)− L(W ) ≤ − 1

2β
∥∇L(W )∥2X . (27)

Proof of Lemma C.2. 1. First, we know that ∇L(W∗) = 0. L is α−strongly convex, which implies
the inequality (22) holds. Thus

L(V )− L(W ) ≥ ⟨∇L(W ), V −W ⟩X +
α

2
∥V −W∥2X =: g(V ).

Minimizing both sides in terms of V gives (26).

14
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Now we focus on minimizing g(V ). Since g(V ) ∈ C1 and the global minimizer exits, we have

∇g(V ∗) = ∇L(W )PX + α(V ∗ −W )PX = 0,

where V ∗ is a global minimizer for g(V ). Thus,

g(V ∗) = − 1

2α
∥∇L(W )∥2X . (28)

2. Applying proposition C.1 to a β−Lipschitz function ∇L, we obtain

L(W∗)− L(W )

≤⟨∇L(W∗),W∗ −W ⟩X − 1

2β
∥∇L(W )−∇L(W∗)∥2X

=− 1

2β
∥∇L(W )∥2X .

D CONVERGENCE REGION

In this section, we study a class of the convergence region for deep linear neural networks, which
works for deterministic initialization. Define A|R(X) = AXT (XXT )−X = APX , and view
A|R(X) as a linear operator on R(X).

Recall the optimization problem

minimize
W1,··· ,WN

LN (W1, · · ·WN ) :=
1

m

m∑
i=1

l(aNWN :1xi, yi) = L(aNWN :1), (29)

and GD {
Wj(t+ 1) =Wj(t)− η ∂LN

∂Wj
(W1(t), · · · ,WN (t)), j = 1, · · · , N,

where ∂LN

∂Wj
(W1, · · · ,WN ) = aN (WN :j+1)

T∇L(aNWN :1)(Wj−1:1)
T ,

(30)

where the normalization factor aN = 1√
n1n2···nN−1nN

.

The following theorem generalizes the idea from the recent work (Du & Hu, 2019; Hu et al., 2020).

For notational convenience, we denote Wj:i(t) = Wj(t) · · ·Wi(t), Lt = L(aNWN :1(t)), ∇Lt =
∇L(aNWN :1(t)) etc.
Lemma D.1. Assume the initialization satisfies the following conditions simultaneously:

σmax(WN :i+1(0)) ≤ ec1/2(nN−1:i)
1/2, 1 ≤ i ≤ N − 1,

σmin(WN :i+1(0)) ≥ e−c2/2(nN−1:i)
1/2, 1 ≤ i ≤ N − 1,

σmax(Wi−1:1(0)|R(X)) ≤ ec1/2(ni−1:1)
1/2, 2 ≤ i ≤ N,

σmin(Wi−1:1(0)|R(X)) ≥ e−c2/2(ni−1:1)
1/2, 2 ≤ i ≤ N,

∥Wj:i(0)∥ ≤M/2 ·Nθ(
∏

i≤k≤j−1 nk ·max{ni−1, nj})1/2, 1 < i ≤ j < N,

L0 − L(W∗) ≤ βB0 =: B,

(31)

where c1, c2,M are positive constant and θ ≥ 0.
Notice that B0 is a proper upper bound for ∥aNWN :1(0)∥2X + ∥W∗∥2X .

Set the learning rate η = (1−ε)2nN

e6c1+3c2βN
, where 0 < ε < 1. Define γ = 2e6c1εαN

nN
.

Assume that

nmin ≥ C(c1, c2)M
2κ2B0

ε2
N2θnN . (32)

Then the GD (30) satisfies

Lt − L(W∗) ≤ (1− ηγ)
t
(L0 − L(W∗)), t = 1, 2, · · · .
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Definition D.1. For given c1, c2,M,B0 > 0, and θ ≥ 0, we define the convergence region
R(c1, c2, θ,M,B0) by the set of initialization that satisfies the inequality system (31).

Remark 8. The condition (31) describes the convergence region for initialization and the condition
(32) describes the overparameterization for deep linear neural networks. At this time, it is not
clear how large this convergence region is. Later, we will show that the properly scaled random
initialization with some extra mild overparameterization conditions will fall into this convergence
region with high probability.

Proof of Lemme D.1. To prove Lemma D.1, it suffices to show that the following three properties
hold A(t), B(t), and C(t) for all t = 0, 1, · · · .

1. A(t):

Lt − L(W∗) ≤ (1− ηγ)
t
(L0 − L(W∗)).

2. B(t): 

σmax(WN :i+1(t)) ≤ ec1(nN−1:i)
1/2, 1 ≤ i ≤ N − 1,

σmin(WN :i+1(t)) ≥ e−c2(nN−1:i)
1/2, 1 ≤ i ≤ N − 1,

σmax(Wi−1:1(t)|R(X)) ≤ ec1(ni−1:1)
1/2, 2 ≤ i ≤ N,

σmin(Wi−1:1(t)|R(X)) ≥ e−c2(ni−1:1)
1/2, 2 ≤ i ≤ N,

∥Wj:i(t)∥ ≤M ·Nθ( 1
nmin

∏
i−1≤k≤j nk)

1/2, 1 < i ≤ j < N.

3. C(t):

∥Wi(t)−Wi(0)∥F ≤ 2e2c1
√
2βB

√
nNγ

=: R, 1 ≤ i ≤ N.

Using simultaneous induction, the proof of Lemma D.1 is divided into the following 3 claims.

Claim 1. A(0), · · · ,A(t),B(0), · · · ,B(t) =⇒ C(t+ 1).

Claim 2. C(t) =⇒ B(t), if nmin ≥ C(c1,c2)M
2κ2B0

ε2 N2θnN , where C(c1, c2) is a positive constant
only depend on c1, c2.

Claim 3. A(t),B(t) =⇒ A(t + 1), if nmin ≥ C(c1, c2)M
2B0N

2θnN , where C(c1, c2) is a
positive constant only depend on c1, c2.

Proof of Claim 1. As a consequence of Lemma C.2 and Lemma 2.1, and A(s), s ≤ t, we have

∥∇L(aNWN :1(s))∥2F = ∥∇Ls −∇L(W∗PX)∥2X
≤2β[Ls − L(W∗)]

≤2β (1− ηγ)
s
B.

(33)

From A(0), · · · ,A(t),B(0), · · · ,B(t), we have for any 0 ≤ s ≤ t,∥∥∥∥ ∂L∂Wi
(s)

∥∥∥∥
F

≤ aN ∥WN :i+1(s)∥ ∥∇L(aNWN :1(s))∥F
∥∥Wi−1:1(s)|R(X)

∥∥
≤ e2c1

√
nN

∥∇L(aNWN :1(s))∥F

≤ e2c1
√
nN

√
2β (1− ηγ)

s
B.

(34)
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Then,

∥Wi(t+ 1)−Wi(0)∥F ≤
t∑

s=0

∥Wi(s+ 1)−Wi(s)∥F

=

t∑
s=0

∥∥∥∥η ∂L∂Wi
(s)

∥∥∥∥
F

≤ η
e2c1
√
nN

√
2βB

t∑
s=0

(1− ηγ)s/2

≤ η
e2c1
√
nN

√
2βB

t∑
s=0

(1− ηγ/2)s

≤ 2e2c1
√
2βB

√
nNγ

= R.

This proves C(t+ 1).

Proof of Claim 2. Let δi = Wi(t)−Wi(0), 1 ≤ i ≤ N . Using C(t), we have ∥δi∥F ≤ R, 1 ≤ i ≤
N . Set ε1 = e−c1/2 min{ec1 − ec1/2, e−c2/2 − e−c2 , 1/2}.
It is suffices to show that

∥WN :i(t)−WN :i(0)∥ ≤ ec1/2ε1(nN−1nN−1 · · ·ni−1)
1/2, 1 < i ≤ N, (35)∥∥(Wi:1(t)−Wi:1(0))|R(X)

∥∥ ≤ ec1/2ε1(n1n2 · · ·ni−1)
1/2, 1 ≤ i < N, (36)

and

∥Wj:i(t)−Wj:i(0)∥ ≤M/2 ·Nθ

 1

nmin

∏
i−1≤k≤j

nk

1/2

, 1 < i ≤ j < N, (37)

because σmin(A+B) ≥ σmin(A)−σmax(B) = σmin(A)−∥B∥ and σmax(A+B) ≤ σmax(A)+
σmax(B) = ∥A∥+ ∥B∥ (e.g. see Theorem 1.3 in Chafaı et al. (2009)).
Case 1. We first prove (37).
For 1 ≤ i < j ≤ N , we can write Wj:i(t) = (Wj(0) + δj) · · · (Wi(0) + δi).
Expanding the above product, each term has the form:

Wj:(ks+1)(0) · δks
·W(ks−1):(ks−1+1)(0) · δks−1

· · · δk1
·W(k1−1):i(0), (38)

where i ≤ k1 < · · · < ks ≤ j are positions at which perturbation terms δkl
are taken out.

Notice that the convergence region assumptions (31) implies that for any 1 < i ≤ j < N ,

∥Wj:i(0)∥ ≤M/2 ·Nθ

 ∏
i≤k≤j−1

nk ·max{ni−1, nj}

1/2

≤M ·Nθ

(∏
i−1≤k≤j nk

nmin

)1/2

.

(39)
WLOG, assume M ≥ 1. If i = j + 1, then

∥Wj:i(0)∥ = ∥I∥ ≤M ·Nθ(nj/nmin)
1/2.

Assume i > 1, j < N , applying inequality (39) as well as the following inequality
j−i+1∑
s=1

(
j − i+ 1

s

)
xs = (1 + x)j−i+1 − 1 ≤ (1 + x)N − 1,∀x ≥ 0,

we obtain that
∥Wj:i(t)−Wj:i(0)∥

≤
j−i+1∑
s=1

(
j − i+ 1

s

)
Rs(M ·Nθ)s+1n

−s/2
min (ni−1 · · ·nj/nmin)

1/2

≤M ·Nθ(ni−1 · · ·nj/nmin)
1/2[(1 +R ·M ·Nθ/

√
nmin)

N − 1]

≤ε1M ·Nθ(ni−1 · · ·nj/nmin)
1/2.
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The last line holds due to the following reasons:
there exists absolute constant A1, A2 > 0 such that

(1 + x)N − 1 ≤ A2xN,

if x ≥ 0, N ≥ 1, and xN ≤ A1. Since there exists positive constant C(c1, c2), which only depends
on c1, c2, such that when

nmin ≥ C(c1, c2)M
2κ2B0

ε2
N2θnN (40)

we can have
R ·M ·Nθ+1/

√
nmin ≤ A1,

as well as

[(1 +R ·M ·Nθ/
√
nmin)

N − 1] ≤ A2 ·M ·R ·Nθ+1/
√
nmin ≤ ε1 = ε1(c1, c2).

Case 2. The proof of (35) is similar. Set j = N , we can save the factor M · Nθ from previous
calculation, which means

∥WN :i(t)−WN :i(0)∥

≤ec1/2
N−i+1∑
s=1

(
N − i+ 1

s

)
Rs(M ·Nθ)sn

−s/2
min (ni−1 · · ·nN−1)

1/2

≤ec1/2(ni−1 · · ·nN−1)
1/2[(1 +R ·M ·Nθ/

√
nmin)

N − 1]

≤ec1/2ε1(ni−1 · · ·nN−1)
1/2, i ≥ 2,

where the last line is implied by equation (40).
Case 3. Similarly, we have∥∥Wj:1(t)|R(X) −Wj:1(0)|R(X)

∥∥
≤ec1/2

j∑
s=1

(
j
s

)
Rs(M ·Nθ)sn

−s/2
min (n1 · · ·nj)1/2

≤ec1/2(n1 · · ·nj)1/2[(1 +R ·M ·Nθ/
√
nmin)

N − 1]

≤ec1/2ε1(n1 · · ·nj)1/2, j ≤ N − 1

This proves B(t).

Proof of Claim 3. The GD (7) implies

WN :1(t+ 1)

=

(
WN (t)− η

∂LN

∂WN
(t)

)(
WN−1(t)− η

∂LN

∂WN−1
(t)

)
· · ·
(
W1(t)− η

∂LN

∂W1
(t)

)
=WN :1(t)− η · aN

N∑
i=1

WN :i+1(t)W
T
N :i+1(t)∇L(aNWN :1(t))(Wi−1:1(t))

T (Wi−1:1(t)) + E(t),

where E(t) contains all high-order terms (those with η2 or higher). Define a linear operator

P (t)[A] = a2N

N∑
i=1

WN :i+1(t)W
T
N :i+1(t)(APX)(Wi−1:1(t)|R(X))

TWi−1:1(t)|R(X), (41)

for any A ∈ RnN×n0 .

Now we have

aNWN :1(t+ 1) = aNWN :1(t)− η · P (t)[∇L(aNWN :1(t)PX)] + aNE(t). (42)

Easy to check that P (t)[·] is a sum of positive semidefinite linear operator.

The following proposition describes the eigenvalues of the linear operator P (t)[·].
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Proposition D.2. Let S1, S2 be symmetric matrices. Suppose S1 = UΛ1U
T , S2 = V Λ2V

T ,
where U = [u1, u2, · · · , um], and V = [v1, v2, · · · , vn] are othogonal matrices, and Λ1 =
diag(λ1, λ2, · · · , λm) and Λ2 = diag(µ1, µ2, · · · , µn) are diagonal matrices. Then the linear
operator L(A) := S1AS2 is orthogonally diagonalizable, and L(Aij) = λiµjAij , where λiµj

represent all eigenvalues corresponding to their eigenvectors Aij = uiv
T
j .

Applying this proposition and the assumption B(t), we obtain the upper bound and lower bound for
the maximum and minimum eigenvalues of positive definite operator P (t), respectively,

λmax(P (t)) ≤ a2N

N∑
i=1

σ2
max(Wi−1:1(t)|R(X)) · σ2

max(WN :i+1(t)) ≤
N

nN
e2c1 ,

and

λmin(P (t)) ≥ a2N

N∑
i=1

σ2
min(Wi−1:1(t)|R(X)) · σ2

min(WN :i+1(t)) ≥
N

nN
e−2c2 . (43)

In conclusion, we have

λmax(P (t)) ≤
N

nN
e2c1 , and λmin(P (t)) ≥

N

nN
e−2c2 . (44)

With learning rate η = ηε =
(1−ε)2nN

e6c1+3c2βN
, 0 < ε < 1, we have

Lt+1 − Lt

≤ ⟨∇Lt,−ηP (t)[∇Lt]⟩X + ⟨∇Lt, aNE(t)⟩X +
β

2
∥ηP (t)[∇Lt]− aNE(t)∥2X

= ⟨∇Lt,−ηP (t)[∇Lt]⟩+
β

2
η2 ∥P (t)[∇Lt]∥2X + F (t)

≤ −
(
ηλmin(P (t))−

β

2
η2λ2max(P (t))

)
∥∇Lt∥2X + F (t)

≤ −e−2c2
N

nN
η

(
1− e4c1+2c2

β

2
η
N

nN

)
∥∇Lt∥2X + F (t),

(45)

where

F (t) = ⟨∇Lt, aNE(t)⟩X +
β

2
∥ηP (t)[∇Lt]− aNE(t)∥2X − β

2
η2 ∥P (t)[∇Lt]∥2X .

We claim that F (t) is small enough, such that

Lt+1 − Lt

≤ −e−2c2
N

nN
η

(
1− e4c1+2c2

β

2
η
N

nN

)
∥∇Lt∥2X + F (t)

≤ −e−3c2
N

nN
η

(
1− e6c1+3c2

β

2
η
N

nN

)
∥∇Lt∥2X

= −e−6(c1+c2)
2ε(1− ε)

β
∥∇Lt∥2X .

(46)

Assuming this claim for the moment, we complete the proof. Combining (26) and (46), we have{
Lt+1 − Lt ≤ −e−6(c1+c2) 2ε(1−ε)

β ∥∇Lt∥2X ,

L(W∗)− Lt ≥ − 1
2α ∥∇Lt∥2X ,

which implies

Lt+1 − L(W∗) ≤
(
1− e−6(c1+c2)

4ε(1− ε)

κ

)
(Lt − L(W∗)), (47)
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that is

Lt − L(W∗) ≤
(
1− e−6(c1+c2)

4ε(1− ε)

κ

)t

(L0 − L(W∗)) = (1− ηγ)
t
(L0 − L(W∗)). (48)

Estimate F (t)
Notice that

|F (t)|

≤ ∥∇Lt∥X ∥aNE(t)∥X +
β

2
(2ηλmax(P (t)) ∥∇Lt∥X ∥aNE(t)∥X + ∥aNE(t)∥2X)

= : I1 + I2.

From (34), we have∥∥∥∥ ∂L∂Wi
(t)

∥∥∥∥
F

≤ e2c1
√
nN

∥∇L(aNWN :1(t))∥F =
e2c1
√
nN

∥∇L(aNWN :1(t))∥X =: K.

Expanding the product

WN :1(t+ 1) =

(
WN (t)− η

∂LN

∂WN
(t)

)(
WN−1(t)− η

∂LN

∂WN−1
(t)

)
· · ·
(
W1(t)− η

∂LN

∂W1
(t)

)
,

each term has the form:

∆ =WN :(ks+1)(t) · η
∂L

∂Wks

(t) ·W(ks−1):(ks−1+1)(t) · η
∂L

∂Wks−1

(t) · · · η ∂L
Wk1

(t) ·W(k1−1):1(t),

where 1 ≤ k1 < k2 < · · · < ks ≤ N .

As a direct consequence of inequality B(t) and inequality (39), we obtain

∥∆∥X = ∥∆PX∥F ≤ 1

aN
√
nN

e2c1(ηK)s
(
M ·Nθ

√
nmin

)s−1

,

Recall that E(t) contains all high-order terms (those with η2 or higher) in the expansion of the
product. Thus, E(t) can be expressed as follows:
N∑
s=2

∑
1≤k1<k2<···<ks≤N

WN :(ks+1)(t)·η
∂L

∂Wks

(t)·W(ks−1):(ks−1+1)(t)·η
∂L

∂Wks−1

(t) · · · η ∂L
Wk1

(t)·W(k1−1):1(t).

Set ξ = min{(e−2c2 − e−3c2)/e4c1+1, 14 (e
6c1 − e4c1)/e6c1+1, 12 (e

6c1 − e4c1)1/2/e4c1+1, 1}.

Recall the inequality
(
N
s

)
≤ (eN)s. Thus, we have

aN ∥E(t)∥X

≤ 1
√
nN

e2c1
N∑
s=2

(
N
s

)
(ηK)s

(
M ·Nθ

√
nmin

)s−1

≤ 1
√
nN

(
M ·Nθ

√
nmin

)−1

e2c1
N∑
s=2

(eN)s(ηK)s
(
M ·Nθ

√
nmin

)s

≤ 1
√
nN

e2c1(ηeKN)
ηeKM ·Nθ+1/

√
nmin

1− ηeKM ·Nθ+1/
√
nmin

≤ξ N
nN

η · e4c1+1 ∥∇L(aNWN :1(t))∥X ( if ηeKM ·Nθ+1/
√
nmin < ξ/(1 + ξ))

=ξ · e4c1+1

(
η
N

nN

)
∥∇L(aNWN :1(t))∥X .

(49)

Using (33) and the upper bound of η, we know that there exists constant C(c1, c2), such that

nmin ≥ C(c1, c2)M
2 ·B0N

2θnN ,
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and

ηeKM ·Nθ+1/
√
nmin ≤

2
√
2M · e1+2c1

√
B0N

θ√nN√
nmin

=
1

C ′(c1, c2)
≤ ξ

2
≤ ξ

1 + ξ
.

Using (49), we have

I1 ≤ ξ · e4c1+1

(
η
N

nN

)
∥∇Lt∥2X ≤ (e−2c2 − e−3c2)

(
η
N

nN

)
∥∇Lt∥2X , (50)

and

I2

≤β
2

(
2ξ · e6c1+1

(
η2
N2

n2N

)
∥∇Lt∥2X + ξ2 · e8c1+2

(
η2
N2

n2N

)
∥∇Lt∥2X

)
≤(e6c1 − e4c1)

β

2
η2
N2

n2N
∥∇Lt∥2X .

Thus, (46) valid.
This proves A(t).

As a direct consequence of the proof Lemma D.1, we can obtain the following lemma.
Lemma D.3. Assume all assumptions in Lemma D.1 hold. For any τ > 0, we can choose new
constants c1, c2 as well as C := C(c1, c2) such that the overparameterization assumption (32) in
Lemma D.1 hold and

∥R(t)∥X ≤ τ ∥aNWN :1(t)−W∗∥X , (51)

where

aNWN :1(t+ 1) = aNWN :1(t)−
N

nN
η∇L(aNWN :1(t)) +R(t).

Proof of Lemma D.3. Due to (33), (42), (44), (49), and lemma C.2, we have

∥R(t)∥X =

∥∥∥∥aNE(t) + η

(
N

nN
∇Lt − P (t)[∇Lt]

)∥∥∥∥
X

≤∥aNE(t)∥X + ηmax

{
λmax(P (t))−

N

nN
,
N

nN
− λmin(P (t))

}
∥∇Lt∥X

≤(C ′ · ξ +max{e2c1 − 1, 1− e−2c2}) · η N
nN

· ∥∇Lt∥X

≤
2
√
2β(Lt − L(W∗))

e6c1+3c2 · β
· (C ′ · ξ +max{e2c1 − 1, 1− e−2c2}).

Due to the fact that Lt − L(W∗) is non-increasing in t, and C ′ is a constant only depend on c1, c2,
we can choose small enough positive c1, c2 and ξ, which depends on τ , such that

∥R(t)∥X ≤ τ

√
2β(Lt − L(W∗))

β
≤ τ ∥aNWN :1(t)−W∗∥X .

Lemma D.4. Assume τ ∈ [0, 1). Consider a discrete dynamical system V (t) such that,

V (t+ 1) = V (t)− η∗∇L(V (t)) +R(t),

where ∥R(t)∥X ≤ τ ∥V (t)−W∗∥X . If η∗ ≤ 2/β, we have

∥V (t)−W∗∥2X ≤ (q + 7τ)t ∥V (0)−W∗∥2X ,

where q is defined in (15).
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Proof of Lemma D.4. Set ∆(t) = V (t)−W∗ and τ ′ = τ ∥∆(t)∥X . Notice that

∆(t+ 1) = ∆(t)− η∗(∇L(V (t))−∇L(W∗)) +R(t),

and

∥∆(t+ 1)∥2X
≤η2∗ ∥∇L(V (t))−∇L(W∗)∥2X − 2η∗⟨∆(t),∇L(V (t))−∇L(W∗)⟩X
+ ∥∆(t)∥2X + (2 ∥∆(t)∥X + 2η∗ ∥∇L(V (t))−∇L(W∗)∥X + τ ′)τ ′.

By inequality (23),

∥∆(t+ 1)∥2X
≤∥∆(t)∥2X − 2η∗⟨∆(t),∇L(V (t))−∇L(W∗)⟩X
+ η2∗ ∥∇L(V (t))−∇L(W∗)∥2X + 7τ ∥∆(t)∥2X

=(1 + 7τ) ∥∆(t)∥2X − 2η∗⟨∆(t),∇L(V (t))−∇L(W∗)⟩X
+ η2∗ ∥∇L(V (t))−∇L(W∗)∥2X

≤(1 + 7τ) ∥∆(t)∥2X − 2η∗
αβ

α+ β
∥∆(t)∥2X

+

(
η2∗ −

2η∗
α+ β

)
∥∇L(V (t))−∇L(W∗)∥2X .

Case 1: 2
α+β < η∗ <

2
β .

In this case, we have

∥∆(t+ 1)∥2X

≤(1 + 7τ) ∥∆(t)∥2X − 2η∗
αβ

α+ β
∥∆(t)∥2X +

(
η2∗ −

2η∗
α+ β

)
∥∇L(V (t))−∇L(W∗)∥2X

≤(1 + 7τ) ∥∆(t)∥2X − 2η∗
αβ

α+ β
∥∆(t)∥2X +

(
η2∗ −

2η∗
α+ β

)
β2 ∥∆(t)∥2X

≤ (1 + 7τ − βη∗(2− η∗β)) ∥∆(t)∥2X
=(q + 7τ) ∥∆(t)∥2X .

Case 2: 0 < η∗ ≤ 2
α+β .

Similarly, we have

∥∆(t+ 1)∥2X ≤ (1 + 7τ − αη∗(2− η∗α)) ∥∆(t)∥2X = (q + 7τ) ∥∆(t)∥2X .

In both cases, we have ∥∆(t+ 1)∥2X ≤ (q + 7τ) ∥∆(t)∥2X .

Thus, ∥∆(t)∥2X ≤ (q + 7τ)t ∥∆(0)∥2X .

Next, we will show that the trajectories of the GD (30) for deep linear neural networks (29) are close
to those of GD (2) for the corresponding convex problem (1).

Lemma D.5. Consider the GD for the deep linear neural networks (30) with learning rate η < η1
for aNWN :1(t), t = 0, 1, · · · , and the GD (2) with learning rate η∗ = N

nN
η for W (t), t = 0, 1, · · · .

Assume C(c1, c2) exists in Lemma D.1 for any c1, c2 > 0. For any τ ∈ (0, 1), η < η1 (η1 defined in
B), we can choose c1, c2 > 0 and the constant C = C(c1, c2) = C ′(τ, η/η1), such that inequality
(51) holds, given initialization condition (31), and overparameterization condition

nmin ≥ CM2κ2B0N
2θnN . (52)
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Furthermore, we have

∥aNWN :1(t)−W (t)∥2X ≤ D(τ, q, t) ∥aNWN :1(0)−W∗∥2X , (53a)

|EDLN (t)− E(t)| ≤ β

(
qt/2

√
D(τ, q, t) +

1

2
D(τ, q, t)

)
∥aNWN :1(0)−W∗∥2X , (53b)

EDLN (t) ≤ 3β(q + τ)t ∥aNWN :1(0)−W∗∥2X , (53c)

where D(τ, q, t) = min
{

τ
1−q , 2(q + τ)t

}
, with q defined in (15).

Proof of Lemma D.5. Using Lemma D.3, we obtain that for any τ ∈ (0, 1) and η < η1, we can
find small enough positive constant c1, c2, which are only depend on τ, η/η1, and constant C =
C(c1, c2) = C ′′(τ, η/η1) mentioned in Lemma D.3, such that

η =
(1− ε)2nN
e6c1+3c2βN

,

where 0 < ε < 1, as well as

V (t+ 1) = V (t)− η∗∇L(V (t)) +R(t),

where V (t) = aNWN :1(t), η∗ = N
nN
η, and ∥R(t)∥X ≤ τ ′ = τ ∥V (t)−W∗∥X .

Notice that θ0 := η/η1 = 1−ε
e6c1+3c2

and η/η0 = 1− ε, where η0 = 2nN

e6c1+3c2βN
.

For the right hand side of inequality (32), we have

C(c1, c2)M
2κ2B0

ε2
N2θnN =

C ′′(τ, η/η1)M
2κ2B0

ε2
N2θnN .

To show that inequality (32) is equivalent to inequality (52), it suffices to show that ε only depend
on τ, η/η1. Notice that

ε = 1− η/η0 = 1− θ0e
6c1+3c2 ,

and c1, c2 only depend on τ and η/η1, which implies ε only depend on τ, η/η1.

Now, we start to prove the three inequalities in (53).

Recall the GD (2) for W (t). Define ∆(t) = V (t)−W (t) = aNWN :1(t)−W (t). Notice that

∆(t+ 1) = ∆(t)− η∗(∇L(V (t))−∇L(W (t))) +R(t),

and

∥∆(t+ 1)∥2X
≤η2∗ ∥∇L(V (t))−∇L(W (t))∥2X − 2η∗⟨∆(t),∇L(V (t))−∇L(W (t))⟩X
+ ∥∆(t)∥2X + (2 ∥∆(t)∥X + 2η∗ ∥∇L(V (t))−∇L(W (t))∥X + τ ′)τ ′.

Let lt = 2 ∥∆(t)∥X + 2η∗ ∥∇L(V (t))−∇L(W (t))∥X + τ ′.

Now, we aim to find an upper bound for lt.

Applying lemma C.2 with the assumption 0 < η∗ = N
nN
η < 2

β , we know that

lt ≤ (6 ∥∆(t)∥X + τ ′) ≤ 7(∥W (t)−W∗∥X + ∥V (t)−W∗∥X). (54)

Thus

ltτ
′ ≤ 7τ ∥V (t)−W∗∥X (∥V (t)−W∗∥X + ∥W (t)−W∗∥X) =: Utτ.
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By inequality (23),

∥∆(t+ 1)∥2X
≤∥∆(t)∥2X − 2η∗⟨∆(t),∇L(V (t))−∇L(W (t))⟩X
+ η2∗ ∥∇L(V (t))−∇L(W (t))∥2X + Utτ

= ∥∆(t)∥2X − 2η∗⟨V (t)−W (t),∇L(V (t))−∇L(W (t))⟩X
+ η2∗ ∥∇L(V (t))−∇L(W (t))∥2X + Utτ

≤∥∆(t)∥2X − 2η∗
αβ

α+ β
∥∆(t)∥2X

+

(
η2∗ −

2η∗
α+ β

)
∥∇L(V (t))−∇L(W (t))∥2X + Utτ.

Case 1: 2
α+β < η∗ <

2
β .

In this case, we have
∥∆(t+ 1)∥2X

≤∥∆(t)∥2X − 2η∗
αβ

α+ β
∥∆(t)∥2X +

(
η2∗ −

2η∗
α+ β

)
∥∇L(V (t))−∇L(W (t))∥2X + Utτ

≤∥∆(t)∥2X − 2η∗
αβ

α+ β
∥∆(t)∥2X +

(
η2∗ −

2η∗
α+ β

)
β2 ∥∆(t)∥2X + Utτ

≤ (1− βη∗(2− η∗β)) ∥∆(t)∥2X + Utτ

= : q ∥∆(t)∥2X + Utτ.

Case 2: 0 < η∗ ≤ 2
α+β .

Similarly, we have

∥∆(t+ 1)∥2X ≤ (1− αη∗(2− η∗α)) ∥∆(t)∥2X + Utτ =: q ∥∆(t)∥2X + Utτ. (55)
In both cases, we have 0 < q < 1.

First of all, since Ut ≤ U0 and ∥∆(0)∥X = 0, we obtain that

∥∆(t)∥2X ≤ U0τ

1− q
+ qt

(
∥∆(0)∥2X − U0τ

1− q

)
≤ U0τ

1− q
≤ 14τ

1− q
∥V (0)−W∗∥2X .

Applying Lemma D.4 for V (t) and W (t), we obtain ∥V (t)−W∗∥2X ≤ (1 + ε)tqt ∥V (0)−W∗∥2X
and ∥W (t)−W∗∥2X ≤ qt ∥W (0)−W∗∥2X , respectively. Thus,

|L(W (t))− L(aNWN :1(t))|

≤|⟨∇L(W (t)),∆(t)⟩X |+ β

2
∥∆(t)∥2X

≤β ∥W (t)−W∗∥X · ∥∆(t)∥X +
β

2
∥∆(t)∥2X

≤β
(
qt/2

√
14τ

1− q
+

7τ

1− q

)
∥V (0)−W∗∥2X .

Generally speaking, (55) implies

∥∆(t)∥2X ≤ τ

t−1∑
j=0

qt−1−jUj .

We have

∥∆(t)∥2X ≤ 14τ

t−1∑
j=0

(q + 7τ)jqt−1−j ∥V (0)−W∗∥2X

≤ 2(q + 7τ)t
(
1−

( q

q + 7τ

)t) ∥V (0)−W∗∥2X
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Thus, we have

∥aNWN :1(t)−W (t)∥2X ≤ min

{
14τ

1− q
, 2(q + 7τ)t

}
∥V (0)−W∗∥2X ,

as well as
|L(W (t))− L(aNWN :1(t))|

≤β ∥W (t)−W∗∥X · ∥∆(t)∥X +
β

2
∥∆(t)∥2X

≤β

(√
min

{
14τ

1− q
, 2(q + 7τ)t

}
· qt/2 + 1

2
min

{
14τ

1− q
, 2(q + 7τ)t

})
∥V (0)−W∗∥2X .

By triangle inequality as well as L(W (t))− L(W∗) ≤ β
2 q

t ∥V (0)−W∗∥2X , we have

|L(aNWN :1(t))− L(W∗)| ≤ 3β(q + 7τ)t ∥V (0)−W∗∥2X .

Without loss of generality, we replace all 14τ and 7τ by τ , which completes the proof.

E GAUSSIAN INITIALIZATION FALL INTO THE CONVERGENCE REGION

In this section, we first establish some spectral properties of the products of random Gaussian ma-
trices. The spectral properties lead to the conclusion that overparameterization guarantees that the
random initialization will fall into the convergence region with high probability.
Gaussian initialization:
Denote by N(0, 1) the standard Gaussian distribution, and χ2

k the chi square distribution with k
degrees of freedom. Let Sd−1 = {x ∈ Rd; ∥x∥2 = 1} be the unit sphere in Rd.
The scaling factor aN = 1√

n1n2···nN
ensures that the networks at initialization preserves the norm

of every input in expectation.
Lemma E.1. For any x ∈ Rn0 , the Gaussian initialization satisfies

E
[
∥aNWN :1(0)x∥22

]
= ∥x∥22 .

Proof of Lemma E.1. For random matrix A ∈ Rni×ni−1 with i.i.d N(0, 1) entries and any vector

0 ̸= v ∈ Rni−1 , the distribution of ∥Av∥2
2

∥v∥2
2

is χn2
i
. We rewrite

∥WN :1(0)x∥22 / ∥x∥
2
2 = ZNZN−1 · · ·Z1,

where Zi = ∥Wi:1(0)x∥2 / ∥Wi−1:1(0)x∥2.
Then we know that the distribution of random variable Z1 ∼ χ2

n1
, and conditional distribution of

random variables Zi|(Z1, · · · , Zi−1) ∼ χ2
ni
(1 < i ≤ N). Thus, Z1, · · · , Zni

are independent. By
law of iterated expectations, we have

E[∥WN :1(0)x∥22/ ∥x∥
2
2] =

N∏
j=1

nj .

Define ∆1 =
∑N−1

j=1 1/nj . Now, we introduce a new notation Ω
(

1
∆1

)
, which means that there

exists k > 0, such that Ω
(

1
∆1

)
≥ k

∆1
.

Lemma E.2. Consider real random matrix Aj ∈ Rnj×nj−1 , 1 ≤ j ≤ q with i.i.d N(0, 1) entries
and any vector 0 ̸= x ∈ Rn1 .
Define ∆1(q) =

∑q
j=1

1
nj

and nmin = min1≤j≤q nj . Then

P(∥AqAq−1 · · ·A1x∥22 / ∥x∥
2
2 > ecn1 · · ·nq) ≤ exp

{
− c2

8∆1(q)

}
=: f1(c),∀c > 0. (56)
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When 0 < c ≤ 3 ln 2, ∆1(q) ≤ c/(12 ln 2), we have

P(∥AqAq−1 · · ·A1x∥22 / ∥x∥
2
2 < e−cn1 · · ·nq) ≤ exp

{
− c2

36 ln(2)∆1(q)

}
=: f2(c). (57)

Hence, for any x ∈ Sn0−1 with probability at least 1− e
−Ω( 1

∆1(q)
), we have

e−c2/2(n1 · · ·nq)1/2 ≤ ∥Aq · · ·A1x∥2 ≤ ec1/2(n1 · · ·nq)1/2,

when 0 < c2 ≤ 3 ln 2, ∆1(q) ≤ c2/(12 ln 2).

Proof of Lemma E.2. For random matrix Ai ∈ Rni×ni−1 with i.i.d N(0, 1) entries and any vector

0 ̸= v ∈ Rni−1 , the random variable ∥Aiv∥2
2

∥v∥2
2

is distributed as χ2
ni

. We rewrite

∥Aq · · ·A1x∥22 / ∥x∥
2
2 = ZqZq−1 · · ·Z1,

where Zi = ∥Ai:1x∥2 / ∥Ai−1:1x∥2. We have Z1 ∼ χ2
n1

, Zi|(Z1, · · · , Zi−1) ∼ χ2
ni
(1 < i ≤ q).

Recall the moments of Z ∼ χ2
m:

E[Zλ] =
2λΓ(m2 + λ)

Γ(m2 )
,∀λ > −m

2
.

Now, we aim to find the Chernoff type bound.

Case 1: We define ratio of Gamma function

R(x, λ) =
Γ(x+ λ)

Γ(x)
, λ > 0, x > 0.

In Jameson (2013), we have

R(x, λ) ≤ x(x+ λ)λ−1 ≤ (x+ λ)λ, λ > 0, x > 0. (58)

Fixed c > 0, for any λ > 0 we have

P(Zq · · ·Z1 > ecn1 · · ·nq) ≤ P((Zq · · ·Z1)
λ > eλc(n1 · · ·nq)λ)

≤ e−λc(n1 · · ·nq)−λE[(Zq · · ·Z1)
λ] (Markov inequality)

= exp{−λ(c+ ln(n1 · · ·nq))}
q∏

j=1

2λR(nj/2, λ) (Law of total expectation)

≤ exp{−λ(c+ ln(n1 · · ·nq)) + qλ ln 2 +

q∑
j=1

λ ln(
nj
2

+ λ)}(Inequality (58))

= exp{−λc+ λ

q∑
j=1

ln(1 +
2λ

nj
)}

≤ exp{−λc+ 2λ2
q∑

j=1

1

nj
}.

Define constant ∆1(q) =
∑q

j=1
1
nj

. Set λ = c
4∆1(q)

, we obtain (56).

Case 2: Let nmin = min1≤j≤q nj .

P(Zq · · ·Z1 < e−cn1 · · ·nq) ≤ P((Zq · · ·Z1)
λ > e−λc(n1 · · ·nq)λ)

≤ exp{λ(c− ln(n1 · · ·nq)) + qλ ln 2 +

q∑
j=1

lnR(
nj
2
, λ)}.
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Define

f(λ) = λ(c− ln(n1 · · ·nq)) + qλ ln 2 +

q∑
j=1

lnR(
nj
2
, λ),−nmin

2
< λ ≤ 0.

Notice that f(0) = 0. Define digamma function,

ψ(x) =
d

dx
ln(Γ(x)) =

Γ′(x)

Γ(x)
.

Qi et al. (2006) proved the following sharp inequality of digamma function,

ln(x+
1

2
)− 1

x
< ψ(x) < ln(x+ e−γ)− 1

x
, x > 0,

where γ is the Euler-Mascheroni constant, and e−γ ≈ 0.561459.
Thus,

f ′(λ) = c+

q∑
j=1

[
− ln(

nj
2
) + ψ(

nj
2

+ λ)
]
≥ c+

q∑
j=1

ln(1 +
λ+ 1/2

nj/2
)−

q∑
j=1

1

nj/2 + λ
.

Since ln(1 + x) is concave, we have

ln(1 + x) ≥ 2 ln(2)x, x ∈ [−1/2, 0].

If −nmin

4 ≤ λ ≤ 0, then

f(λ) = f(0)−
∫ 0

λ

f ′(x)dx

≤ cλ+

∫ λ

0

 q∑
j=1

ln(1 +
x+ 1/2

nj/2
)−

q∑
j=1

1

nj/2 + x

 dx
= cλ+

q∑
j=1

[
λ ln(1 +

λ+ 1/2

nj/2
) + (nj/2 + 1/2) ln(1 +

λ

nj/2 + 1/2
)− λ− ln(1 +

λ

nj/2
)

]

≤ cλ+

q∑
j=1

(λ− 1) ln(1 +
λ

nj/2
)

≤ cλ+ 4 ln(2)λ(λ− 1)∆1(q).

Assume 0 < c ≤ 3 ln 2. Let A = 12 ln 2, and λ∗ = − c
A∆1(q)

. Since nmin∆1(q) ≥ 1, we have
λ∗ ≥ −nmin/4.
Assume ∆1(q) ≤ c/(12 ln 2).
Thus

f(λ∗) ≤ − c2

A∆1(q)
+ 4 ln 2

c2

A∆1(q)

(
∆1(q)

c
+

1

A

)
≤ − c2

36 ln(2)∆1(q)
. (59)

Thus, we obtain (57).

Lemma E.3. There exists a positive constant C(c1, c2) which only depends on c1, c2, such that if

nN∆1 ≤ C(c1, c2), then for any fixed 1 < i ≤ N , with probability at least 1 − exp
{
−Ω

(
1
∆1

)}
we have

σmax(WN :i(0)) ≤ ec1(ni−1ni · · ·nN−1)
1/2, (60)

and
σmin(WN :i(0)) ≥ e−c2(ni−1ni · · ·nN−1)

1/2. (61)

Proof of Lemma E.3. Let A =WT
N :i(0). We know that

σmax(A) = ∥A∥ = sup
v∈SnN−1

∥Av∥2
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and
σmin(A) = inf

v∈SnN−1
∥Av∥2 .

Applying lemma E.2, we know that with probability at least 1− exp
{
−Ω

(
1
∆1

)}
,

∥Av∥2 / ∥v∥2 ∈ [e−c2/2P, ec1/2P ],

where P = (ni−1 · · ·nN−1)
1/2.

Set ϕ = min{1− e−c1/2, (e−c2/2 − e−c2)/(e−c2/2 + ec1)}. Take a ϕ-net Nϕ for SnN−1 with size
|Nϕ| ≤ (3/ϕ)nN . Notice that with this size we can actually cover the unit ball, not only the unit
sphere.
Thus, with probability at least 1− |Nϕ| exp

{
−Ω

(
1
∆1

)}
, for all u ∈ Nϕ simultaneously we have

∥Au∥2 / ∥u∥2 ∈ [e−c2/2P, ec1/2P ].

Fixed v ∈ SnN−1, there exists u ∈ Nϕ such that ∥u− v∥2 ≤ ϕ. WLOG, we assume 1 − ϕ ≤
∥u∥2 ≤ 1. We obtain

∥Av∥2 ≤ ∥Au∥2 + ∥A(u− v)∥2 ≤ ec1/2P + ϕ ∥A∥ .

Taking supereme over ∥v∥2 = 1, we obtain

σmax(A) = ∥A∥ ≤ ec1/2

1− ϕ
P ≤ ec1P.

For the lower bound, we have

∥Av∥2 ≥ ∥Au∥2 −∥A(u− v)∥2 ≥ e−c2/2P ∥u∥− ϕ ∥A∥ ≥
[
(1− ϕ)e−c2/2 − ϕec1

]
P ≥ e−c2P.

Taking the infimum over ∥v∥2 = 1, we get

σmin(A) ≥ e−c2P.

The conclusions hold with probability at least

1− |Nϕ| exp
{
−Ω

(
1

∆1

)}
≥1− exp{nN ln(3/ϕ)} exp

{
−Ω

(
1

∆1

)}
≥1− exp

{
−Ω

(
1

∆1

)}
,

since nN∆1 ≤ C(c1, c2).

Lemma E.4. There exists a positive constant C(c1, c2) which only depends on c1, c2, such
that if rank(X)∆1 ≤ C(c1, c2), then for any fixed 1 ≤ j < N , with probability at least

1− exp{−Ω
(

1
∆1

)
} we have

σmax(Wj:1(0)|R(X)) ≤ ec1(n1n2 · · ·nj)1/2, (62)

and
σmin(Wj:1(0)|R(X)) ≥ e−c2(n1n2 · · ·nj)1/2. (63)

Proof of Lemma E.4. The proof is similar to that of previous lemma. The only difference is that now
we consider the ϕ−net to cover the unit sphere in R(X)∩Rn0 , with dimR(X)∩Rn0 = rank(X),
where R(X) represents the column space of X .
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Lemma E.5. Set C = nmax/nmin <∞, θ = 1/2. Assume Ω(1/∆1) ≥ k
∆1

, where 0 < k < 1 is a
constant and ∆1 satisfies 

∆1 ≤ min
{

k
5 ln(6) ,

k
5 ln(5 ln(6)e/k)

}
∆1 ln(C) ≤ min

{
k

5 ln(5 ln(6)e/k) ,
k
5

}
∆1 ln(N

2θ) ≤ k/5.

Given 1 < i ≤ j < N , with probability at least 1− 2e−k/(5∆1) = 1− e−Ω(1/∆1) we have

∥Wj:i(0)∥ ≤Mk

√
CNθ(ni · · ·nj−1 ·max{ni−1, nj})1/2,

where Mk is a positive constant that only depends on k.

Proof of Lemma E.5. WLOG, assume ni−1 ≤ nj . Let A = Wj:i(0). From lemma E.2, we know
that fixed v ∈ Sni−1−1, with probability at least 1−e−Ω(1/∆1) we have ∥Av∥2 ≤ 4/3(ni · · ·nj)1/2.
.
Take a small constant c = kN2θ

5 ln(6)∆1ni−1
≥ k

5 ln(6)C . Let v1, · · · , vni−1
be an orthonormal basis

for Rni−1 . Partition the index set {1, 2, · · · , vni−1
} = S1 ∪ S2 ∪ · · · ∪ S⌈N2θ/c⌉, where |Sl| ≤

⌈cni−1/N
2θ⌉ for each 1 ≤ l ≤ ⌈N2θ/c⌉.

The following discussion is similar to the proof of lemma E.3, hence we omit some details. For each
l, taking a 1/2− net Nl for the set VSl

= {v ∈ Sni−1−1; v ∈ span{vi; i ∈ Sl}}, we can get

∥Au∥2 ≤ 4(ni · · ·nj)1/2, u ∈ VSl
,

with probability at least

1− |Nl|e−k/∆1 ≥ 1− exp{−k/∆1 + (cni−1/N + 1) ln 6} ≥ 1− e−3k/(5∆1),

since ∆1 ≤ k
5 ln(6) .

Therefore, for any v ∈ Rni−1 , we can write it as the sum v =
∑

l alvl, where αl ∈ R and vl ∈ VSl

for each l. We also know that ∥v∥22 =
∑

l≥1 |αl|2.
Then we have

∥Av∥2 ≤
∑
l

|αl| ∥Avl∥2 ≤ 4(ni · · ·nj)1/2
√
⌈N2θ/c⌉

∑
l

|al|2 ≤Mk

√
CNθ(ni · · ·nj)1/2 ∥v∥2 .

Thus,
∥A∥ ≤Mk

√
CNθ(ni · · ·nj)1/2.

Notice that when C ≤ e, ∆1 ≤ k
5 ln(5 ln(6)e/k) ≤

k
5 ln(5 ln(6)·C/k) , and when C > e, we have

∆1 ln(C) ≤ min

{
k

5 ln(5 ln(6)e/k)
, k/5

}
≤ k ln(C)

5 ln(5 ln(6) · C/k)
.

The success probability is at least

1− ⌈N2θ/c⌉ · e−3k/(5∆1)

≥1− exp

{
ln

(
5 ln(6) · C

k

)
+ ln(N2θ)− 3k/(5∆1)

}
− e−3k/(5∆1)

≥1− 2e−k/(5∆1),

since

∆1 ≤ k

5 ln (5 ln(6) · C/k)
and ∆1 ln(N

2θ) ≤ k/5.
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Proof of Lemma 2.3. Set r = rank(X), and u1, · · · , ur be an orthonormal basis of the column
space of X .

Then, PX =
∑r

i=1 uiu
T
i .

Notice that

∥anWN :1(0)∥2X = ∥anWN :1(0)PX∥2F =

r∑
i=1

∥anWN :1(0)ui∥22 .

By assumption, we have

E ∥anWN :1(0)∥2X = E
r∑

i=1

∥anWN :1(0)ui∥22 = r.

The Markov inequality implies

P(∥anWN :1(0)∥2X ≥ 2r

δ
) ≤ δ

2
.

Therefore, we can bound the initial loss value as

L0 − L(W∗) ≤ ⟨∇L(W∗), aNWN :1(0)X −W∗⟩+
β

2
∥aNWN :1(0)−W∗∥2X

=
β

2
∥aNWN :1(0)−W∗∥2X

≤ β(∥aNWN :1(0)∥2X + ∥W∗∥2X)

≤ β(
2r

δ
+ ∥W∗∥2X),

with probability at least 1− δ/2.

Proof of Theorem B.1. The requirement on size {n1, n2, · · · , nN−1, N} in (16) makes sure that
lemma E.3, E.4, E.5, 2.3, and D.1 hold.
WLOG, we set c1 = c/6, c2 = c/3, M = 2Mk

√
C0, B0 = Bδ, and η =: (1−ε)2nN

e2cβN , then with
probability at least

1−N2e−Ω(1/∆1) − δ/2 ≥ 1− δ, since ∆1 ≤ 1

C(c)
min

{
1

lnN
,

1

ln(1/δ)

}
,

the random initialization satisfies the initialization assumption (31) and the overparameterization
assumption (32). Applying Lemma D.1, we complete the proof.

F ORTHOGONAL INITIALIZATION FALL INTO THE CONVERGENCE REGION

There are some basic facts for random projections and embeddings. Most of the following properties
can be found in Eaton (1989).

Proposition F.1.

1. A is a random embedding if and only if AT is a random projection.

2. If A is a square matrix, then random projection, random embedding and random orthogo-
nal matrix are equivalent.

3. The uniform distribution on the group is a left and right invariant probability measure, that
is, if A is a random orthogonal matrix, then A,UA,AU are all random orthogonal matrix,
where U is a non-random orthogonal matrix.
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4. Assume X is a n × q(q ≤ n) random matrix whose entries are i.i.d. N(0, 1) random
variables. Then A := X(XTX)−1/2 is a random embedding, since ATA = Iq and the
distribution of A is left invariant, which means that A and UA have the same distribution,
where U is a non-random orthogonal matrix.

5. If A is a uniform distribution over an orthogonal group of order n and A is partitioned as
A = (A1, A2), where A1 is n× q and A2 is n× (n− q), then AT

1 and AT
2 are both random

orthogonal matrix.

6. The columns of uniform distribution over orthogonal group of order n, and

(ξ1, · · · , ξn)√
ξ21 + ξ22 + · · ·+ ξ2n

have the same distribution, where ξ1, · · · , ξn are i.i.d. N(0, 1) random variables.

7. Assume A = An×p, n ≤ p is a random orthogonal projection. For any v ∈ Sp−1, ∥Av∥22
and (

∑n
i=1 ξ

2
i )/(

∑p
j=1 ξ

2
j ) are both following beta distribution with α = n/2, β = (p −

n)/2, where ξ1, · · · , ξn are i.i.d. N(0, 1) random variables.
Remark 9. There are several ways to construct random matrix A = (aij)q×n, q ≤ n, which is
uniformly distributed over rectangular matrices with AAT = c2Iq, c > 0. Let On be uniformly
distributed over real orthogonal group of order n, and On is partitioned as On = (AT

1 , A
T
2 )

T , where
A1 is q × n. Assume X = (xij)q×n, and xij are independent standard normal random variables.
Then A, cA1, and c(XXT )−1/2X have the same distribution.
Lemma F.2. For any x ∈ Rn0 , the one peak random projections and embedding initiation satisfies

E
[
∥aNWN :1(0)x∥22

]
= ∥x∥22 .

Proof. Let D = Wp:1(0)/
√
n1n2 · · ·np. Then D is an embedding matrix. Thus, ∥Dx∥22 = ∥x∥22.

Let Ai =Wi:p+1(0)/
√
npnp+1 · · ·ni−1, where i ≥ p+ 1, and Ap = I .

Set Bi = ∥AiDx∥22 / ∥Ai−1Dx∥22, i ≥ p+ 1. Then, Bi follows beta distribution B(ni/2, (ni−1 −
ni)/2) given Bi−1, Bi−2, · · · , Bp+1, i ≥ p+ 1. If ni = ni−1, then Bi|(Bi−1, Bi−2, · · · , Bp+1) =
1, a.s.

If B ∼ B(a, b), then the expectation is given by the following equation,

EB =
a

a+ b
.

Thus, by law of total expectation, we have
nN
np

E ∥aNWN :1(0)x∥22 = E ∥ANDx∥22 = EBNBN−1 · · ·Bp+1 ∥Dx∥22 =
nN
np

∥x∥22 .

This completes the proof.

Next, we introduce sub-Gaussian random variables, associated with bounds on how a random
variables deviate their expected value.

Definition F.1. A random variableX with finite mean µ = EX is sub-Gaussian if there is a positive
number σ such that:

E[exp(λ(X − µ))] ≤ exp

(
λ2σ2

2

)
for all λ ∈ R (64)

Such a constant σ2 is called a proxy variance, and we say that X is σ2-sub-Gaussian, and we write
X ∼ SG(σ2).
Example F.1. Normal distribution N(µ, σ2) of course is σ2 sub-Gaussian.
For beta distribution, Elder (2016) showed thatB(a, b) is 1

4(a+b)+2 -sub-Gaussian and later, Marchal
& Arbel (2017) concluded 1

4(a+b+1) -sub-Gaussian.
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The Hoeffding bound for random variable X with mean µ and sub-Gaussian parameter σ is given
by,

P [|X − µ| ≥ t] ≤ 2 exp

{
− t2

2σ2

}
,∀t ≥ 0. (65)

Simply applying the Chernoff bound for B(a, b), we obtain the following lemma.
Lemma F.3. Assume random variable B distributed as beta distribution B(a, b) with two positive
shape parameters a and b. Then

P(
∣∣∣∣B − a

a+ b

∣∣∣∣ ≥ y) ≤ 2 exp
{
−2(a+ b)y2

}
, y ≥ 0.

Hence,

P
(∣∣∣∣B − a

a+ b

∣∣∣∣ ≤ ε
a

a+ b

)
≥ 1− exp{−Ω(a2/(a+ b))},

where Ω(·) only depend on ε.
For the upper tail, we can obtain a better bound,

P
(
B ≥ (1 + ε)

a

a+ b

)
≤ exp {−(ε− ln(ε+ 1))a} . (66)

Proof of Lemma F.3. We only need to prove the third inequality. Assume random variable B ∼
B(a, b). Set v = a+ b, (1 + t)av ≤ y < 1, t > 0, and r > 0.
We are going to estimate the Chernoff bound for B, which is

P(B ≥ y) ≤ e−(ry−lnEerB) =: e−Ir(y).

The moment generating function of B is given by

EerB = 1 +

∞∑
k=1

a(a+ 1) · · · (a+ k − 1)

v(v + 1) · · · (v + k − 1)

rk

k!
≤ 1 +

∞∑
k=1

a(a+ 1) · · · (a+ k − 1)

vk
rk

k!
, r > 0.

Recall that the Maclaurin series of (1− r/v)−a over (−v, v), is given by equation

(1− r/v)−a = 1 +

∞∑
k=1

a(a+ 1) · · · (a+ k − 1)

vk
rk

k!
.

Thus,
Ir(y) = ry − lnEerB ≥ ry + a ln(1− r/v).

Set r = v − a/y ∈ (0, v). We obtain

P(B ≥ y) ≤ exp{−(vy − a+ a ln(a/(vy)))} =: exp{−vy · g(a/(vy))}, (1 + t)
a

v
≤ y < 1

where g(x) = 1 − x + x ln(x), x = a/(vy) ∈ (0, 1/(1 + t)]. Notice that g(1) = 0 and g′(x) =
ln(x) < 0 over x ∈ (0, 1).
We know that

g(x) ≥ g(1/(1 + t)) =
t− ln(1 + t)

t+ 1
, t > 0.

Thus,

P(B ≥ y) ≤ exp

{
−vy · t− ln(1 + t)

t+ 1

}
= exp {−(t− ln(1 + t))a} , y = (1 + t)

a

v
< 1.

Set y = (1 + ε) a
a+b . We obtain the inequality (66).

Remark 10. It is trivial to check

∥Wj:i(0)∥ = (nini+1 · · ·nj)1/2, 1 ≤ i ≤ j ≤ p,

∥Wj:i(0)∥ = (ni−1ni · · ·nj−1)
1/2, p+ 1 ≤ i ≤ j ≤ N,

∥Wj:i(0)∥ ≤ (nini+1 · · ·nj−1)
1/2(np)

1/2

≤
(
nmax

nmin

)1/2

(nini+1 · · ·nj−1 ·max{ni−1, nj})1/2, 1 ≤ i < p < j ≤ N, (i, j) ̸= (1, N).
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Remark 11. As a special case, if n1 = n2 = · · · = nN−1 = n, we know that ∥Wj:i(0)∥ =

(ni−1ni · · ·nN−1)
1/2 = n(N−i+1)/2.

Lemma F.4. Assume np/min{n1, nN−1} ≤ C0 < ∞. Set ε > 0. Let C(ε) represent the constant
depend only on ε. If n1/C0 ≥ C(ε)nN , then with probability at least 1− e−Ω(n1/C0)

σmax(WN :i(0)) ≤ (1 + ε)(ni−1ni · · ·nN−1)
1/2, 2 ≤ i ≤ p

σmin(WN :i(0)) ≥ (1− ε)(ni−1ni · · ·nN−1)
1/2, 2 ≤ i ≤ p.

Similarly, if nN−1/C0 ≥ C(ε)rank(X), then with probability at least 1− e−Ω(nN−1/C0)

σmax(Wj:1(0)|R(X)) ≤ (1 + ε)(n1n2 · · ·nj)1/2, p+ 1 ≤ j ≤ N

σmin(Wj:1(0)|R(X)) ≥ (1− ε)(n1n2 · · ·nj)1/2, p+ 1 ≤ j ≤ N.

Proof of Lemma F.4. Let D = (nN−1nN−2 · · ·np)−1/2WT
N :p+1(0) and

Ai = (npnp−1 · · ·ni)−1/2WT
p:i(0). Assume v ∈ SnN−1. Easy to see that Ai is a product of random

orthogonal projections and D is a random embedding.
Let e1 = (1, 0, 0, · · · , 0)T ∈ Rnp . There exists orthogonal matrix T such that TDv = e1, ∥e1∥2 =
∥TDv∥2 = ∥v∥2 = 1.
Since random orthogonal projections are right invariant, we have

P(∥AiDv∥2 ≥ y) = E
[
E
(
I{∥AiTT e1∥2≥y}

∣∣∣D)] = E
[
E
(
I{∥Aie1∥2≥y}

∣∣D)] = P(∥Aie1∥2 ≥ y).

This proves that ∥AiDv∥22 and ∥Aie1∥22 have the same distribution.

Claim: If v ̸= 0, then ∥AiDv∥22 / ∥v∥
2
2 =

∥∥(nini+1 · · ·n2p · · ·nN−1)
−1/2WT

N :iv
∥∥2
2
/ ∥v∥22 follows

beta distribution B(ni−1/2, (np − ni−1)/2).
Define Bp = ∥Ape1∥22, Bi = ∥Aie1∥22 / ∥Ai+1e1∥22, i = p− 1, p− 2, · · · , 1.
Then Bp ∼ B(np−1/2, (np − np−1)/2), Bp−1|Bp ∼ B(np−2/2, (np−1 − np−2)/2), · · · ,
Bi|(Bp, · · · , Bi+1) ∼ B(ni−1/2, (ni − ni−1)/2).
If ni+1 = ni, we know that Bi|(Bp, · · · , Bi+1) = 1, a.s.
If B ∼ B(a, b), then the moments are given by the following equations,

EB =
a

a+ b
, and EBk =

a

a+ b

a+ 1

a+ b+ 1
· · · a+ k − 1

a+ b+ k − 1
. (67)

By law of total expectation, we have

EBiBi+1 · · ·Bp =
ni−1

ni

ni
ni+1

· · · np−1

np
=
ni−1

np
,

as well as

E(BiBi+1 · · ·Bp)
k =

ni−1/2

np/2

ni−1/2 + 1

np/2 + 1
· · · ni−1/2 + k − 1

np/2 + k − 1
.

Notice that all integer moments of BiBi+1 · · ·Bp match those of B(ni−1/2, (np − ni−1)/2). We
can verify that beta distribution satisfies Carleman’s condition, which implies that BiBi+1 · · ·Bp ∼
B(ni−1/2, (np − ni−1)/2).
Thus, ∥AiDv∥22 / ∥v∥

2
2 ∼ B(ni−1/2, (np − ni−1)/2), which proves the claim.

With probability at least 1− exp{−Ω(n1/C0)}, we have

(1− ε)2
ni−1

np
≤ ∥ADv∥22 ≤ (1 + ε)2

ni−1

np
, ∥v∥2 = 1.

Using the ϕ−net technique which has already been used to prove lemma E.3, we know that

σmin(AD) ≥ (1− ε)

(
ni−1

np

)1/2

,

and

σmax(AD) ≤ (1 + ε)

(
ni−1

np

)1/2

,
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with probability at least 1−exp{nN ln(3/ϕ(ε))} exp{−Ω(n1/C0)} ≥ 1−exp{−Ω(n1/C0), since
n1/C0 ≥ C(ε)nN , for 2 ≤ i ≤ p.
Hence, with probability at least 1− e−Ω(n1/C0), we have

σmin(WN :i(0)) ≥ (1− ε) (ni−1 · · ·nN−1)
1/2

,

and
σmax(WN :i(0)) ≤ (1 + ε) (ni−1 · · ·nN−1)

1/2
.

The other part of the proof is similar to that of lemma E.4, so we omit it.

Proof of Theorem B.2 . Set c > 0, c1 = c/6, c2 = c/3. In lemma F.4, we can pick a ε > 0, such
that 1 + ε ≤ ec1/2 and 1− ε ≥ e−c2/2. Set M = 2

√
C0, θ = 0, B0 = Bδ , and η = (1−ε)2nN

e2cβN .
The requirement on size {n1, n2, · · · , nN−1, N} in (17) make sure that the remark 10, lemma F.4,
lemma 2.3, and lemma D.1 all hold.
Notice that even though we need the conclusions in lemma F.4 simultaneously hold for 2 ≤ i ≤ p,
p + 1 ≤ j ≤ N , it suffices to apply lemma F.4 over i ∈ I and j ∈ J , such that {ni; i ∈ I} and
{nj ; j ∈ I} both have distinct values. Since |I| ≤ N and |J | ≤ N , with probability at least

1− 2Ne−Ω(nmin/C0) − δ/2 ≥ 1− δ,

the one peak random orthogonal projections and embeddings initialization satisfies the initialization
assumption (31) and the overparameterization assumption (32).
Under assumption n1 = n2 = · · · = nN−1, we can use remark 11 to replace lemma F.4. Thus, with
probability at least 1 − δ/2 ≥ 1 − δ, (31) holds. Applying lemma 2.3 and D.1, we complete the
proof.

Proof of Theorem B.3. Let WN (0) =
√
nUN [Iny , 0]V

T
N , · · · ,Wi(0) =

√
nUiInV

T
i , 2 ≤ i ≤ N −

1, and W1(0) =
√
nU1[Inx

, 0]TV T
1 . Now, we want to verify (31). By simply calculation, we have

σmax(WN :i+1(0)) = σmin(WN :i+1(0)) = n(N−i)/2, 1 ≤ i ≤ N − 1,

σmax(Wi−1:1(0)|R(X)) = σmax(Wi−1:1(0)|R(X)) = n(i−1)/2, 2 ≤ i ≤ N,

∥Wj:i(0)∥ = n(j−i+1)/2, 1 < i ≤ j < N.

(68)

Notice that for any 1 ≤ p ≤ m

∥aNWN :1(0)x∥22 =
n

nN
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, 0]V T

N UN [Inx
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1 x
∥∥2
2
=

n

nN
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, 0]V T

N x
′∥∥2

2
,

where x′ = UN [Inx
, 0]TV T

1 x, ∥x∥2 = ∥x′∥2.
Since the distribution of UN [Iny

, 0]V T
N is right invariant under multiplying orthogonal matrices, we

have ∥∥UN [Iny , 0]V
T
N x

′∥∥2
2
/ ∥x∥22 ∼ B(

ny
2
,
n− ny

2
).

Thus,
E
[
∥aNWN :1(0)x∥22

]
= ∥x∥22 .

Applying lemma 2.3, we have

L0 − L(W∗) ≤ β

(
2 · rank(X)

δ
+ ∥W∗∥2X

)
,

with probability at least 1− δ/2.
Applying Lemma D.1 with c > 0, c1 = c/6, c2 = c/3, θ = 0, we complete the proof.

Proof of Theorem 3.1. Theorem 3.1 is a special case of Theorem B.1 and Theorem B.2. Hence, we
omit the proof.
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Proof of Theorem 3.2. In Theorem B.1, B.2, and B.3, we proved that for given constant c1, c2 > 0
and 0 < ε, δ/2 < 1/2 as well as learning rate η, there exists constant C = C(c1, c2) such that all
three kinds of random initializations will fall into the convergence region with probability at least
1− δ. Applying Lemma 2.3, we complete the proof.

G TABLES

In this section, we provide some empirical evidence to support the argument in Section 4:Why do
bad saddles not affect GD for overparameterized deep linear neural networks? Consider the
following procedures for tables of ∥Wi(t)−Wi(0)∥F

∥Wi(0)∥F
:

a) We consider X ∈ R128×1000, and W∗ ∈ R10×128 and set Y =W∗X+ ε, where the entries
in X and ε are drawn i.i.d. from N(0, 1).

b) We consider the loss function 1
2 ∥aNWN :1X − Y ∥2F .

c) For the given deep linear networks, we apply orthogonal initialization, which are denoted
as Wj(0), 1 ≤ j ≤ N .

d) We set the learning rate η = nN

N ·∥X∥2 for the deep linear neural networks.

e) We make the tables for ∥Wi(t)−Wi(0)∥F

∥Wi(0)∥F
.

Let n1 = n2 = n3 = 2000, N = 4. Assume W∗ are drawn i.i.d. from N(0, 25). We obtain the
following table:

i = 1 i = 2 i = 3 i = 4
t = 1 0.05161 0.00826 0.00826 0.18464
t = 2 0.08779 0.01389 0.01389 0.31396
t = 3 0.11335 0.01781 0.01779 0.40435
t = 4 0.12109 0.01894 0.01889 0.42920
t = 5 0.12527 0.01956 0.01948 0.44282
t = 6 0.12611 0.01967 0.01958 0.44476
t = 7 0.12755 0.01988 0.01978 0.44955
t = 8 0.12745 0.01986 0.01975 0.44876
t = 9 0.12819 0.01997 0.01987 0.45136
t = 10 0.12793 0.01992 0.01982 0.45018

Let n1 = n2 = 10000, N = 2. Assume W∗ are drawn i.i.d. from N(0, 4). We obtain the following
table:

i = 1 i = 2 i = 3
t = 1 0.02708 0.00153 0.04844
t = 2 0.04319 0.00244 0.07727
t = 3 0.05296 0.00299 0.09474
t = 4 0.05888 0.00333 0.10533
t = 5 0.06248 0.00353 0.11176
t = 6 0.06468 0.00365 0.11569
t = 7 0.06603 0.00373 0.11811
t = 8 0.06688 0.00377 0.11962
t = 9 0.06741 0.00380 0.12057
t = 10 0.06775 0.00382 0.12117
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Let n1 = n2 = 4000, N = 2. Assume W∗ are drawn i.i.d. from N(0, 1). We obtain the following
table:

i = 1 i = 2 i = 3
t = 1 0.01622 0.00290 0.05802
t = 2 0.02684 0.00480 0.09601
t = 3 0.03411 0.00609 0.12202
t = 4 0.03919 0.00700 0.14018
t = 5 0.04280 0.00764 0.15306
t = 6 0.04539 0.00810 0.16232
t = 7 0.04729 0.00844 0.16908
t = 8 0.04869 0.00868 0.17408
t = 9 0.04974 0.00887 0.17782
t = 10 0.05054 0.00901 0.18066

Let n1 = n2 = 8000, N = 2. Assume W∗ are drawn i.i.d. from N(0, 1). We obtain the following
table:

i = 1 i = 2 i = 3
t = 1 0.01173 0.00148 0.04195
t = 2 0.01944 0.00246 0.06955
t = 3 0.02470 0.00312 0.08838
t = 4 0.02838 0.00358 0.10151
t = 5 0.03098 0.00391 0.11083
t = 6 0.03287 0.00415 0.11758
t = 7 0.03426 0.00432 0.12253
t = 8 0.03530 0.00445 0.12624
t = 9 0.03608 0.00455 0.12904
t = 10 0.03668 0.00463 0.13118

Let n1 = n2 = 12000, N = 2. Assume W∗ are drawn i.i.d. from N(0, 1). We obtain the following
table:

i = 1 i = 2 i = 3
t = 1 0.00965 0.00099 0.03453
t = 2 0.01597 0.00164 0.05712
t = 3 0.02025 0.00208 0.07244
t = 4 0.02323 0.00239 0.08310
t = 5 0.02535 0.00261 0.09069
t = 6 0.02690 0.00277 0.09621
t = 7 0.02804 0.00289 0.10029
t = 8 0.02890 0.00297 0.10336
t = 9 0.02955 0.00304 0.10570
t = 10 0.03006 0.00309 0.10750

Let n1 = n2 = 20000, N = 2. Assume W∗ are drawn i.i.d. from N(0, 1). We obtain the following
table:

i = 1 i = 2 i = 3
t = 1 0.00713 0.00057 0.02551
t = 2 0.01181 0.00095 0.04225
t = 3 0.01499 0.00121 0.05362
t = 4 0.01720 0.00138 0.06154
t = 5 0.01878 0.00151 0.06720
t = 6 0.01994 0.00161 0.07132
t = 7 0.02079 0.00168 0.07438
t = 8 0.02144 0.00173 0.07668
t = 9 0.02193 0.00177 0.07844
t = 10 0.02231 0.00179 0.07981

H FIGURES

In this section, we provide some empirical evidence to support the results in Section 4: Numerical
Experiments. We will show how the trajectories of the non-convex deep linear neural networks are
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related to a convex optimization problem for GD under different initialization schemes. Consider
the following procedures for plots of the logarithm of loss as a function of number of iterations:

a) We choose X ∈ R128×1000 and W∗ ∈ R10×128 and set Y = W∗X + ε, where the entries
in X , W∗ and ε are drawn i.i.d. from N(0, 1).

b) We consider the loss function 1
2 ∥aNWN :1X − Y ∥2F .

c) For the given linear networks, we apply the Gaussian initialization and the one peak random
orthogonal projections and embeddings initialization, which are denoted as Wj(0), 1 ≤
j ≤ N .

d) For the convex optimization problem (1), we set the initialization to be W (0) =
aNWN (0) · · ·W1(0).

e) We set the learning rate η = nN

N ·∥X∥2 and η∗ = N
nN
η for the deep linear neural networks

and the convex problem, respectively.
f) We draw the loss function through 25 iterations.
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Figure 1: Plot of Loss as a function of number of iterations with n1 = n2 = n3 = 128 (First), 200
(Second), 2000 (Third) for Gaussian initialization, respectively.
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Figure 2: Plot of Loss as a function of number of iterations with n1 = n2 = n3 = 128 (First), 200
(Second), 5000 (Third) for Orthogonal initialization, respectively.
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