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Abstract
We introduce conditional unigram tokenization,
a novel approach that extends unigram tokeniza-
tion by conditioning target token probabilities on
source-language tokens from parallel data. Given
a fixed source tokenizer, our method learns a tar-
get tokenizer that maximizes cross-lingual seman-
tic alignment. We evaluate our tokenizer on four
language pairs across different families and re-
source levels, examining intrinsic properties and
downstream performance on machine translation
and language modeling. While our conditional
tokenizer maintains comparable statistical prop-
erties to standard unigram tokenizers, results are
mixed: we observe no improvements in machine
translation quality, but find consistent perplexity
reductions in language modeling. We hypothesize
that quadratic scaling of conditional probability
estimation with respect to the vocabulary size cre-
ates a data efficiency bottleneck. Our findings
suggest that alternative parameterizations may be
necessary for practical cross-lingual tokenization.

1. Introduction
Tokenization serves as the foundation of most natural lan-
guage processing pipelines, directly influencing model per-
formance across tasks. While traditional tokenization ap-
proaches (Sennrich et al., 2016; Kudo, 2018) focus pri-
marily on token frequency in monolingual contexts, their
effectiveness in multilingual scenarios depends critically
on achieving both literal (Pires et al., 2019; Limisiewicz
et al., 2023) and semantic (Hämmerl et al., 2025) overlap
between languages. Improving the semantic overlap of
tokenizers in different languages might be beneficial, par-
ticularly for low-resource languages that suffer from low
performance caused, among others, by overtokenization
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(Ahia et al., 2023). Therefore, these languages might benefit
from cross-lingual alignability.

In this paper, we introduce a novel approach to cross-lingual
tokenization that attempts to directly address this challenge
in a probabilistic model. Given an existing tokenizer in a
source language, we develop a target language tokenizer that
maximizes semantic alignment between the two languages.
Our approach extends the unigram tokenization framework
(Kudo, 2018) by replacing unconditional unigram probabili-
ties with conditional probabilities based on source-language
tokens.

Specifically, we formulate tokenization as maximizing the
unigram probability of target tokens conditioned on aligned
source tokens from parallel data. It is a straightforward
generalization of standard unigram tokenization, with the
key difference that it explicitly models cross-lingual token
alignability during the tokenizer training process. Simi-
larly to the unigram model, this is also used for vocabulary
learning.

We evaluate our approach on four language pairs across
eight translation directions, analyzing both intrinsic tok-
enization properties and downstream task performance. Our
results present a mixed picture: while the intrinsic evalua-
tion shows that our conditional tokenizer maintains statisti-
cal properties comparable to standard unigram tokenizers,
we do not observe consistent improvements in machine
translation quality. However, we do find notable perplexity
reductions in language modeling tasks, suggesting potential
benefits for specific applications.

The remainder of this paper is organized as follows: Sec-
tion 3 details our conditional unigram tokenization ap-
proach. Section 4 and 5 present experimental results across
multiple language pairs and tasks. Finally, Section 6 dis-
cusses implications and directions for future research. The
source code for replicating our experiments is openly avail-
able on GitHub (https://github.com/GianlucaVico/
Conditional-Unigram-Tokenization).

2. Related Work
Subword Tokenization. The most frequently used sub-
word tokenizers in NLP are BPE (Sennrich et al., 2016) and
Unigram (Kudo, 2018). These approaches address out-of-
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vocabulary (OOV) words while maintaining a fixed vocabu-
lary size and ensuring tokens have comparable frequencies
for proper embedding training. These methods typically
represent common words as single tokens, while rare words
(including words from low-resource languages, or those in
non-Latin scripts) get fragmented into multiple tokens or
individual bytes (Petrov et al., 2023; Ahia et al., 2023). No-
table alternative approaches include VOLT (Xu et al., 2021),
which employs optimal transport for vocabulary construc-
tion, or tokenization inference methods, such as PathPiece
(Schmidt et al., 2024), which generates the shortest possible
token sequence for a given vocabulary, or Legros (Libovický
& Helcl, 2024) that finds the most semantically plausible
tokenization for a given vocabulary.

Cross-lingual Token Alignment. Previous studies
(Minixhofer et al., 2022; Remy et al., 2023; 2024) showed
that token semantic similarity across languages is important
for effective cross-lingual transfer. This similarity can be
derived from bilingual dictionaries (Minixhofer et al., 2022)
or through automated techniques (Remy et al., 2024), such
as Fast Align (Dyer et al., 2013). Hämmerl et al. (2025)
establish that token alignment between parallel sentences
correlates with performance on multiple downstream tasks
and introduces metrics for measuring such alignment across
different tokenizers using a statistical model for word
alignment.

Joint Tokenization and Alignment. Several approaches
integrate alignment considerations into tokenization. Chung
& Gildea (2009) propose using word alignment between
parallel sentences for Chinese word segmentation. While
their approach shares similarities with our work through its
foundation in word alignment, key differences exist: (1) they
derive tokenization from alignment, whereas we compute
tokenization directly with alignment as a by-product, and
(2) they use an explicit hyperparameter to control tokenized
sequence compression, while in our method, compression
emerges naturally from the algorithm.

Deguchi et al. (2020) developed a machine translation-
specific tokenization method that selects subword segmen-
tations of parallel sentences to maximize unigram language
model probability while maintaining similar length. This
approach aims at better efficiency and reaches better text
compression without sacrificing tokenization quality, but
does not optimize for semantic overlap.

Word Alignment Methods. The word alignment field
includes statistical approaches such as the IBM models
(Brown et al., 1993) and Eflomal (Östling & Tiedemann,
2016), as well as neural network-based methods like Awe-
some Align (Dou & Neubig, 2021). These tools focus on the
alignment task rather than integrating it with tokenization.

3. Alignable Tokenization
For cross-lingually alignable tokenization, we assume a
fixed tokenizer for the source language and access to parallel
data between the source and target languages. The goal is
to derive a target-language tokenization such that subwords
in both languages are semantically aligned. Moreover, we
require that it is possible to reconstruct the original text by
simply concatenating the tokens (and removing some special
characters). We adopt a probabilistic formulation similar to
the Unigram tokenizer, but condition token probabilities on
the fixed source language tokenization:

L(T, S) = argmax
Tok

∑
t∈Tok(T )

− log p(t | S) (1)

where Tok is a function that splits the target-language se-
quence T into tokens, and S is a source-language sequence
encoded as tokens. T is the translation of S. The objective
is to find target-language character spans that align with
source-language tokens.

Estimating p(t | S) directly is intractable. We simplify
it by treating the source sentence as a bag of tokens and
computing the probability as:

p(t | S) = p(t, S)

p(S)
≈

∑
si∈S

c(t, si)∑
tj∈Vtgt

∑
sk∈S

c(tj , sk)
(2)

where c(t, s) counts the co-occurrences of tokens t and s
in sequence pairs in a corpus containing parallel sentences,
and Vtgt represents the target vocabulary.

Given p(t | S), we find a segmentation that maximizes
the overall probability using the Unigram model’s dynamic
programming algorithm. Initially, the vocabulary Vtgt con-
tains all character spans from the training data (up to a fixed
length), and c(t, s) is estimated based on all the possible
tokens in the target language and tokens in the source lan-
guage. At every iteration, we update it by computing the
expected number of co-occurrences and using only the tar-
get tokens currently in the vocabulary Vtgt. For a particular
training example T , this is proportional to the probability of
observing the prefix (T:i), the token itself (Ti:j), and the suf-
fix (Tj:). Then, the amount is distributed across the source
tokens, so that the contribution of a pair of tokens (Ti:j , s)
from the training example (T, S) is the following:

csample(Ti:j , s) =
p(Ti:j | S) p(T:i | S) p(Tj: | S)

length(S)
(3)

Then, these quantities are accumulated to obtain the updated
count table.

We experiment also with an alternative training method
similar to expectation maximization, where we iterate the
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following two steps: First, after initializing the table c(t, s),
we use it to tokenize the text; Second, we use the tokenized
text to update the table by increasing the count of the tokens
that appear in it. However, with this method, tokens that do
not appear during the first iteration are never counted and so
they are immediately removed from the vocabulary. For this
reason, in our experiments, we will compare both methods,
but focus mostly on the former one.

With either training method, we initialize the target vocabu-
lary with all character spans up to a fixed length. Similarly
to the unigram model, we reduce the vocabulary iteratively,
always after adjusting the unigram probabilities. We keep
the subwords with the highest mutual information with the
source tokens until the desired vocabulary size is reached.
In this way, we can penalize pairs of tokens where one of
them is rare while the other is frequent and that appear to-
gether by chance. Single characters are always kept in the
vocabulary.

I(t, Vsrc) =
∑
s∈Vsrc

p(t, s) log
p(t, s)

p(t)p(s)
(4)

To reduce the memory requirements and speed up the train-
ing, we pretokenize the input sentences and use Eflomal
(Östling & Tiedemann, 2016) to align the words. Then,
each pair of aligned words is used as a training example
instead of the full sentences. Although we do not experi-
ment with languages without white spaces, this step can be
skipped entirely or adapted to such languages by using a
different pre-tokenization method.

Token alignment probabilities between two tokens t and s
can be computed as:

p(t | s) = c(t, s)∑
ti∈Vtgt

c(ti, s)
(5)

For a given target sequence, we consider only tokens that
are substrings of the target sequence in the denominator
instead of the entire vocabulary Vtgt.

This formulation requires both source and target sequences
for target tokenization. Alternatively, only the target se-
quence can be used by estimating p(t) via marginalization:

p(t) =
∑
s∈Vsrc

p(t, s) =

∑
si∈Vsrc

c(t, si)∑
tj∈Vtgt

∑
sk∈Vsrc

c(tj , sk)
(6)

where Vsrc is the vocabulary of the fixed source tokenizer.
This resembles an unconditional Unigram tokenizer but
with tokens counted differently. Alternatively, following
Libovický & Helcl (2024), we can use the tokenized text to
distill a bigram model.

The simplified pseudo-code for training our tokenizer is
shown in Appendix E.

4. Experiments
First, we evaluate our model intrinsically and then on two
tasks: machine translation, since it requires parallel data,
and language modeling to investigate its performance with-
out parallel data.

We focus on the following language pairs:

French (fra) & Italian (ita). Both languages are high
resources (Tier 5 and 4 according to Joshi et al., 2020) from
the same family and use the same alphabet.

Czech (ces) & Ukrainian (ukr). Compared to the previ-
ous pair, this is a less-resourced language pair (Tier 4 and 3).
The languages are from the same family but use different
scripts.

Italian (ita) & Maltese (mlt). They differ in families
but share the same script. Maltese, a low-resource Semitic
language (Tier 2), has complex morphology with infixes but
shows Italian influence due to geographical proximity.

German (deu) & Upper Sorbian (hsb). Both languages
are spoken in Germany, but they come from different fam-
ilies. German is a high-resource language (Tier 5), while
Upper Sorbian is a low-resource Slavic language (Tier 1).

For French-Italian and Czech-Ukrainian, we train the tok-
enizers with 100k, 500k, and 1M examples. The data is
from NLLB (NLLB Team et al., 2022), which contains 47M
examples for French-Italian and 4M for Czech-Ukrainian.
For Italian-Maltese, we use 100k examples from Multi-
ParaCrawl (Bañón et al., 2020), which totals 483k examples.
For German-Upper Sorbian, we use 60k examples from
WMT2020 (Libovický & Fraser, 2021).

We use Flores (NLLB Team et al., 2022) for evaluating the
tokenizers, with the exception of German-Upper Sorbian,
which is evaluated on the WMT2020 test set.

4.1. Intrinsic Evaluation

We compare our tokenizers against Unigram models from
SentencePiece trained on identical data with matching vo-
cabulary sizes (8k, 16k, 32k). These baseline models
also serve as the source tokenizers for training our con-
ditional tokenizers. We use the following notation: SPsrc
and SPtgt refer to SentencePiece tokenizers for source and
target languages, respectively (e.g., for the pair Czech→
Ukrainian, SPsrc is trained on Czech, SPtgt on Ukrainian),
while PairedSP refers to Paired SentencePiece. We also
evaluate two variants: PairedSP trained with Expectation
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Table 1: Parity scores of the different tokenizers when
trained with the largest training set available for the lan-
guage pairs.

Parity (↓)

Size Model 8k 16k 32k 8k 16k 32k

fra → ita ita → fra

1m

PairedSP 1.24 1.11 1.04 1.22 1.16 1.13
PairedSPM 3.95 1.07 0.99 1.19 1.11 1.08
PairedSPEM 1.06 1.07 1.04 1.16 1.16 1.16
SPtgt 0.96 0.95 0.95 1.04 1.05 1.05

ces → ukr ukr → ces

1m

PairedSP 1.59 1.51 1.39 1.41 1.30 1.18
PairedSPM 1.58 1.49 1.36 1.39 1.26 1.13
PairedSPEM 1.11 1.15 1.16 1.05 1.07 1.05
SPtgt 1.02 1.03 1.05 0.98 0.97 0.95

ita → mlt mlt → ita

100k

PairedSP 1.43 1.28 1.20 1.21 1.09 1.00
PairedSPM 1.41 1.24 1.15 1.19 1.04 0.95
PairedSPEM 1.16 1.17 1.13 0.99 0.99 0.95
SPtgt 1.08 1.08 1.09 0.93 0.92 0.92

deu → hsb hsb → deu

60k

PairedSP 1.37 1.20 1.07 1.32 1.20 1.04
PairedSPM 1.35 1.18 1.05 1.32 1.18 1.08
PairedSPEM 1.03 1.01 0.95 1.05 1.05 1.01
SPtgt 1.00 0.99 0.98 1.00 1.01 1.02

Maximization (PairedSPEM), and a version that tokenizes
only target sequences without source context (PairedSPM).
Note that PairedSP and PairedSPM share identical parame-
ters (the co-occurrence table c(t, s)) but differ in their tok-
enization procedures.

We assess tokenization quality using the following metrics:

Parity (↓). This measures the ratio of tokens produced by
our tokenizer in the target language to those produced by
the reference tokenizer in the source language (Petrov et al.,
2023). Optimal tokenization should yield similar sequence
lengths across languages.

Fertility (↓). This measures the average number of tokens
per word (Rust et al., 2021). Lower fertility (minimum 1.0)
indicates that words remain coherent semantic units.

For alignment quality assessment, we first get the token
alignment on the test data using Eflomal and we compare
PairedSP and SPtgt using:

One-to-one (↑). Following Hämmerl et al. (2025), this
measures the proportion of source tokens that have exactly
one aligned target token which is also aligned to exactly one
token. We measure this on the source side due to its fixed
tokenization.

Table 2: Fertility scores of the different tokenisers when
trained with the largest training set available for the language
pairs.

Fertility (↓)

Size Model 8k 16k 32k 8k 16k 32k

fra → ita ita → fra

1m

PairedSP 1.76 1.43 1.26 1.52 1.30 1.19
PairedSPM 5.61 1.37 1.20 1.48 1.25 1.14
PairedSPEM 1.51 1.38 1.27 1.45 1.31 1.22
SPtgt 1.37 1.23 1.15 1.30 1.18 1.11

ces → ukr ukr → ces

1m

PairedSP 2.61 2.14 1.76 2.46 1.99 1.64
PairedSPM 2.59 2.12 1.72 2.42 1.93 1.56
PairedSPEM 1.82 1.63 1.46 1.83 1.64 1.45
SPtgt 1.67 1.47 1.33 1.71 1.48 1.32

ita → mlt mlt → ita

100k

PairedSP 1.82 1.48 1.32 1.87 1.55 1.36
PairedSPM 1.79 1.44 1.27 1.83 1.48 1.29
PairedSPEM 1.47 1.36 1.25 1.53 1.41 1.28
SPtgt 1.37 1.26 1.20 1.43 1.31 1.25

deu → hsb hsb → deu

60k

PairedSP 2.22 1.79 1.53 1.96 1.62 1.33
PairedSPM 2.20 1.76 1.50 1.95 1.60 1.38
PairedSPEM 1.67 1.51 1.35 1.55 1.41 1.28
SPtgt 1.63 1.48 1.40 1.48 1.36 1.30

Unaligned (↓). It is the portion of source tokens that are
not aligned to any target tokens. As for One-to-one, we
measure it on the source sequence.

We tokenize the dev tests with both SPtgt and PairedSP,
then mark the tokens to recognize which tokenizer produced
them. After joining the two sets, we train Eflomal to align
this set in the target language to the one in the source lan-
guage, tokenized by SPsrc. We prepare the test sets in the
same way, and we use them to compute the alignment met-
rics with the Eflomal priors computed on the dev tests. In
this way, Eflomal can align sentences tokenized by either
model, and we can compare the metrics computed for both
tokenizers.

4.2. Machine Translation

We evaluate our tokenizer on machine translation, hypoth-
esizing that improved token correspondence between lan-
guages should simplify MT model training by making the
task more similar to token-level translation rather than com-
plex sequence-to-sequence mapping.

We use the same language pairs and tokenizers as in intrinsic
evaluation, testing three vocabulary sizes with the largest
available training set for each language pair. Our experi-
mental setup uses SPsrc for input tokenization and PairedSP
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Figure 1: Fertility and parity scores of the tokenizers on the different language pairs, subdivided by vocabulary size (color)
and model (shape). There is an outlier (PairedSPM fra→ ita 8k vocabulary size) that is not shown for clarity: it has 5.61
fertility and 3.95 parity.

Table 3: One-to-one scores of the tokenizers trained on the
largest training set available for each language.

One-to-one (↑)

Size Model 8k 16k 32k 8k 16k 32k

fra → ita ita → fra

1m PairedSP 0.55 0.59 0.60 0.59 0.62 0.62
SPtgt 0.58 0.60 0.61 0.60 0.62 0.63

ces → ukr ukr → ces

1m PairedSP 0.49 0.58 0.60 0.52 0.58 0.61
SPtgt 0.59 0.62 0.63 0.58 0.60 0.61

ita → mlt mlt → ita

100k PairedSP 0.45 0.52 0.53 0.47 0.50 0.50
SPtgt 0.53 0.53 0.54 0.51 0.51 0.51

deu → hsb hsb → deu

60k PairedSP 0.64 0.66 0.67 0.66 0.68 0.69
SPtgt 0.67 0.68 0.70 0.67 0.70 0.72

for output tokenization, with SPtgt replacing PairedSP as the
baseline.

We train the models using Marian (Junczys-Dowmunt et al.,
2018) with the Transformer-base architecture (Vaswani
et al., 2017) (hyperparameter details in Appendix F). Each
model undergoes 1M training updates using data from
NLLB, MultiParaCrawl, or WMT2020, depending on the
language pair.

We evaluate models using chrF++ on Flores test sets (and

Table 4: Unaligned scores of the tokenizers trained on the
largest training set available for each language.

Unaligned (↓)

Size Model 8k 16k 32k 8k 16k 32k

fra → ita ita → fra

1m PairedSP 0.18 0.21 0.21 0.17 0.17 0.16
SPtgt 0.23 0.22 0.22 0.20 0.18 0.18

ces → ukr ukr → ces

1m PairedSP 0.13 0.17 0.19 0.17 0.21 0.22
SPtgt 0.23 0.22 0.20 0.25 0.24 0.24

ita → mlt mlt → ita

100k PairedSP 0.16 0.18 0.20 0.21 0.26 0.28
SPtgt 0.22 0.20 0.20 0.27 0.27 0.27

deu → hsb hsb → deu

60k PairedSP 0.21 0.24 0.26 0.20 0.22 0.23
SPtgt 0.23 0.22 0.22 0.23 0.21 0.20

WMT2020 test set for German-Upper Sorbian), and addi-
tionally report BLEU, TER from SacreBLEU (Post, 2018),
and COMET scores (Rei et al., 2020). Complete details are
provided in Appendices D and I.

4.3. Language Modeling

Finally, we evaluate our tokenizer in a setting without access
to parallel data during inference. We train small GPT-2-like
models (Radford et al., 2019) (91M to 110M parameters
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Figure 2: Alignment scores of the tokenizers on the different language pairs subdivided by vocabulary size.
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Figure 3: chrF++ (↑) scores on the different language pairs and vocabulary sizes. For most pairs, the baseline has higher
scores than PairedSP and lower variance.

depending on the vocabulary size) from scratch using the
HuggingFace implementation on the target language of each
language pair (hyperparameter details in Appendix G).

We compare two settings, monolingual and bilingual, and
each model is trained on a fixed number of examples (2M)
to ensure fair comparison. We compare PairedSPM against
SPtgt as the baseline. Importantly, while monolingual mod-
els observe only monolingual data during training, the
PairedSPM tokenizer was trained with cross-lingual sup-
port from SPsrc, allowing us to assess whether cross-lingual
tokenizer training benefits monolingual language model-
ing. Models are tested only on the target language, and we
use perplexity per byte to compare models with different
vocabularies.

5. Results & Discussion
5.1. Intrinsic Evaluation

Figure 1 presents the intrinsic tokenization metrics. The
baseline consistently outperforms PairedSP and its vari-
ants on both parity and fertility metrics, though this differ-
ence diminishes with larger vocabulary sizes. PairedSPM
shows comparable performance to PairedSP, indicating that
marginalization does not substantially impact performance
in most cases. However, there is one notable failure case:
with French-Italian using 1M training examples and 8k vo-
cabulary size, PairedSPM produces only single-character
tokens, resulting in fertility and parity scores of 5.61 and
3.95, respectively.

As expected, larger vocabulary sizes generally improve
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Figure 4: Perplexity per byte of bilingual language models trained on the different languages, subdivided by vocabulary
size. PairedSPM has generally better scores than the baseline, and the models have less variance than in the MT task. In
parentheses, there is the source language used to train PairedSP.

Table 5: Average chrF++ scores on the different language
pairs and vocabulary sizes.

chrF++ (↑)

Model 8k 16k 32k 8k 16k 32k

fra → ita ita → fra

SPsrc + PairedSP 52.0 51.7 50.5 55.2 54.9 53.9
SPsrc + SPtgt 52.5 52.3 50.6 55.8 55.5 53.7

ces → ukr ukr → ces

SPsrc + PairedSP 35.7 35.3 33.6 44.6 44.4 44.5
SPsrc + SPtgt 46.4 46.1 45.0 46.9 46.6 44.9

ita → mlt mlt → ita

SPsrc + PairedSP 17.9 42.7 42.2 37.2 46.1 45.4
SPsrc + SPtgt 43.0 42.8 42.0 46.8 46.5 45.1

deu → hsb hsb → deu

SPsrc + PairedSP 33.4 53.5 61.4 34.7 62.8 64.6
SPsrc + SPtgt 66.5 67.0 63.7 65.8 67.0 62.9

these metrics. Contrary to our expectations, PairedSPEM
performs better than PairedSP despite not updating counts
for rare tokens, though it still underperforms the baseline.
Additionally, as shown in Tables 1 and 2, PairedSPM outper-
forms PairedSP. We hypothesize that this occurs because
PairedSPM’s probability estimation more closely resembles
that of SPtgt.

We observe similar patterns in the one-to-one alignment
metric. PairedSP shows improvement over the baseline on
the unaligned metric, indicating that it leaves fewer source
tokens without target alignments. While larger vocabulary
sizes improve the one-to-one metric consistently, they im-
prove the unaligned metric only for the baseline, possibly
due to increased difficulty in estimating the c(t, s) table
that is quadratically bigger compared to the unconditional

Table 6: Average Perplexity per Byte (↓) scores on the
different language pairs and vocabulary size.

Perplexity per Byte (↓)

Model Setting 8k 16k 32k 8k 16k 32k

(fra →) ita (ita →) fra

PairedSPM Mono 1.006 1.021 1.024 1.016 1.019 1.020
PairedSPM Bi 1.006 1.022 1.025 1.017 1.020 1.021
SPtgt Mono 1.021 1.023 1.025 1.018 1.020 1.021
SPtgt Bi 1.022 1.025 1.026 1.019 1.021 1.022

(ces →) ukr (ukr →) ces

PairedSPM Mono 1.009 1.011 1.014 1.017 1.022 1.027
PairedSPM Bi 1.010 1.012 1.014 1.018 1.023 1.028
SPtgt Mono 1.014 1.016 1.018 1.025 1.028 1.031
SPtgt Bi 1.015 1.017 1.019 1.026 1.030 1.033

(ita →) mlt (mlt →) ita

PairedSPM Mono 1.018 1.023 1.026 1.020 1.025 1.029
PairedSPM Bi 1.017 1.022 1.024 1.019 1.024 1.028
SPtgt Mono 1.024 1.026 1.027 1.026 1.028 1.030
SPtgt Bi 1.023 1.025 1.026 1.025 1.027 1.028

(deu →) hsb (hsb →) deu

PairedSPM Mono 1.063 1.074 1.085 1.059 1.069 1.078
PairedSPM Bi 1.056 1.068 1.080 1.053 1.064 1.074
SPtgt Mono 1.077 1.081 1.085 1.073 1.078 1.080
SPtgt Bi 1.070 1.076 1.081 1.066 1.072 1.076

probability p(t) in the Unigram model.

5.2. Machine Translation

Figure 3 shows chrF++ scores for machine translation mod-
els across language pairs and vocabulary sizes. The baseline
consistently outperforms our model. For some language
pairs like French-Italian, the difference is minimal (0.33
chrF++ on average), while for others like Czech-Ukrainian,
it is more substantial (6.31 chrF++ on average). Vocabulary

7
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size appears to have minimal effect on results, with a slight
decrease in scores for larger vocabularies given the same
number of training steps.

Table 5 shows that PairedSP outperforms the baseline in
only four cases on average. Notably, Czech-Ukrainian
shows the largest performance decrease when using
PairedSP, though this pattern does not hold in the reverse
direction.

Furthermore, scores with our tokenizer exhibit much higher
variance than the baseline (except for French-Italian), sug-
gesting that this tokenization approach may be less reliable
than standard SentencePiece.

5.3. Language Modeling

Figure 4 demonstrates that PairedSPM achieves improved
perplexity per byte across all language pairs and vocab-
ulary sizes compared to the baseline. Interestingly, this
improvement does not correlate with tokenization scores:
the PairedSPM model with the worst intrinsic evaluation
scores achieves the lowest perplexity in language modeling.
Table 6 shows that bilingual training with both the source
and target language improves the perplexity per byte on the
target language in low-resource languages.

6. Conclusions
We presented a novel tokenization method that leverages
parallel data to improve cross-lingual token alignment. Our
approach extends the unigram tokenization framework by
conditioning target token probabilities on source language
tokens, with the goal of achieving better semantic alignment
between languages.

Our experimental evaluation reveals mixed results across
different tasks and metrics. While our method does not con-
sistently improve intrinsic tokenization metrics or machine
translation quality compared to standard unigram tokeniz-
ers, we observe consistent perplexity reductions in language
modeling tasks.

We hypothesize that the performance gap between our ap-
proach and standard unigram tokenization stems from the
increased memory complexity of the underlying estimation
problem: while a table storing p(t) scales linearly with vo-
cabulary size, p(t | S) scales quadratically, yet the available
training data remains the same. This scaling issue may par-
ticularly impact low-resource languages, contrary to our
initial motivation.

Based on our observations, we estimate that approximately
28M examples would be required to match unigram fertil-
ity and 4M examples for comparable one-to-one alignment
performance. These requirements may limit the practical ap-
plicability of our approach, especially for the low-resource

scenarios where improved tokenization is most needed.

Future work should explore more data-efficient methods for
learning cross-lingually aligned tokenizations. Potential di-
rections include investigating alternative parameterizations
that scale more favorably with vocabulary size, exploring
pre-training strategies that leverage multilingual represen-
tations, or developing hybrid approaches that combine the
benefits of both conditional and unconditional tokenization
methods.
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A. Examples
The Tables 7 8 and 9 show respectively tokenization, machine translation, and language modelling examples.

Table 7: Tokenization examples from the different models on two specific settings. Tokens are separated by a white space.
"_" denotes a white space in the original sentence, which can be reconstructed by concatenating the tokens.

Fra→ Ita 8k, vocabulary, 1M training set
SPsrc (ref.) _« _Nous _avons _à _présent _des _souri s _de _4 _mois [...]
SPtgt _" _Abbiam o _top i _di _quattro _mesi [...]
PairedSP _" _Abbiamo _to p i _di _quattro _mesi [...]
PairedSPEM _" _Abbiamo _ to pi _di _quattro _mesi [...]
PairedSPM _ " _ A b b i a m o _ t o p i _ d i _ q u a t t r o _ m e s I [...]

Ces→ Ukr, 32k vocabulary, 500k training set
SPsrc (ref.) _"_Зараз _у _нас _є _4 _- _мiсячнi _мишi
SPtgt _„ _Nyn í _má me _čtyř měsíční _myši
PairedSP _„ _Nyní _máme _čtyř mě s í č ní _myši
PairedSPEM _„ _Nyní _máme _čtyř měsíční _myš i
PairedSPM _„ _Nyní _máme _čtyř mě s í č ní _myši

"We (now) have four-month-old mice [...]

Table 8: Machine translation examples from two specific settings. The output of the model is shown tokenized.

Czech→ Ukrainian, 8k vocabulary
Source „Nyní máme čtyřměsíční myši bez cukrovky, které ji dříve měly,“ dodal.
Target "Зараз у нас є 4-мiсячнi мишi, в яких немає дiабету i якi мали дiабет ранiше,"—

додав вiн.
SPsrc +SPtgt _"_Зараз _у _нас _чотири мiсячн а _ми ша _без _дiабет у _, _яка _ранiше

_була _у _неї _"_, _- _додав _вiн _.
SPsrc +PairedSP _"_Зараз _у _нас _є _чотири м i с я ч н i _ми ш i _без _д i а б е т у _, _якi

_ранiше _мали _"_, _- _додав _вiн _.

"We now have 4-month-old mice that are non-diabetic that used to be diabetic," he added.

Upper Sorbian→ German, 32k vocabulary
Source To njepłaći jenož za naše měšćanske zarjadnišća.
Target Das gilt nicht nur für unsere städtischen Verwaltungen.
SPsrc +SPtgt _Dies _g ilt _nicht _ nur _für _unsere _unsere _städtische n _Einrichtung en _.
SPsrc +PairedSP _Das _gilt _nicht _nur _für _unsere _Stadtverwaltung _.

This does not only apply to our municipal administrations.

B. Tokenizer preprocessing
We use a character coverage of 1.0 and normalize the text with NFKC to reduce differences with the SentencePiece
implementation. Moreover, we prepend whitespace to punctuation characters and to the beginning of the sentence. Then,
whitespaces are replaced with U+2581.

The relevant SentencePiece settings are the following:

• character coverage: 1.0
• shrinking_factor: 0.75
• num_sub_iterations: 2
• allow_whitespace_only_pieces: true

12
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Table 9: Language modelling examples from two specific settings. The output of the model is shown tokenized. The
prediction of model, computed in an autoregressive way, is shown in bold.

(Italian→ )French, 16k vocabulary
SPtgt _« _Nous _avons _à _présent _des _souris _de _4 _mois _qui _ont _été _infecté es _par _le _virus

_de _la
PairedSP _« _Nous _avons _à _présent _des _souris _de _4 _mois _et _des _souris _de _plus _de _6 _mois _,

_mais

(German→ )Upper Sorbian, 32k vocabulary
SPtgt _To _njepłaći _je nož _za _naše _měšćanske _zarjadnišća _. </s> e _, _ kotrež _ma my _tu _ja ra

_dołh
PairedSP _To _njepłaći _jenož _za _naše _měšćanske _zarjadnišća _. </s> </s> _, _kotrež _wustawki

_Domowiny _, _kotryž _je _za ł o

• byte_fallback: true

We use equivalent settings for PairedSP.

C. Metrics for the Intrinsic Evaluation
This is a list of additional metrics we considered for the intrinsic evaluation for the tokenization task:

Single Character tokens. We count the proportion of tokens in a sequence that are just a single character.

Vocabulary usage. We compute the proportion of tokens in the vocabulary that is actually used on the test set.

Vocabulary overlap. This is the portion of vocabulary that overlaps between our tokenizer and the reference one. Both
tokenizers are trained on the same languages.

Length ratio with respect to SPtgt on target text. Given parallel sequences, we take the ratio between the length in tokens
of the target text with our tokenizer and the reference length.

Rényi efficiency ratio with respect to SPtgt. This is analogous to the length ratio but for the Rényi efficiency, which is an
entropy-based measure that quantifies deviation from a uniform distribution. Zouhar et al. (2023) show that this metric
correlates well with BLEU scores (Papineni et al., 2002) in machine translation.

Begin of word. We count the proportion of tokens in the vocabulary that represent the beginning of a word.

For the alignment task, we compute the additional metrics:

Eflomal score. Hämmerl et al. (2025) show that this correlates with cross-lingual transfer. It measures the "maximum
unnormalized log-probability of links in the last sampling iteration" (Vázquez et al., 2019).

D. SacreBleu and COMET
We use the following settings for SacreBleu:
BLEU|nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.4.2
chrF2++|nrefs:1|case:mixed|eff:yes|nc:6|nw:2|space:no|version:2.4.2
TER|nrefs:1|case:lc|tok:tercom|norm:no|punct:yes|asian:no|version:2.4.2

And Unbabel/wmt22-comet-da for computing COMET. Note that this model is not trained for Maltese or Upper Sorbian.

13



Conditional Unigram Tokenization with Parallel Data

E. Tokenizer Pseudo-code
Algorithm 1 summarizes the training loop. Many details regarding the settings of the tokenizer (e.g., number of iterations,
character coverage, ...) are left out for simplicity.

Algorithm 1 Training algorithm.

function TRAIN(src, trg)
input src: list of tokenized source sentences, trg: list of target sentences
output c: co-occurence table, V: vocabulary

c← 0
V ← {}
{Initialize the co-occurrence table}
for all (S, T ) ∈ (src, trg) do

for all (t, s) ∈ SPANS(T )× S do
c(t, s)← c(t, s) + 1
V ← V ∪ {t}

end for
end for
{Training iterations}
for i← 1 to niterations do
c← COUNT(c,V, src, trg)
if i mod nsubiterations == 0 then

{Remove the target tokens with the lowest I(t, Vsrc)}
V ← PRUNE(V )

end if
end for
{Update the table with the final vocabulary.}
c← COUNT(c,V, src, trg)
return c, V

end function

function COUNT(c,V, src, trg)
cnew ← 0
for all (T ) ∈ (src, trg) do

for all (t, s) ∈ SPANS(T )× T do
if t ∈ V then
pref ← PREFIX(T, t)
suff ← SUFFIX(T, t)
{SCORE(. . . ) computes the conditional probability of a token given a sentence and the co-occurrence table.}
{SCOREtok(. . . ) is similar, marginalize over the possible tokenizations of the prefix or suffix.}

cnew(t, s)← cnew(t, s) +
SCORE(c, t, S)SCOREtok(c, pref, S)SCOREtok(c, suff, S)

length(src)
end if

end for
end for
return cnew

end function

14
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Algorithm 2 Tokenization algorithm, adapted from Unigram.

function TOKENIZE(c, src, trg)
{∼ Forward pass from Unigram}
for all (S, T ) ∈ (src, trg) do
best← [0,−∞, ...]
sizes← [0, 0, ...]
{Iterate over the spans starting from i}
for i← 1, length(T ) + 1 do

for j ← i− 1,−1 do
t← T [j : i]
{t is in the vocabulary}
if c(t, :) ̸= 0 then
score← p(t | S)
{Store the loss and size of the token}
if (best[j] + score) > best[i] then

best[i]← best[j] + score
sizes[i]← i− j

end if
end if

end for
end for
{∼ Backward pass from Unigram}
L ← best[−1]
i← ℓ(sizes)
tok ← []
{Add tokens with size from sizes}
while i > 1 do
next← i− sizes[i− 1]
APPEND(tok, T [next− 1 : i− 1])
i← next

end while
yield REVERSE(tok)

end for
end function
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F. Machine Translation Hyperparameters

Model options Validation options
type transformer beam-size 8
dim-emb 512 normalize 0.6
enc-depth 6 valid-freq 100ku
dec-depth 6

valid-metrics

ce-mean-words
tied-embeddings true bleu
transformer-heads 8 perplexity
transformer-dim-ffn 2048 translation
transformer-ffn-activation relu chrf
transformer-preprocess "" valid-mini-batch 16
transformer-postprocess dan
transformer-dropout 0.1

Training options
cost-type ce-mean-words lr-warmup 16000
max-length 512 lr-report true
mini-batch 1000 label-smoothing 0.1
mini-batch-fit true clip-norm 1
maxi-batch 1000 exponential-smoothing 0.0001
optimizer-params [0.9, 0.98, 1e-09] disp-freq 10ku
sync-sgd true early-stopping 10
learn-rate 0.0003 after 1Mu
lr-decay-inv-sqrt 16000 shuffle-in-ram true

G. Language Modelling Hyperparameters

Model options Training options
activation_function gelu_new per_device_train_batch_size 64
attn_pdrop 0.1 per_device_eval_batch_size 64
embd_pdrop 0.1 gradient_accumulation_steps 8
initializer_range 0.02 max_steps 2_000_000 / 64
layer_norm_epsilon 1e-05 weight_decay 0.1
model_type gpt2 warmup_steps 1_000
n_embd 768 lr_scheduler_type cosine
n_head 12 learning_rate 5e-5
n_inner null fp16 True
n_layer 12
n_positions 512
reorder_and_upcast_attn false
resid_pdrop 0.1
scale_attn_by_inverse_layer_idx false
scale_attn_weights true
transformers_version 4.51.2
use_cache true
vocab_size 8000/16000/32000
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H. Intrinsic Evaluation
Table 10: Additional parity scores from the models trained
on the smaller training sets.

Parity (↓)

Size Model 8k 16k 32k 8k 16k 32k

Fra → Ita Ita → Fra

100k

PairedSP 1.26 1.15 1.03 1.19 1.15 1.10
PairedSPM 1.21 1.09 1.00 1.15 1.11 1.11
PairedSPEM 1.04 1.02 0.98 1.10 1.08 1.06
SPtgt 0.99 0.98 0.98 1.01 1.02 1.02

500k

PairedSP 1.24 1.11 1.05 1.21 1.15 1.12
PairedSPM 1.21 1.07 0.99 1.17 1.11 1.07
PairedSPEM 1.07 1.05 1.03 1.14 1.14 1.13
SPtgt 0.97 0.96 0.96 1.03 1.04 1.04

Ces → Ukr Ukr → Ces

100k

PairedSP 1.57 1.48 1.37 1.32 1.24 1.13
PairedSPM 1.56 1.45 1.33 1.28 1.20 1.10
PairedSPEM 1.09 1.10 1.08 0.98 1.00 0.97
SPtgt 1.07 1.06 1.06 0.93 0.95 0.94

500k

PairedSP 1.57 1.48 1.38 1.39 1.28 1.17
PairedSPM 1.56 1.46 1.34 1.37 1.24 1.11
PairedSPEM 1.09 1.13 1.13 1.04 1.05 1.03
SPtgt 1.02 1.03 1.05 0.98 0.97 0.95

Table 11: Additional fertility scores from the models trained
on the smaller training sets.

Fertiliy (↓)

Size Model 8k 16k 32k 8k 16k 32k

Fra → Ita Ita → Fra

100k

PairedSP 1.84 1.56 1.34 1.57 1.40 1.29
PairedSPM 1.78 1.48 1.31 1.52 1.36 1.30
PairedSPEM 1.52 1.39 1.28 1.45 1.32 1.24
SPtgt 1.45 1.34 1.28 1.34 1.24 1.19

500k

PairedSP 1.77 1.45 1.30 1.52 1.32 1.21
PairedSPM 1.72 1.39 1.23 1.47 1.27 1.16
PairedSPEM 1.52 1.37 1.27 1.44 1.30 1.22
SPtgt 1.38 1.25 1.19 1.30 1.19 1.13

Ces → Ukr Ukr → Ces

100k

PairedSP 2.66 2.24 1.90 2.49 2.06 1.74
PairedSPM 2.64 2.19 1.84 2.42 2.00 1.69
PairedSPEM 1.84 1.66 1.49 1.85 1.67 1.49
SPtgt 1.81 1.60 1.47 1.76 1.58 1.45

500k

PairedSP 2.60 2.14 1.78 2.45 1.99 1.65
PairedSPM 2.58 2.11 1.73 2.40 1.93 1.57
PairedSPEM 1.81 1.63 1.46 1.83 1.64 1.46
SPtgt 1.69 1.49 1.36 1.72 1.51 1.35

Table 12: Single Character tokens in the tokenized text.

Single Character (↓)

Size Model 8k 16k 32k 8k 16k 32k

Fra → Ita Ita → Fra

100k

PairedSP 0.34 0.23 0.13 0.23 0.17 0.13
PairedSPM 0.31 0.18 0.10 0.21 0.14 0.13
PairedSPEM 0.09 0.07 0.06 0.09 0.07 0.06
SPtgt 0.14 0.13 0.12 0.11 0.09 0.07

500k

PairedSP 0.32 0.17 0.12 0.24 0.14 0.10
PairedSPM 0.30 0.14 0.07 0.21 0.11 0.06
PairedSPEM 0.09 0.07 0.06 0.10 0.07 0.06
SPtgt 0.09 0.08 0.07 0.09 0.06 0.05

1M

PairedSP 0.32 0.17 0.11 0.25 0.14 0.09
PairedSPM 1.00 0.13 0.07 0.23 0.10 0.05
PairedSPEM 0.09 0.07 0.06 0.10 0.08 0.06
SPtgt 0.07 0.06 0.05 0.09 0.06 0.04

Ces → Ukr Ukr → Ces

100k

PairedSP 0.59 0.49 0.39 0.52 0.39 0.30
PairedSPM 0.59 0.48 0.37 0.50 0.36 0.28
PairedSPEM 0.12 0.10 0.09 0.13 0.11 0.09
SPtgt 0.24 0.19 0.16 0.22 0.19 0.16

500k

PairedSP 0.59 0.48 0.36 0.53 0.39 0.28
PairedSPM 0.58 0.47 0.34 0.51 0.36 0.23
PairedSPEM 0.11 0.10 0.08 0.12 0.10 0.08
SPtgt 0.16 0.12 0.10 0.19 0.15 0.12

1M

PairedSP 0.59 0.48 0.36 0.53 0.40 0.27
PairedSPM 0.59 0.47 0.34 0.52 0.37 0.23
PairedSPEM 0.11 0.10 0.08 0.13 0.10 0.08
SPtgt 0.15 0.11 0.09 0.18 0.14 0.11

Ita → Mlt Mlt → Ita

100k

PairedSP 0.41 0.24 0.16 0.38 0.24 0.16
PairedSPM 0.41 0.22 0.13 0.36 0.21 0.12
PairedSPEM 0.09 0.08 0.06 0.09 0.08 0.06
SPtgt 0.10 0.08 0.07 0.12 0.12 0.11

Deu → Hsb Hsb → Deu

60k

PairedSP 0.52 0.37 0.27 0.42 0.30 0.14
PairedSPM 0.51 0.35 0.25 0.42 0.30 0.19
PairedSPEM 0.10 0.08 0.07 0.09 0.08 0.05
SPtgt 0.20 0.18 0.15 0.19 0.16 0.12
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Table 13: Vocabulary usage of the different tokenizers.

Vocabulary Usage (↑)

Size Model 8k 16k 32k 8k 16k 32k

Fra → Ita Ita → Fra

100k

PairedSP 0.43 0.28 0.18 0.43 0.28 0.17
PairedSPM 0.43 0.29 0.17 0.43 0.28 0.16
PairedSPEM 0.52 0.35 0.22 0.48 0.33 0.20
SPtgt 0.57 0.36 0.21 0.55 0.34 0.19

500k

PairedSP 0.44 0.30 0.18 0.46 0.30 0.18
PairedSPM 0.45 0.31 0.19 0.47 0.31 0.19
PairedSPEM 0.52 0.36 0.21 0.50 0.34 0.20
SPtgt 0.57 0.38 0.21 0.56 0.36 0.20

1M

PairedSP 0.45 0.31 0.19 0.46 0.31 0.19
PairedSPM 0.01 0.31 0.19 0.47 0.32 0.19
PairedSPEM 0.52 0.36 0.21 0.49 0.34 0.20
SPtgt 0.56 0.38 0.22 0.56 0.37 0.20

Ces → Ukr Ukr → Ces

100k

PairedSP 0.40 0.28 0.18 0.41 0.28 0.18
PairedSPM 0.41 0.28 0.18 0.42 0.29 0.19
PairedSPEM 0.54 0.38 0.24 0.54 0.38 0.24
SPtgt 0.56 0.38 0.23 0.58 0.39 0.23

500k

PairedSP 0.42 0.30 0.19 0.42 0.30 0.20
PairedSPM 0.43 0.30 0.19 0.43 0.31 0.20
PairedSPEM 0.55 0.39 0.25 0.55 0.39 0.25
SPtgt 0.58 0.41 0.24 0.58 0.41 0.25

1M

PairedSP 0.42 0.30 0.19 0.42 0.30 0.20
PairedSPM 0.43 0.30 0.20 0.42 0.31 0.20
PairedSPEM 0.53 0.39 0.25 0.54 0.39 0.25
SPtgt 0.58 0.42 0.25 0.58 0.41 0.25

Ita → Mlt Mlt → Ita

100k

PairedSP 0.39 0.27 0.16 0.42 0.28 0.18
PairedSPM 0.39 0.27 0.17 0.42 0.29 0.18
PairedSPEM 0.50 0.34 0.21 0.51 0.34 0.21
SPtgt 0.54 0.35 0.20 0.55 0.37 0.21

Deu → Hsb Hsb → Deu

60k

PairedSP 0.47 0.32 0.20 0.42 0.29 0.18
PairedSPM 0.47 0.32 0.20 0.42 0.29 0.17
PairedSPEM 0.55 0.38 0.24 0.50 0.33 0.21
SPtgt 0.60 0.39 0.23 0.58 0.37 0.21

Table 14: Vocabulary overlap with SPtgt.

Vocabulary Overlap

Size Model 8k 16k 32k 8k 16k 32k

Fra → Ita Ita → Fra

100k

PairedSP 0.42 0.39 0.40 0.52 0.49 0.47
PairedSPM 0.42 0.39 0.40 0.52 0.49 0.47
PairedSPEM 0.34 0.29 0.31 0.34 0.30 0.32

500k

PairedSP 0.58 0.56 0.50 0.64 0.62 0.57
PairedSPM 0.58 0.56 0.50 0.64 0.62 0.57
PairedSPEM 0.39 0.34 0.29 0.40 0.35 0.29

1M

PairedSP 0.63 0.62 0.57 0.67 0.67 0.63
PairedSPM 0.63 0.62 0.57 0.67 0.67 0.63
PairedSPEM 0.42 0.35 0.30 0.42 0.36 0.30

Ces → Ukr Ukr → Ces

100k

PairedSP 0.39 0.38 0.34 0.46 0.43 0.39
PairedSPM 0.39 0.38 0.34 0.46 0.43 0.39
PairedSPEM 0.32 0.26 0.25 0.34 0.27 0.26

500k

PairedSP 0.47 0.47 0.46 0.54 0.54 0.52
PairedSPM 0.47 0.47 0.46 0.54 0.54 0.52
PairedSPEM 0.41 0.33 0.29 0.43 0.34 0.31

1M

PairedSP 0.51 0.51 0.51 0.56 0.57 0.57
PairedSPM 0.51 0.51 0.51 0.56 0.57 0.57
PairedSPEM 0.43 0.34 0.31 0.46 0.36 0.32

Ita → Mlt Mlt → Ita

100k

PairedSP 0.50 0.47 0.40 0.47 0.43 0.37
PairedSPM 0.50 0.47 0.40 0.47 0.43 0.37
PairedSPEM 0.38 0.30 0.29 0.35 0.28 0.29

Deu → Hsb Hsb → Deu

60k

PairedSP 0.33 0.33 0.31 0.42 0.39 0.35
PairedSPM 0.33 0.33 0.31 0.42 0.39 0.35
PairedSPEM 0.26 0.21 0.24 0.28 0.23 0.30
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Table 15: Lnegth ratio between PairedSP (and derived mod-
els) and SPtgt.

Length Ratio (↓)

Size Model 8k 16k 32k 8k 16k 32k

Fra → Ita Ita → Fra

100k

PairedSP 1.27 1.17 1.05 1.17 1.13 1.08
PairedSPM 1.23 1.11 1.02 1.14 1.09 1.09
PairedSPEM 1.05 1.04 1.00 1.08 1.06 1.04

500k

PairedSP 1.28 1.15 1.09 1.17 1.11 1.07
PairedSPM 1.25 1.11 1.04 1.13 1.07 1.03
PairedSPEM 1.10 1.09 1.07 1.11 1.09 1.08

1M

PairedSP 1.29 1.16 1.09 1.17 1.10 1.07
PairedSPM 4.11 1.12 1.04 1.14 1.06 1.03
PairedSPEM 1.10 1.12 1.10 1.11 1.11 1.10

Ces → Ukr Ukr → Ces

100k

PairedSP 1.47 1.40 1.29 1.41 1.31 1.20
PairedSPM 1.46 1.37 1.25 1.37 1.27 1.16
PairedSPEM 1.02 1.04 1.01 1.05 1.06 1.03

500k

PairedSP 1.54 1.44 1.31 1.42 1.32 1.22
PairedSPM 1.53 1.42 1.28 1.39 1.28 1.16
PairedSPEM 1.07 1.10 1.08 1.06 1.09 1.08

1M

PairedSP 1.56 1.46 1.33 1.44 1.34 1.24
PairedSPM 1.55 1.44 1.30 1.42 1.30 1.18
PairedSPEM 1.09 1.11 1.10 1.07 1.10 1.10

Ita → Mlt Mlt → Ita

100k

PairedSP 1.33 1.18 1.10 1.31 1.18 1.09
PairedSPM 1.31 1.15 1.06 1.28 1.13 1.03
PairedSPEM 1.08 1.08 1.04 1.07 1.07 1.03

Deu → Hsb Hsb → Deu

60k

PairedSP 1.37 1.21 1.10 1.32 1.19 1.02
PairedSPM 1.35 1.19 1.07 1.32 1.17 1.06
PairedSPEM 1.03 1.02 0.97 1.05 1.04 0.99

Table 16: Ratio between the Rényi efficiency of PairedSP
(and derived models) and SPtgt

Rényi Ratio (↑)

Size Model 8k 16k 32k 8k 16k 32k

Fra → Ita Ita → Fra

100k

PairedSP 0.92 0.95 0.99 0.95 0.97 0.98
PairedSPM 0.93 0.97 1.00 0.96 0.98 0.98
PairedSPEM 0.98 0.99 1.00 0.98 0.98 0.99

500k

PairedSP 0.92 0.96 0.98 0.95 0.97 0.98
PairedSPM 0.93 0.97 0.99 0.96 0.98 0.99
PairedSPEM 0.97 0.98 0.98 0.97 0.98 0.98

1M

PairedSP 0.92 0.96 0.98 0.95 0.98 0.99
PairedSPM 0.47 0.97 0.99 0.96 0.99 0.99
PairedSPEM 0.97 0.97 0.98 0.97 0.97 0.98

Ces → Ukr Ukr → Ces

100k

PairedSP 0.83 0.86 0.91 0.85 0.89 0.93
PairedSPM 0.83 0.87 0.92 0.86 0.91 0.95
PairedSPEM 0.99 0.99 1.00 0.98 0.98 0.99

500k

PairedSP 0.82 0.86 0.91 0.85 0.89 0.93
PairedSPM 0.82 0.87 0.92 0.86 0.90 0.95
PairedSPEM 0.97 0.97 0.98 0.98 0.97 0.98

1M

PairedSP 0.81 0.86 0.91 0.84 0.89 0.93
PairedSPM 0.81 0.86 0.91 0.85 0.90 0.95
PairedSPEM 0.97 0.96 0.97 0.97 0.96 0.97

Ita → Mlt Mlt → Ita

100k

PairedSP 0.90 0.95 0.97 0.91 0.95 0.98
PairedSPM 0.90 0.96 0.98 0.92 0.97 0.99
PairedSPEM 0.98 0.98 0.99 0.98 0.98 0.99

Deu → Hsb Hsb → Deu

60k

PairedSP 0.87 0.93 0.97 0.91 0.95 1.00
PairedSPM 0.88 0.94 0.98 0.91 0.96 0.99
PairedSPEM 0.99 0.99 1.01 0.99 0.99 1.00
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Table 17: Begin-of-word tokens in the vocabulary.

Start Word

Size Model 8k 16k 32k 8k 16k 32k

Fra → Ita Ita → Fra

100k

PairedSP 0.95 0.97 0.90 0.91 0.90 0.80
PairedSPM 0.95 0.97 0.90 0.91 0.90 0.80
PairedSPEM 0.40 0.37 0.35 0.38 0.36 0.33
SPtgt 0.80 0.81 0.75 0.79 0.80 0.72

500k

PairedSP 0.93 0.96 0.96 0.92 0.94 0.92
PairedSPM 0.93 0.96 0.96 0.92 0.94 0.92
PairedSPEM 0.39 0.38 0.35 0.39 0.38 0.35
SPtgt 0.79 0.84 0.84 0.79 0.83 0.82

1M

PairedSP 0.91 0.95 0.96 0.90 0.93 0.92
PairedSPM 0.91 0.95 0.96 0.90 0.93 0.92
PairedSPEM 0.39 0.37 0.36 0.38 0.37 0.34
SPtgt 0.78 0.84 0.85 0.76 0.82 0.84

Ces → Ukr Ukr → Ces

100k

PairedSP 0.95 0.97 0.98 0.94 0.94 0.95
PairedSPM 0.95 0.97 0.98 0.94 0.94 0.95
PairedSPEM 0.39 0.35 0.34 0.41 0.37 0.36
SPtgt 0.76 0.81 0.80 0.79 0.84 0.82

500k

PairedSP 0.93 0.96 0.98 0.93 0.94 0.96
PairedSPM 0.93 0.96 0.98 0.93 0.94 0.96
PairedSPEM 0.40 0.37 0.36 0.42 0.38 0.38
SPtgt 0.73 0.80 0.84 0.76 0.83 0.87

1M

PairedSP 0.91 0.95 0.97 0.91 0.94 0.95
PairedSPM 0.91 0.95 0.97 0.91 0.94 0.95
PairedSPEM 0.39 0.36 0.36 0.42 0.38 0.38
SPtgt 0.71 0.79 0.84 0.73 0.81 0.86

Ita → Mlt Mlt → Ita

100k

PairedSP 0.95 0.94 0.92 0.95 0.96 0.96
PairedSPM 0.95 0.94 0.92 0.95 0.96 0.96
PairedSPEM 0.39 0.35 0.35 0.40 0.36 0.36
SPtgt 0.73 0.75 0.73 0.81 0.83 0.80

Deu → Hsb Hsb → Deu

60k

PairedSP 0.98 0.98 0.99 0.96 0.95 0.84
PairedSPM 0.98 0.98 0.99 0.96 0.95 0.84
PairedSPEM 0.38 0.34 0.34 0.37 0.31 0.31
SPtgt 0.85 0.88 0.84 0.71 0.73 0.66

Table 18: Eflomal scores of the aligned text.

Eflomal scores (↓)

Size Model 8k 16k 32k 8k 16k 32k

Fra → Ita Ita → Fra

1M PairedSP 5.61 5.54 5.36 5.36 5.25 5.08
SPtgt 5.07 4.99 4.89 4.93 4.82 4.75

Ces → Ukr Ukr → Ces

1M PairedSP 6.54 6.96 6.98 6.43 6.70 6.64
SPtgt 6.02 6.08 6.03 5.90 5.98 5.89

Ita → Mlt Mlt → Ita

100k PairedSP 6.10 5.97 5.89 6.11 6.31 6.12
SPtgt 5.46 5.39 5.36 5.51 5.55 5.43

Deu → Hsb Hsb → Deu

60k PairedSP 4.61 4.52 4.14 4.70 4.29 3.84
SPtgt 3.47 3.34 3.16 3.53 3.58 3.35
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I. Machine Translation Evaluation
Table 19: Average BLEU scores on the different language
pairs and vocabulary sizes.

BLEU (↑)

Model 8k 16k 32k 8k 16k 32k

Fra → Ita Ita → Fra

SPsrc + PairedSP 24.5 24.2 22.9 25.1 24.7 23.8
SPsrc + SPtgt 25.1 24.8 23.1 25.8 25.3 23.5

Ces → Ukr Ukr → Ces

SPsrc + PairedSP 12.5 12.4 10.6 18.9 19.1 19.2
SPsrc + SPtgt 20.0 19.8 18.8 21.6 21.2 19.6

Ita → Mlt Mlt → Ita

SPsrc + PairedSP 0.3 5.9 5.6 12.5 18.0 17.3
SPsrc + SPtgt 6.0 5.9 5.4 18.7 18.3 17.0

Deu → Hsb Hsb → Deu

SPsrc + PairedSP 13.8 31.0 33.4 12.1 37.2 37.4
SPsrc + SPtgt 43.3 43.5 35.2 41.4 41.9 29.4

Table 20: Average TER scores on the different language
pairs and vocabulary sizes.

TER (↓)

Model 8k 16k 32k 8k 16k 32k

Fra → Ita Ita → Fra

SPsrc + PairedSP 78.9 79.4 80.3 82.5 83.2 84.4
SPsrc + SPtgt 78.6 78.9 81.0 82.2 82.6 85.4

Ces → Ukr Ukr → Ces

SPsrc + PairedSP 105.4 115.6 119.6 86.5 86.7 86.2
SPsrc + SPtgt 89.7 90.2 92.4 84.4 84.8 87.0

Ita → Mlt Mlt → Ita

SPsrc + PairedSP 317.3 138.7 140.9 137.8 84.9 86.1
SPsrc + SPtgt 138.6 139.6 143.1 84.4 84.9 86.9

Deu → Hsb Hsb → Deu

SPsrc + PairedSP 85.0 71.6 71.8 94.8 65.3 67.6
SPsrc + SPtgt 59.7 60.0 71.6 61.7 61.6 78.9

Table 21: Average Comet scores on the different language
pairs and vocabulary sizes. *: Maltese and Upper Sorbian
are not included in the Comet training.

COMET (↑)

Model 8k 16k 32k 8k 16k 32k

Fra → Ita Ita → Fra

SPsrc + PairedSP 0.797 0.799 0.786 0.750 0.753 0.741
SPsrc + SPtgt 0.801 0.805 0.780 0.755 0.760 0.737

Ces → Ukr Ukr → Ces

SPsrc + PairedSP 0.644 0.645 0.611 0.711 0.714 0.726
SPsrc + SPtgt 0.799 0.802 0.788 0.756 0.757 0.734

Ita → Mlt* Mlt* → Ita

SPsrc + PairedSP 0.436 0.590 0.591 0.521 0.624 0.609
SPsrc + SPtgt 0.592 0.592 0.592 0.634 0.634 0.607

Deu → Hsb* Hsb* → Deu

SPsrc + PairedSP 0.516 0.604 0.619 0.409 0.606 0.602
SPsrc + SPtgt 0.667 0.670 0.637 0.641 0.651 0.546
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