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ABSTRACT

In continuing control tasks, an agent’s average reward per time step is a more natural
performance measure compared to the commonly used discounting framework
since it can better capture an agent’s long-term behavior. We derive a novel lower
bound on the difference of the long-term average reward for two policies. The
lower bound depends on the average divergence between the policies and on the
so-called Kemeny constant, which measures to what degree the unichain Markov
chains associated with the policies are well-connected. We also show that previous
work based on the discounted return (Schulman et al., 2015; Achiam et al., 2017)
results in a non-meaningful lower bound in the average reward setting. Based on
our lower bound, we develop an iterative procedure which produces a sequence of
monotonically improved policies for the average reward criterion. When combined
with Deep Reinforcement Learning (DRL) methods, the procedure leads to scalable
and efficient algorithms for maximizing the agent’s average reward performance.
Empirically we demonstrate the effectiveness of our method on continuing control
tasks and show how discounting can lead to unsatisfactory performance.

1 INTRODUCTION

The goal of Reinforcement Learning (RL) is to build agents that can learn high-performing behaviors
through trial-and-error interactions with the environment. Broadly speaking, modern RL tackles two
kinds of problems: episodic tasks and continuing tasks. In episodic tasks, the agent-environment
interaction can be broken into separate distinct episodes, and the performance of the agent is simply
the sum of the rewards accrued within an episode. Examples of episodic tasks include training an
agent to learn to play Go (Silver et al., 2016; 2018) or Atari video games (Mnih et al., 2013), where
the episode terminates when the game ends. In continuing tasks, such as controlling robots with long
operating lifespans (Peters & Schaal, 2008; Schulman et al., 2015; Haarnoja et al., 2018), there is
no natural separation of episodes and the agent-environment interaction continues indefinitely. The
performance of an agent in a continuing task is more difficult to quantify since even for bounded
reward functions, the total sum of rewards is typically infinite.

One way of making the long-term reward objective meaningful for continuing tasks is to apply
discounting, i.e., we maximize the discounted sum of rewards r0 + γr1 + γ2r2 + · · · for some
discount factor γ ∈ (0, 1). This is guaranteed to be finite for any bounded reward function. However
the discounted objective biases the optimal policy to choose actions that lead to high near-term
performance rather than to high long-term performance. Such an objective — while useful in certain
applications — is not appropriate when the goal is optimize long-term behavior. As argued in
Chapter 10 of Sutton & Barto (2018) and in Naik et al. (2019), a more natural objective is to use the
average reward received by an agent over every time-step. While the average reward setting has been
extensively studied in the classical Markov Decision Process literature (Howard, 1960; Blackwell,
1962; Veinott, 1966; Bertsekas et al., 1995), it is much less commonly used in reinforcement learning.
An important open question is whether recent advances in RL for the discounted reward criterion can
be naturally generalized to the average reward setting.

One major source of difficulty with modern DRL algorithms lies in controlling the step-size for
policy updates. In order to have better control over step-sizes, Schulman et al. (2015) constructed a
lower bound on the difference between the expected discounted return for two arbitrary policies π
and π′. The bound is a function of the divergence between these two policies and the discount factor.
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Schulman et al. (2015) showed that iteratively maximizing this lower bound generates a sequence of
monotonically improved policies in terms of their discounted return.

In this paper, we first show that the policy improvement theorem from Schulman et al. (2015) results
in a non-meaningful bound in the average reward case. We then derive a novel result which lower
bounds the difference of the average rewards based on the divergence of the policies. The bound
depends on the average divergence between the policies and on the so-called Kemeny constant,
which measures to what degree the unichain Markov chains associated with the policies are well-
connected. We show that iteratively maximizing this lower bound guarantees monotonic average
reward policy improvement. Similar to the discounted case, the problem of maximizing the lower
bound can be approximated with DRL algorithms which can be optimized using samples collected
in the environment. We describe in detail two such algorithms: Average Reward TRPO (ATRPO)
and Average Cost CPO (ACPO), which are average reward versions of algorithms based on the
discounted criterion (Schulman et al., 2015; Achiam et al., 2017). Using the MuJoCo simulated
robotic benchmark, we carry out extensive experiments with the ATRPO algorithm and show that
it is more effective than their discounted counterparts for these continuing control tasks. To our
knowledge, this is one of the first paper to address DRL using the long-term average reward criterion.

2 PRELIMINARIES

Consider a Markov Decision Process (MDP) (Sutton & Barto, 2018) (S,A, P, r, µ) where the state
space S and action space A are assumed to be finite. The transition probability is denoted by
P : S ×A×S → [0, 1], the bounded reward function r : S ×A → [rmin, rmax], and µ : S → [0, 1]
is the initial state distribution. Let π = {π(a|s) : s ∈ S, a ∈ A} be a stationary policy, and Π is the
set of all stationary policies. Here we discuss the two objective formulations for continuing control
tasks: the average reward approach and discounted reward approach.

Average Reward Approach
In this paper, we will focus exclusively on unichain MDPs, which is when the Markov chain
corresponding to every policy contains only one recurrent class and a finite but possibly empty set of
transient states. The average reward objective is defined as:

ρ(π) := lim
N→∞

1

N
E
τ∼π

[
N−1∑
t=0

r(st, at)

]
= E
s∼dπ
a∼π

[r(s, a)]. (1)

Here dπ(s) := limN→∞
1
N

∑N−1
t=0 P (st = s|π) = limt→∞ P (st = s|π) is the stationary state

distribution under policy π, τ = (s0, a0, . . . , ) is a sample trajectory. We use τ ∼ π to indicate that
the trajectory is sampled from policy π, i.e. s0 ∼ µ, at ∼ π(·|st), and st+1 ∼ P (·|st, at). In the
unichain case, the average reward ρ(π) is state-independent for any policy π (Bertsekas et al., 1995).

We express the average-reward value function as V π(s) := Eτ∼π
[∑∞

t=0(r(st, at)− ρ(π))

∣∣∣∣s0 = s

]
and action-value function as Qπ(s, a) := Eτ∼π

[∑∞
t=0(r(st, at)− ρ(π))

∣∣∣∣s0 = s, a0 = a

]
. We

define the average reward advantage function as Aπ(s, a) := Qπ(s, a)− V π(s).

Discounted Reward Approach
For some discount factor γ ∈ (0, 1), the discounted reward objective is defined as

ργ(π) := E
τ∼π

[ ∞∑
t=0

γtr(st, at)

]
=

1

1− γ
E

s∼dπ,γ
a∼π

[r(s, a)]. (2)

where dπ,γ(s) := (1 − γ)
∑∞
t=0 γ

tP (st = s|π) is known as the future discounted state visitation
distribution under policy π. Note that unlike the average reward objective, the discounted objective
depends on the initial state distribution µ. It can be easily shown that dπ,γ(s)→ dπ(s) for all s as

γ → 1. The discounted value function is defined as V πγ (s) := Eτ∼π
[∑∞

t=0 γ
tr(st, at)

∣∣∣∣s0 = s

]
and

discounted action-value function Qπγ (s, a) := Eτ∼π
[∑∞

t=0 γ
tr(st, at)

∣∣∣∣s0 = s, a0 = a

]
. Finally,

the discounted advantage function is defined as Aπγ (s, a) := Qπγ (s, a)− V πγ (s).
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It is well-known that limγ→1(1− γ)ργ(π) = ρ(π), implying that the discounted and average reward
objectives are equivalent in the limit as γ approaches 1 (Blackwell, 1962). We will further discuss
the relationship between the discounted and average reward value functions in the supplementary
materials and prove that limγ→1A

π
γ (s, a) = Aπ(s, a) (see Corollary A.1).

3 MONTONICALLY IMPROVEMENT GUARANTEES FOR DISCOUNTED RL

In many modern RL literature (Schulman et al., 2015; 2017; Abdolmaleki et al., 2018; Vuong et al.,
2019), algorithms iteratively update policies within a local region, i.e., at iteration k we find policy
πk+1 by maximizing ργ(π) within some region D(π, πk) ≤ δ for some divergence measure D. This
approach allows us to control the step-size of each update using different choices of D and δ which
can lead to better sample efficiency (Peters & Schaal, 2008). Schulman et al. (2015) derived a policy
improvement bound based on a specific choice of D:

ργ(πk+1)− ργ(πk) ≥ 1

1− γ
E

s∼dπk,γ
a∼πk+1

[Aπkγ (s, a)]− C ·max
s

[DTV(πk+1 ‖ πk)[s]] (3)

where DTV(π′ ‖ π)[s] := 1
2

∑
a |π′(a|s) − π(a|s)| is the total variation divergence for policies π

and π′, and C is some constant which does not depend on the divergence term DTV. Schulman
et al. (2015) showed that by choosing πk+1 such that the right hand side of (3) is maximized, we are
guaranteed to have ργ(πk+1) ≥ ργ(πk). This provided the theoretical foundation for an entire class
of scalable policy optimization algorithms based on efficiently maximizing the right-hand-side of (3)
(Schulman et al., 2015; 2017; Wu et al., 2017; Abdolmaleki et al., 2018; Vuong et al., 2019).

A natural question arises here is whether the iterative procedure described by Schulman et al. (2015)
also guarantees improvement w.r.t. the average reward. Since the discounted and average reward
objectives are equivalent when γ → 1, one may assume that we can also lower bound the policy
performance difference of the average reward objective by letting γ → 1 for the bounds in Schulman
et al. (2015). Unfortunately this results in a non-meaningful bound. We will demonstrate this through
a similar policy improvement bound from Achiam et al. (2017) based on the average divergence but a
similar argument can be made for the original bound from Schulman et al. (2015) (see supplementary
material for proof and discussion).

Proposition 1. Consider the following bound from Achiam et al. (2017)

D−π,γ(π′) ≤ ργ(π′)− ργ(π) ≤ D+
π,γ(π′) (4)

where

D±π,γ(π′) =
1

1− γ
E

s∼dπ
a∼π

[
π′(a|s)
π(a|s)

Aπγ (s, a)

]
± 2γεγ

(1− γ)2
E

s∼dπ
[DTV(π′ ‖ π)[s]]

and εγ = maxs
∣∣Ea∼π′ [Aπγ (s, a)]

∣∣. We have:

lim
γ→1

(1− γ)D±π,γ(π′) = ±∞ (5)

Since limγ→1(1− γ)(ργ(π′)− ργ(π)) = ρ(π′)− ρ(π), Proposition 1 says (4) becomes trivial when
used on the average reward. This result is discouraging as it shows that the policy improvement
guarantee from Schulman et al. (2015) does not appear to generalize to the average reward setting.
In the next section, we will derive an alternative policy improvement bound for the average reward
objective which can be used to generate monotonically improved policies w.r.t. the average reward.

4 MAIN RESULTS

4.1 AVERAGE REWARD POLICY IMPROVEMENT THEOREM

Let dπ ∈ R|S| be the probability column vector whose components are dπ(s), Pπ ∈ R|S|×|S| be the
transition matrix under policy π whose (s, s′) component is Pπ(s′|s) =

∑
a P (s′|s, a)π(a|s), and

P ∗π = limt→∞ P tπ be the limiting distribution for the transition matrix. We use ‖·‖p to denote the
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operator norm of a matrix. In particular ‖·‖1 and ‖·‖∞ are the maximum absolute column sum and
maximum absolute row sum of a matrix respectively (Horn & Johnson, 2012).

Suppose we have a new policy π′ obtained via some update rule from the current policy π. Similar to
the discounted case, we would like to measure their performance difference ρ(π′)− ρ(π) using an
expression which depends on π and some divergence metric between the two policies. The following
identity shows that ρ(π′)− ρ(π) can be expressed using the advantange function of π.

Lemma 1. For any two stochastic policies π and π′:

ρ(π′)− ρ(π) = lim
N→∞

1

N
E

τ∼π′

[
N−1∑
t=0

Aπ(st, at)

]
= E
s∼dπ′
a∼π′

[Aπ(s, a)] (6)

Lemma 1 is the an extension of the well-known policy difference lemma from Kakade & Langford
(2002) to the average reward case. A similar result was proved by Neu et al. (2010) and Even-Dar
et al. (2009). For completeness, We will provide a proof based on the Bellman equation as well
as a simpler alternative proof in the supplementary material. Note that this expression depends on
samples drawn from π′. However we can show through the following lemma that when dπ and dπ′

are "close," we can evaluate the expression in (6) using samples from dπ (see supplementary material
for proof).

Lemma 2. For any two stochastic policies π and π′, the following bound holds:

E
s∼dπ
a∼π′

[Aπ(s, a)]− 2εDTV(dπ′ ‖ dπ) ≤ ρ(π′)− ρ(π) ≤ E
s∼dπ
a∼π′

[Aπ(s, a)] + 2εDTV(dπ′ ‖ dπ) (7)

where ε = maxs
∣∣Ea∼π′(a|s)[A

π(s, a)]
∣∣.

Lemma 2 shows us how policy improvement is related to the stationary distribution underlying each
policy. In order to study how policy improvement is connected to changes in the actual policies
themselves, we need to analyze the relationship between changes in the policies and changes in
stationary distributions. It turns out that the sensitivity of the stationary distributions in relation to the
policies is related to the structure of the underlying Markov chain.

Let Mπ ∈ R|S|×|S| be the mean first passage time matrix whose elements Mπ(s, s′) is the expected
number of steps it takes to reach state s′ from s under policy π. The matrix Mπ(s, s′) can be
calculated via (Theorem 4.4.7 of Kemeny & Snell (1960))

Mπ(s, s′) = (I − Zπ + EZπdg)Dπ (8)

where Zπ = (I − Pπ + P ∗π )−1 is known as the fundamental matrix of the Markov chain (Kemeny &
Snell, 1960), E is a square matrix consisting of all ones. The subscript ‘dg’ for some square matrix
A refers to a diagonal matrix whose elements are the diagonals of A. Dπ ∈ R|S|×|S| is a diagonal
matrix whose elements are 1/dπ(s). One important property of mean first passage time is that given
some policy π:

κπ =
∑
s′

dπ(s′)Mπ(s, s′) (9)

is a constant independent of the starting state s. This result is known as the random target lemma
(Aldous & Fill, 1995). The constant κπ is sometimes referred to as Kemeny’s constant (Grinstead
& Snell, 2012). This constant can be interpreted as the mean number of steps it takes to get to any
goal state weighted by the steady-distribution of the goal states. This weighted mean does not depend
on the starting state, as mentioned just above. The constant uses a single number to summarize how
“well-connected” a Markov chain is. It can also be shown that κπ = trace(Zπ) (Grinstead & Snell,
2012). We then have the following result which connects the sensitivity of the stationary distribution
to changes to the policy.

Lemma 3. The divergence between the stationary distributions dπ and dπ′ can be upper bounded by
the average divergence between policies π and π′ as follows:

DTV(dπ′ ‖ dπ) ≤ (κπ
′
− 1) E

s∼dπ
[DTV(π′ ‖ π)[s]] (10)
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We wish to point out here that Achiam et al. (2017) showed a similar result to Lemma 3 in the
discounted case where the change in dπ,γ can be bounded in terms of the change in policy up to a
multiplicative constant which only depends on the discount factor. In the discounted case, this is
possible since a discounted MDP is like a finite-horizon MDP problem; in fact, it can be shown to be
equivalent to a related finite horizon problem (Proposition 5.3.1, Puterman (1994)). The discount
factor can be used to control the effective horizon where larger discount factors correspond to longer
horizons. In fact, it can be easily shown that the multiplicative factor from Achiam et al. (2017)
goes to infinity as γ → 1, meaning that the bound is not useful for long horizon problems. In the
average reward setting, the sensitivity of the stationary distribution with respect to the policy can vary
depending on the chain structure and long-term behavior of the underlying Markov chain. This means
that it is only natural that the multiplicative constant in Lemma 3 depends on the transition matrix.

This result is also highly intuitive, For very “well-connected” Markov chains where an agent can
easily and quickly get to any state, this constant is relatively small and the stationary distributions
are not sensitive to small changes in policy. On the other hand, for Markov chains that are “weakly
connected,” where on average, it can take a long time to get to some recurrent state in the state space,
the factor can become very large. In this case small changes in the policy can have a large impact on
the resulting stationary distributions.

The following theorem connects the average reward performance of two policies and their average
divergence.
Theorem 1. For any two stochastic policies π and π′, the following bounds hold:

ρ(π′)− ρ(π) ≤ E
s∼dπ
a∼π

[
π′(a|s)
π(a|s)

Aπ(s, a)

]
+ 2ξ E

s∼dπ
[DTV(π′ ‖ π)[s]] (11)

ρ(π′)− ρ(π) ≥ E
s∼dπ
a∼π

[
π′(a|s)
π(a|s)

Aπ(s, a)

]
− 2ξ E

s∼dπ
[DTV(π′ ‖ π)[s]] (12)

where ξ = (κπ
′ − 1) maxs Ea∼π′ |Aπ(s, a)|.

Proof. Combine the bounds from Lemma 2 and Lemma 3. Then rewrite the expectation for Aπ(s, a)
as an expectation w.r.t. π using importance sampling gives us the desired bound.

The right-hand-side of the bounds in Theorem 1 are guaranteed to be finite. Similar to the discounted
case, the multiplicative factor ξ provides a theoretical guidance on the step-sizes for policy updates
(Schulman et al., 2015). The bound in Theorem 1 is given in terms of the TV divergence, however the
KL divergence is more commonly used in practice. Vuong et al. (2019) compared various divergence
measures and showed that the KL has superior empirical performance. The relationship between the
TV divergence and KL divergence is given by Pinsker’s inequality (Tsybakov, 2008), which says that
for any two distributions p and q: DTV(p ‖ q) ≤

√
DKL (p‖q) /2. We can then show that

E
s∼dπ

[DTV(π′ ‖ π)[s]] ≤ E
s∼dπ

[
√
DKL (π′‖π) [s]/2] ≤

√
E

s∼dπ
[DKL (π′‖π)][s]]/2 (13)

where the second inequality comes from Jensen’s inequality. The inequality in (13) shows
that the bounds in Theorem 1 still hold when Es∼dπ [DTV(π′ ‖ π)[s]] is substituted with√
Es∼dπ [DKL (π′‖π)][s]/2.

4.2 APPROXIMATE POLICY ITERATION

One direct consequence of Theorem 1 is that iteratively maximizing the right-hand-side of (12)
generates a monotonically improving sequence of policies w.r.t. the average reward objective.
Algorithm 1 gives an approximate policy iteration algorithm that produces such a sequence of policies.

Proposition 2. Given an initial policy π0, Algorithm 1 is guaranteed to generate a sequence of
policies π1, π2, . . . such that ρ(π0) ≤ ρ(π1) ≤ ρ(π2) ≤ · · · .

Proof. At iteration k, Es∼dπk ,a∼π[Aπk(s, a)] = 0, Es∼dπk [DKL (π‖πk) [s]] = 0 for π = πk. By
Equation (14) and Theorem 1, ρ(πk+1)− ρ(πk) ≥ 0.
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Algorithm 1 Approximate Policy Iteration for Average Reward Objective
Initialize: π0

1: for k = 0, 1, 2, . . . do
2: Policy evaluation step: evaluate Aπk(s, a) for all s, a.
3: Policy improvement step:

πk+1 = argmax
π

 E
s∼dπk
a∼π

[Aπk(s, a)]− ξ
√

2 E
s∼dπk

[DKL (π‖πk) [s]]

 (14)

where ξ = (κπ − 1) maxs Ea∼π |Aπk(s, a)|

However, Algorithm 1 is difficult to implement in practice since it requires exact knowledge of the
advantage function and transition matrix. Furthermore, calculating the term ξ is impractical for
high dimensional problems. In the next section, we will introduce a sample-based algorithm which
approximates the update rule given in Equation (14).

5 PRACTICAL APPLICATIONS

As we have noted in the previous section, Algorithm 1 is not practical for problems with large state
and action spaces and thus cannot be naïvely applied directly. In this section, we will discuss how
Algorithm 1 and Theorem 1 can be used in practice to create algorithms which can effectively solve
high dimensional DRL problems. In the Appendix C, we will also discuss how Theorem 1 can be
used to solve DRL problems with safety constraints.

5.1 AVERAGE REWARD TRUST REGION POLICY OPTIMIZATION

For DRL problems, it is common to consider some parameterized policy class ΠΘ ⊆ Π. Our goal is
to devise a computationally tractable version of Algorithm 1 for policies in ΠΘ, i.e., given a policy
πθk at iteration k, how do we obtain the best possible πθk+1

? We can rewrite the unconstrained
optimization problem in (14) as a constrained problem:

maximize
πθ∈Πθ

E
s∼dπθk
a∼πθ

[Aπθk (s, a)] s.t. D̄KL(πθ ‖ πθk) ≤ δ (15)

where D̄KL(πθ ‖ πθk) := Es∼dπθk [DKL (πθ‖πθk) [s]]. The constraint set {πθ ∈ ΠΘ : D̄KL(πθ ‖
πθk) ≤ δ} is called the trust region set. This problem can be regarded as an average reward variant of
TRPO from Schulman et al. (2015). Note that the advantage function in (15) is the average reward
advantage function introduced in Section 2. When we set πθk+1

to be the optimal solution to (15),
πθk+1

can be shown to have the following performance guarantee:
Proposition 3. Let πθk+1

be the optimal solution to (15) for some πθk ∈ ΠΘ. The policy performance
difference between πθk+1

and πθk can be lower bounded by

ρ(πθk+1
)− ρ(πθk) ≥ −ξπθk+1

√
2δ (16)

where ξπθk+1 = (κπθk+1 − 1) maxs Ea∼πθk+1
|Aπθk (s, a)|.

Proof. Since D̄KL(πθk ‖ πθk) = 0, πθk is a feasible solution. The objective value is 0 for πθ = πθk .
The bound follows from (12) and (13) where the average KL is bounded by δ.

Several algorithms have been proposed for efficiently solving the discounted version of (15): Schul-
man et al. (2015) and Wu et al. (2017) converts (15) into a convex problem via Taylor approximations;
another approach is to first solve (15) in the nonparametric policy space and then project the result
back into the parameter space (Abdolmaleki et al., 2018; Vuong et al., 2019). These algorithms can
be adapted for the average reward case and are theoretically justified via Theorem 1 and Proposition
3. One notable difference compared to the discounted case is the estimation of the critic, as discussed
in the next section and in the Appendix D.
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5.2 IMPLEMENTATION

In this section, we discuss how the average reward version of the TRPO algorithm (Schulman et al.,
2015) — which we will refer to as ATRPO — can be implemented in practice. Algorithm 2 provides
a basic outline of the ATRPO algorithm.

Algorithm 2 Average Reward TRPO (ATRPO)
Initialize: Policy parameters θ0, value net parameters φ0, learning rate α.

1: for k = 0, 1, 2, · · · do
2: Collect a sample trajectory {st, at, st+1, rt}, t = 1, . . . , N from the environment using πθk .
3: Calculate sample average reward of πθk via ρ = 1

N

∑N
t=1 rt.

4: for t = 1, 2, . . . , N do
5: Get target V target

t = rt − ρ+ Vφk(st+1)

6: Get advantage estimate Â(st, at) = rt − ρ+ Vφk(st+1)− Vφk(st)

7: Update critic by
φk+1 ← φk − α∇φL(φk)

where

L(φk) =
1

2

N∑
t=1

∥∥Vφk(st)− V target
t

∥∥2

8: Use Â(st, at) to update θk using TRPO policy update (Schulman et al., 2015).

The major difference between the TRPO algorithm and the ATRPO algorithm is how the target for
the critic and the advantage function are calculated. Importantly, simply letting γ → 1 in TRPO does
not lead to Algorithm 2. This subtle but important difference leads to a significant improvement in
sample efficiency, as shown in the section on experimental results.

In Algorithm 2, for illustrative purposes, we use the average reward one-step bootstrapped estimate
for the target of the critic and the advantage function. In practice, we instead use an average reward
version of the Generalized Advantage Estimator (GAE) from Schulman et al. (2016). In short, GAE
uses a tunable eligibility trace parameter λ to act as a trade-off between the Monte Carlo estimate and
the bootstrapped estimate. In the Appendix D we provide more detail on how GAE can be generalized
to the average reward case.

6 RELATED WORK

Dynamic programming algorithms for finding the optimal average reward policies have been well-
studied (Howard, 1960; Blackwell, 1962; Veinott, 1966). In contrary to our method which is based on
the policy gradient approach, several Q-learning-like algorithms for problems with unknown dynamics
have been proposed, such as R-Learning (Schwartz, 1993), RVI Q-Learning (Abounadi et al., 2001),
and CSV-Learning (Yang et al., 2016). Mahadevan (1996) conducted a thorough empirical analysis
of the R-Learning algorithm. We note that much of the previous work on average reward RL focuses
on the tabular setting without function approximations, and the theoretical properties of many of
these Q-learning-based algorithm are not well understood (in particular R-learning). More recently,
POLITEX updates policies using a Boltzmann distribution over the sum of action-value function
estimates of the previous policies (Abbasi-Yadkori et al., 2019) and Wei et al. (2020) introduced
a model-free algorithm for optimizing the average reward of weakly-communicating MDPs. Both
methods are shown to have theoretical guarantees under the tabular setting.

For policy gradient methods, Baxter & Bartlett (2001) showed that if 1/(1− γ) is large compared to
the mixing time of the Markov Chain induced by the MDP, then the gradient of ργ(π) can accurately
approximate the gradient of ρ(π). Kakade (2001) extended upon this result and provided an error
bound on using an optimal discounted policy to maximize the average reward. In contrast, our work
directly deals with using policy gradient methods for the average reward objective and provides
theoretical guidance on the optimal step size for each policy update.

Policy improvement bounds have been extensively explored in the discounted case. The results from
Schulman et al. (2015) is an extension of Kakade & Langford (2002) which restricted the policy class
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to a mixture of policies. Pirotta et al. (2013) also proposed an alternative generalization to Kakade
& Langford (2002). Achiam et al. (2017) improved upon Schulman et al. (2015) by replacing the
maximum divergence with the average divergence.

7 EXPERIMENTS

Recently, DRL algorithms such as TRPO have proven to be successful for episodic high-dimensional
tasks. In our experiments, we wish to study whether for continuing-control tasks, the policy trained
with ATRPO can out-perform the policies trained with TRPO with different discount factors.

Our design goal for the experiments is to simulate continuing-control tasks where the agent can interact
with the environment indefinitely. We consider three tasks (Ant, HalfCheetah, and Humanoid) from
the MuJoCo physical simulator (Todorov et al., 2012) implemented in the OpenAI gym (Brockman
et al., 2016). The natural goal is to train the agents to run as fast as possible without falling. However
the standard MuJoCo tasks are episodic tasks which terminate when the agent falls. We convert
these tasks into continuing control tasks via the following: when the agent falls, the agent incurs
a large cost for falling, but then continues the trajectory from a random start state. We use these
continuing-control tasks for both training and evaluation for both ATRPO and TRPO. More details
on the environment can be found in Appendix F.

One point we wish to emphasize regarding the experiments is that even though the MuJoCo benchmark
is commonly trained using the discounted objective (see e.g. Schulman et al. (2015), Wu et al. (2017),
Schulman et al. (2017), Abdolmaleki et al. (2018), Vuong et al. (2019)), it is always evaluated using
the undiscounted objective. This is because the undiscounted objective more naturally describes the
goals of the MuJoCo agents (e.g., an agent’s performance w.r.t. the reward signal should be equally
important at time step 1000 as it is at time step 1). In the case of TRPO (and similarly many other
DRL algorithms), discounting is used during training often for mathematical and computational
convenience. Prior to our work, there has been no theoretical or empirical evidence to support
applying trust region methods to the average reward. In this section, we demonstrate that when
the actual objective we want to evaluate is undiscounted, discounting, as is commonly done, is
unnecessary and may lead to suboptimal performance.

Figure 1: Learning curves comparing ATRPO and TRPO with different discount factors. The solid
lines represent the average reward of trajectories of fixed length of 10,000 time steps averaged over the
last 50 trajectories. The results are averaged over 10 random seeds and the shaded region represents
one standard deviation.

During training, we collect one trajectory of a fixed length of 10,000 using the current policy.1
We then use this data to update the critic and policy networks (see Algorithm 2). This gives us
a new policy and critic which we then use to repeat the above process. In Figure 1, we plot the

1In the original OpenAI gym version of MuJoCo, episode lengths are capped at 1000 (see https:
//github.com/openai/gym/blob/master/gym/envs/__init__.py). We removed this cap to
allow for arbitrarily long time horizons.
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training curves of ATRPO and of TRPO for different discount factors. Detailed specifications and
hyperparameter settings can be found in Appendix F.

Figure 1 shows that ATRPO improves performance by 5.0%, 32.8%, 26.7% on HalfCheetah, Ant
and Humanoid respectively over TRPO with its best discount factors. One point worth noting is
that increasing the discount factor does not necessarily lead to better performance of TRPO. A
larger discount factor in principle enables the algorithm to seek a policy that performs well for the
average-reward criterion. But, unfortunately, a larger discount factor can also increase the variance of
the gradient estimator (Zhao et al., 2011; Schulman et al., 2016) and degrade generalization (Amit
et al., 2020). Moreover, algorithms with discounting become unstable as γ → 1 (Naik et al., 2019).
The discount factor therefore serves as a hyperparameter which can be tuned to improve performance.
This is supported by the observation that the optimal discount factor is different for each environment
(0.999, 0.99, 0.95 for HalfCheetah, Ant, and Humanoid respectively), where choosing a suboptimal
discount factor can have significant consequences. (For Ant and Humanoid, the optimal discount
factor is 33.9% and 65.6% better than the second best discount factor.) We have shown here that
using the average reward criterion not only delivers superior performance but also obviates the need
to tune the discount factor.

To further support our conclusion, we will also compare ATRPO and TRPO using an alternative
evaluation protocol. In this protocol, after every one million samples of training we run 10 separate
evaluation trajectories of fixed length 10,000 time steps using the current policy with no exploration.
The random seeds used for evaluation are different from those used in training. Figure 2 shows the
average reward of these trajectories, Once again ATRPO provides superior performance.

Figure 2: Comparing performance on evaluation trajectories of length 10,000. For each random seed
used in training, we use a different unseen random seed to run 10 test trajectories after every 1 million
samples of training. The solid line is averaged over these unseen random seeds. The shaded area is
one standard deviation.

8 CONCLUSION

In this paper, we introduced a novel policy improvement bound for the average reward criterion. The
bound is based on the average divergence between two policies and Kemeny’s constant. We showed
that previous existing policy improvement bounds for the discounted case results in a non-meaningful
bound for the average reward objective. Our work provided the theoretical justification and the
means to generalize the popular trust-region based algorithms to the average reward setting. We
demonstrated through a series of experiments that our method is highly effective on high-dimensional
continuing control tasks. In particular, we showed that when the natural objective of the task is
undiscounted, discounting can lead to suboptimal behavior. To the best of our knowledge, we are one
of the first to address how DRL methods can be used to learn undiscounted continuing control tasks
with large state and action spaces.
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A DISCOUNTED AND AVERAGE REWARD VALUE FUNCTIONS

The following result relates the discounted and average reward value functions.
Proposition A.1 (Blackwell (1962)). For a given stationary policy π and discount factor γ ∈ (0, 1),

lim
γ→1

(
V πγ (s)− ρ(π)

1− γ

)
= V π(s) (17)

for all s ∈ S.

From Proposition A.1, it is clear that limγ→1(1− γ)ργ(π) = ρ(π), i.e. the discounted and average
reward objective are equivalent in the limit as γ approaches 1 . We can derive similar relations for the
action-value function and advantage function.
Corollary A.1. For a given stationary policy π and discount factor γ ∈ (0, 1),

lim
γ→1

(
Qπγ (s, a)− ρ(π)

1− γ

)
= Qπ(s, a) (18)

lim
γ→1

Aπγ (s, a) = Aπ(s, a) (19)

for all s ∈ S and a ∈ A.

Proof. From Proposition A.1, we can rewrite (17) as

V πγ (s) =
ρ(π)

1− γ
+ V π(s) + g(γ, s) (20)

where limγ→1 g(γ, s) = 0. We then expand Qπγ (s, a) using the Bellman equation

Qπγ (s, a) = r(s, a) + γ
∑
s′

P (s′|s, a)V πγ (s′)

= r(s, a) + γ
∑
s′

P (s′|s, a)

(
ρ(π)

1− γ
+ V π(s′) + gπ(γ, s′)

)
= r(s, a) +

γρ(π)

1− γ
+ γ

∑
s′

P (s′|s, a) (V π(s′) + gπ(γ, s′))

= r(s, a)− ρ(π) +
ρ(π)

1− γ
+
∑
s′

P (s′|s, a)V π(s′)

− (1− γ)
∑
s′

P (s′|s, a)V π(s′) + γ
∑
s′

P (s′|s, a)gπ(γ, s′)

= Qπ(s, a) +
ρ(π)

1− γ
− (1− γ)

∑
s′

P (s′|s, a)V π(s′) + γ
∑
s′

P (s′|s, a)gπ(γ, s′)

where we used Proposition A.1 for the second equality. Note that the last two terms in the last equality
approach 0 as γ → 1, rearranging the terms and taking the limit for γ → 1 gives us Equation (18).

We can then similarly rewrite (18) as

Qπγ (s, a) =
ρ(π)

1− γ
+Qπ(s, a) + h(γ, s, a) (21)

with limγ→1 h(γ, s, a) = 0. This allows us to rewrite the discounted advantage function as

Aπγ (s, a) = Qπγ (s, a)− V πγ (s)

= Qπ(s, a) +
ρ(π)

1− γ
+ hπ(s, a, γ)− V π(s)− ρ(π)

1− γ
− gπ(s, γ)

= Aπ(s, a) + hπ(s, a, γ)− gπ(s, γ)

Since hπ(s, a, γ) and gπ(s, γ) both approach 0 as γ approaches 1, taking the limit for γ → 1 gives
us Equation (19).

13
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B PROOFS

B.1 PROOF OF PROPOSITION 1

Proposition 1. Consider the following bound from Achiam et al. (2017)

D−π,γ(π′) ≤ ργ(π′)− ργ(π) ≤ D+
π,γ(π′) (4)

where

D±π,γ(π′) =
1

1− γ
E

s∼dπ
a∼π

[
π′(a|s)
π(a|s)

Aπγ (s, a)

]
± 2γεγ

(1− γ)2
E

s∼dπ
[DTV(π′ ‖ π)[s]]

and εγ = maxs
∣∣Ea∼π′ [Aπγ (s, a)]

∣∣. We have:

lim
γ→1

(1− γ)D±π,γ(π′) = ±∞ (5)

Proof. Since dπ,γ approaches the stationary distribution dπ as γ → 1, we can write the limit in (5) as

lim
γ→1

 E
s∼dπ,γ
a∼π′

[Aπγ (s, a)]± 2γεγ

1− γ
E

s∼dπ,γ
DTV(π′ ‖ π)


= E
s∼dπ
a∼π′

[Aπ(s, a)]± 2ε E
s∼dπ

[DTV(π′ ‖ π)] lim
γ→1

γ

1− γ

=±∞

Here εγ = maxs
∣∣Ea∼π′ [Aπγ (s, a)]

∣∣ and ε = maxs |Ea∼π′ [Aπ(s, a)]|. The first equality is a direct
result of Corollary A.1. By a similar argument, we can also show that the right-hand-side for Theorem
1 in (Schulman et al., 2015) also approaches infinity as γ approaches 1.

B.2 PROOF OF LEMMA 1

Lemma 1. For any two stochastic policies π and π′:

ρ(π′)− ρ(π) = lim
N→∞

1

N
E

τ∼π′

[
N−1∑
t=0

Aπ(st, at)

]
= E
s∼dπ′
a∼π′

[Aπ(s, a)] (6)

Proof. We offer two approaches for this proof here. In the first approach, we directly expand the
right-hand side using the definition of the advantage function and Bellman equation, which gives us:

lim
N→∞

1

N
E

τ∼π′

[
N−1∑
t=0

Aπ(st, at)

]

= lim
N→∞

1

N
E

τ∼π′

[
N−1∑
t=0

(Qπ(st, at)− V π(st))

]

= lim
N→∞

1

N
E

τ∼π′

[
N−1∑
t=0

(
r(st, at)− ρ(π) + E

st+1∼P (·|st,at)
[V π(st+1)]− V π(st)

)]

= lim
N→∞

1

N
E

τ∼π′

[
N−1∑
t=0

(r(st, at)− ρ(π) + V π(st+1)− V π(st))

]

=ρ(π′)− ρ(π) + lim
N→∞

1

N
E

τ∼π′

[
N−1∑
t=0

(V π(st+1)− V π(st))

]

=ρ(π′)− ρ(π) + lim
N→∞

1

N
E

τ∼π′
[V π(sN )− V π(s0)]

=ρ(π′)− ρ(π).

14



Under review as a conference paper at ICLR 2021

The last equality can be obtained by rewriting the expectation

lim
N→∞

1

N
E

τ∼π′

[
N−1∑
t=0

Aπ(st, at)

]
= lim
N→∞

1

N

[
N−1∑
t=0

∑
s,a

P (st = s|π′)π′(a|s)Aπ(s, a)

]

=
∑
s,a

π′(a|s)Aπ(s, a) lim
N→∞

1

T

N−1∑
t=0

P (st = s|π′)

=
∑
s,a

dπ
′
(s)π′(a|s)Aπ(s, a) = E

s∼dπ
′

a∼π′

[Aπ(s, a)]

Alternatively, we can directly apply Proposition A.1 and Corollary A.1 to Lemma 6.1 of (Kakade &
Langford, 2002) and take the limit as γ → 1.

B.3 PROOF OF LEMMA 2

Lemma 2. For any two stochastic policies π and π′, the following bound holds:

E
s∼dπ
a∼π′

[Aπ(s, a)]− 2εDTV(dπ′ ‖ dπ) ≤ ρ(π′)− ρ(π) ≤ E
s∼dπ
a∼π′

[Aπ(s, a)] + 2εDTV(dπ′ ‖ dπ) (7)

where ε = maxs
∣∣Ea∼π′(a|s)[A

π(s, a)]
∣∣.

Proof. ∣∣∣∣∣∣ρ(π′)− ρ(π)− E
s∼dπ
a∼π′

[Aπ(s, a)]

∣∣∣∣∣∣ =

∣∣∣∣∣∣ E
s∼dπ

′

a∼π′

[Aπ(s, a)]− E
s∼dπ
a∼π′

[Aπ(s, a)]

∣∣∣∣∣∣
=

∣∣∣∣∣∑
s

E
a∼π′

[Aπ(s, a)] (dπ′(s)− dπ(s))

∣∣∣∣∣
≤
∑
s

∣∣∣ E
a∼π′

[Aπ(s, a)] (dπ′(s)− dπ(s))
∣∣∣

≤ max
s

∣∣∣ E
a∼π′

[Aπ(s, a)]
∣∣∣ ‖dπ′ − dπ‖1

= 2εDTV(dπ
′
‖ dπ)

where the last inequality follows from Hölder’s inequality.

B.4 PROOF OF LEMMA 3

Lemma 3. The divergence between the stationary distributions dπ and dπ′ can be upper bounded by
the average divergence between policies π and π′ as follows:

DTV(dπ′ ‖ dπ) ≤ (κπ
′
− 1) E

s∼dπ
[DTV(π′ ‖ π)[s]] (10)

Proof. Our proof is based on Markov chain perturbation theory (Cho & Meyer, 2001; Hunter, 2005).
Note first that

(dTπ′ − dTπ )(I − Pπ′ + P ∗π′) = dTπ′ − dTπ − dTπ′ + dTπPπ′

= dTπPπ′ − dTπ
= dTπ (Pπ′ − Pπ)

(22)

Right multiplying (22) by (I − Pπ′ + P ∗π′)−1 gives us:

dTπ′ − dTπ = dTπ (Pπ′ − Pπ)(I − Pπ′ + P ∗π′)−1 (23)

Recall that Zπ
′

= (I − Pπ′ + P ∗π′)−1 and Mπ′
= (I − Zπ′

+ EZπ
′

dg )Dπ′
. Rearranging the terms

we find that
Zπ

′
= I + EZπ

′

dg −Mπ′
(Dπ′

)−1 (24)
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Plugging (24) into (23) gives us

dTπ′ − dTπ = dTπ (Pπ′ − Pπ)(I + EZπ
′

dg −Mπ′
(Dπ′

)−1)

= dTπ (Pπ′ − Pπ)(I −Mπ′
(Dπ′

)−1)
(25)

where the last equality is due to (Pπ′ − Pπ)E = 0.

By the submultiplicative property of operator norms (Horn & Johnson, 2012), we have:

‖dπ′ − dπ‖1 =
∥∥∥(I −Mπ′

(Dπ′
)−1)T (PTπ′ − PTπ )dπ

∥∥∥
1

≤
∥∥∥(I −Mπ′

(Dπ′
)−1)T

∥∥∥
1

∥∥(PTπ′ − PTπ )dπ
∥∥

1

=
∥∥∥(I −Mπ′

(Dπ′
)−1)

∥∥∥
∞

∥∥(PTπ′ − PTπ )dπ
∥∥

1

(26)

We can rewrite
∥∥∥I −Mπ′

(Dπ′
)−1
∥∥∥
∞

as

∥∥∥I −Mπ′
(Dπ′

)−1
∥∥∥
∞

= max
s

(∑
s′

Mπ′
(s, s′)dπ′(s′)− 1

)
= κπ

′
− 1

(27)

Finally we bound
∥∥(PTπ′ − PTπ )dπ

∥∥
1

by

∥∥(PTπ′ − PTπ )dπ
∥∥

1
=
∑
s′

∣∣∣∣∣∑
s

(∑
a

P (s′|s, a)π′(a|s)− P (s′|s, a)π(a|s)

)
dπ(s)

∣∣∣∣∣
≤
∑
s′,s

∣∣∣∣∣∑
a

P (s′|s, a)(π′(a|s)− π(a|s))

∣∣∣∣∣ dπ(s)

≤
∑
s,s′,a

P (s′|s, a) |π′(a|s)− π(a|s)| dπ(s)

≤
∑
s,a

|π′(a|s)− π(a|s)| dπ(s)

= 2 E
s∼dπ

[DTV(π′ ‖ π)]

(28)

Plugging back into (26) gives the desired result.

C REINFORCEMENT LEARNING WITH AVERAGE COST CONSTRAINTS

In addition to learning to improve its long-term performance, many real-life applications of RL also
require the agent to satisfy certain safety constraints. A mathematically principled framework for
incorporating safety constraints into RL is using Constraint Markov Decision Processes (CMDP). A
CMDP (Kallenberg, 1983; Ross, 1985; Altman, 1999) is an MDP equipped with a constraint set Πc,
a CMDP problems finds a policy π that maximizes an agent’s long-run reward given that π ∈ Πc .
We consider two forms of constraint sets: the average cost constraint set {π ∈ Π : ρc(π) ≤ b} and
the discounted cost constraint set {π ∈ Π : ρc,γ(π) ≤ b}. Here b is some given constraint bound,

ρc(π) = limN→∞
1
N Eτ∼π

[∑N−1
t=0 c(st, at)

]
, and ρc,γ(π) := Eτ∼π [

∑∞
t=0 γ

tc(st, at)] for some
bounded cost function c : S ×A → [cmin, cmax]. However, directly adding cost constraints to any
iterative policy improvement algorithms can be sample inefficient since the cost constraint needs to
be evaluated using samples from the new policy after every policy update. Instead, Achiam et al.
(2017) proposed updating πθk via the following optimization problem:

maximize
πθ∈Πθ

E
s∼dπθk,γ
a∼πθ

[A
πθk
γ (s, a)] s.t. ρ̃c,γ(πθ) ≤ b, D̄KL(πθ ‖ πθk) ≤ δ.

(29)
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Here, ρ̃c,γ(πθ) := ρc,γ(πθk) + 1
1−γ Es∼dπθk,γ ,a∼πθ

[
A
πθk
c,γ (s, a)

]
and A

πθk
c,γ (s, a) is the discounted

cost advantage function where we replace the reward with the cost. Note that in (29) the original cost
constraint was replaced by a discounted surrogate cost constraint ρ̃c,γ(πθ) which can be evaluated
using samples from πθk . The bound (4) still hold when the reward function is replaced with the cost
(see also Corollary 2 from Achiam et al. (2017)). Therefore by (4) and (13):

|ρc,γ(πθ)− ρ̃c,γ(πθ)| ≤
γεc,γ

(1− γ)2

√
2D̄KL(πθ ‖ πθk) (30)

where εc,γ = maxs
∣∣Ea∼π′ [Aπc,γ(s, a)]

∣∣ . This shows that the surrogate cost is a good approximation
to ρc,γ(πθ) when πθ and πθk are close. Using (30) and the trust region constraint, Achiam et al.
(2017) upper bounded the worst-case constraint violation for when πθk+1

is the solution to (29).

The framework is problematic when the cost constraint is undiscounted. Define the average surrogate
cost as ρ̃c(πθ) := ρc(πθk) + Es∼dπθk ,a∼πθk [Aπθc (s, a)]. We can easily show that

lim
γ→1

(1− γ)(ρc,γ(πθ)− ρ̃c,γ(πθ)) = ρc(πθ)− ρ̃c(πθ) and lim
γ→1

γεc,γ
1− γ

√
2D̄KL(πθ ‖ πθk) =∞

However, by Theorem 1 and (13):

|ρc(πθ)− ρ̃c(πθ)| ≤ ξπθc
√

2D̄KL(πθ ‖ πθk) (31)

where ξπθc = maxs Ea∼πθ |A
πθk
c (s, a)|

∥∥(I − Pπθ + P ∗πθ )
−1
∥∥
∞. We then have the following result:

Proposition C.1. Suppose πθ and πθk satisfy the constraints ρ̃c(πθ) < b and D̄KL(πθ ‖ πθk) ≤ δ,
then

ρC(πθ) ≤ b+ ξπθc
√

2δ (32)

The upper-bound in Proposition C.1 provides a worst-case constraint violation guarantee when πθ
is the solution to the average-cost variant of (29). It is an undiscounted parallel to Proposition 2 in
Achiam et al. (2017) which provides a similar guarantee for the discounted case. It shows that contrary
to what was previously believed (Tessler et al., 2019), (29) can easily be modified to accommodate for
average cost constraints and still satisfy an upper bound for worst-case constraint violation. Scalable
algorithms have been proposed for approximately solving (29) (Achiam et al., 2017; Zhang et al.,
2020). Proposition C.1 shows that these algorithms can be generalized to average cost constraints
with only minor modifications. In Appendix E.2, we will show how the CPO algorithm (Achiam
et al., 2017) can be modified for average cost constraints.

D CRITIC ESTIMATION FOR THE AVERAGE REWARD SETTING

Suppose the agent collects a batch of data consisting of a trajectories each of length N
{st, at, rt, st+1} (t = 1, . . . , N) using policy π. Similar to what is commonly done for critic
estimation in on-policy methods, we fit some value function V̂ πφ parameterized by φ using data
collected with the policy.

We will first review how this is done in the discounted case. Two of the most common ways of
calculating the regression target for V̂ πφ are the Monte Carlo target denoted by

V target
t =

N∑
t′=t

γt
′−trt, (33)

or the bootstrapped target
V target
t = rt + γV̂ πφ (st+1). (34)

Using the dataset {st, yt}, we can fit V̂ πφ with supervised regression by minimizing the MSE between
V̂ πφ (st) and yt. With the fitted value function, we can estimate the advantage function either with the
Monte Carlo estimator

ÂπMC(st, at) =

N∑
t′=t

γt
′−trt − V̂ πφ (st)
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or the bootstrap estimator

ÂπBS(st, at) = rt + γV̂ πφ (st+1)− V̂ πφ (st).

When the Monte Carlo advantage estimator is used to approximate the policy gradient, it does not
introduce a bias but tends to have a high variance whereas the bootstrapped estimator introduces a
bias but tends to have lower variance. These two estimators are seen as the two extreme ends of the
bias-variance trade-off. In order to have better control over the bias and variance, Schulman et al.
(2016) used the idea of eligibility traces (Sutton & Barto, 2018) and introduced the Generalized
Advantage Estimator (GAE). The GAE takes the form

ÂGAE(st, at) =

N∑
t′=t

(γλ)t
′−tδt′ (35)

where
δt′ = rt′ + γV̂ πφ (st′+1)− V̂ πφ (st′) (36)

and λ ∈ [0, 1] is the eligibility trace parameter. We can then use the parameter λ to tune the bias-
variance trade-off. It is worth noting two special cases corresponding to the bootstrap and Monte
Carlo estimator:

λ = 0 : ÂGAE(st, at) = rt + γV̂ πφ (st+1)− V̂ πφ (st)

λ = 1 : ÂGAE(st, at) =

N∑
t′=t

γt
′−trt′ − V̂ πφ (st)

For infinite horizon tasks, the discount factor γ is used to reduce variance by downweighting rewards
far into the future (Schulman et al., 2016). Also noted in (Schulman et al., 2016) is that for any
l� 1/(1− γ), γl decreases rapidly and any effects resulting from actions after l ≈ 1/(1− γ) are
effectively "forgotten". This approach in essence converts a continuous control task into an episodic
task where any rewards received after l ≈ 1/(1 − γ) becomes negligible. This undermines the
original continuing nature of the task and could prove to be especially problematic for problems
where effects of actions are delayed far into the future. However, increasing γ would lead to an
increase in variance. Thus in practice γ is often treated as a hyperparameter to balance the effective
horizon of the task and the variance of the gradient estimator.

To mitigate this, we introduce how we can formulate critics for the average reward. A key difference
between the two cases is that in the discounted case we use V̂ πφ to approximate the discounted value
function whereas in the average reward case V̂ πφ is used to approximate the average value function
(recall definition from Section 2).

Let

ρ̂π =
1

N

N∑
t=1

rt

denote the estimated average reward. The Monte Carlo target for the average reward value function is

V target
t =

N∑
t′=t

(rt − ρ̂π) (37)

and the bootstrapped target is

V target
t = rt − ρ̂π + V̂ πφ (st+1). (38)

Note that our targets (37-38) are distinctly different from the traditional discounted targets (33-34).

The Monte Carlo and Bootstrap estimators for the average reward advantage function are:

ÂπMC(st, at) =

N∑
t′=t

(rt − ρ̂π)− V̂ πφ (st)

ÂπBS(st, at) = ri,t − ρ̂π + V̂ πφ (st+1)− V̂ πφ (st)
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We can similarly extend the GAE to the average reward setting:

ÂGAE(st, at) =

N∑
t′=t

λt
′−tδt′ (39)

where
δt′ = rt′ − ρ̂π + V̂ πφ (st′+1)− V̂ πφ (st′). (40)

and set the target for the value function to

V target
t = rt − ρ̂π + V̂ πφ (st+1) +

N∑
t′=t+1

λt
′−tδt′ (41)

The two special cases corresponding to λ = 0 and λ = 1 are

λ = 0 : ÂGAE(st, at) = rt − ρ̂π + V̂ πφ (st+1)− V̂ πφ (st)

λ = 1 : ÂGAE(st, at) =

N∑
t′=t

(rt′ − ρ̂π)− V̂ πφ (st)

We note again that the average reward advantage estimator is distinct from the discounted case. To
summarize, in the average reward setting:

• The parameterized value function is used to fit the average reward value function.
• The reward term rt in the discounted formulation is replaced by rt − ρ̂π .
• Without any discount factors, recent and future experiences are weighed equally thus

respecting the continuing nature of the task.

E ALGORITHMIC DETAILS

E.1 ATRPO

The ATRPO algorithm is almost identical to its discounted counterpart (Schulman et al., 2015)
with the exception of the critic estimation (see Appendix D). Here we give a brief summary of the
algorithm, for more details see Schulman et al. (2015) or the lecture notes from Achiam (2017).

We approximate (15) using Taylor approximations

maximize
θ

gT (θ − θk)

subject to
1

2
(θ − θk)TH(θ − θk) ≤ δ

(42)

where
g := E

s∼dπθk
a∼πθk

[∇θ log πθ(a|s)|θ=θkAπθk (s, a)] (43)

and
H := E

s∼dπθk
a∼πθk

[
∇θ log πθ(a|s)|θ=θk∇θ log πθ(a|s)|Tθ=θk

]
(44)

Note that g is identical to the average reward policy gradient (Sutton et al., 2000) and H is known as
the Fisher Information Matrix (FIM) (Lehmann & Casella, 2006). The solution to (42) is

θ = θk +

√
2δ

gTH−1g
H−1g (45)

For policy classes with high-dimensional parameter spaces, estimating the inverse of H can be
computationally challenging. Like in (Schulman et al., 2015), we use the conjugate gradient method
to approximate H . Finally due to approximation errors, the update rule in (45) does not necessarily
guarantee trust-region constraint satisfaction, therefore an exponential-decaying backtracking line
search procedure is performed on the new parameter to ensure trust-region satisfaction.
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E.2 ACPO

Like in the previous section, we will give a brief summary of the algorithm, more details can be found
in (Achiam et al., 2017).

Using Taylor approximations, (29) can be written as

maximize
θ

gT (θ − θk)

subject to c̃+ g̃T (θ − θk) ≤ 0

1

2
(θ − θk)TH(θ − θk) ≤ δ

(46)

where g,H were defined in the previous section, c̃ = ρ(πθk)−b, and g̃ is the gradient of the constraint.
This is a convex optimization problem where strong duality holds, hence it can be solved using a
simple Lagrangian argument. The update rule takes the form

θ = θk +
1

λ
H−1(g − νg̃) (47)

where λ and ν are Lagrange multipliers satisfying

max
λ,ν≥0

− 1

2λ

(
gTH−1g + 2νgTH−1g̃ + ν2g̃H−1g̃T

)
+ νc̃− 1

2
λδ (48)

The dual problem (48) can be solved explicitly (Achiam et al., 2017). Similar to ATRPO, we use
the conjugate gradient method to estimate H and perform a backtracking line search procedure to
guarantee approximate constraint satisfaction.

F EXPERIMENTAL DETAILS

All experiments were implemented in Pytorch 1.3.1 and Python 3.7.4 on Intel Xeon Gold 6230
processors. We based our TRPO implementation on https://github.com/ikostrikov/
pytorch-trpo and https://github.com/Khrylx/PyTorch-RL. Our CPO implemen-
tation is our own Pytorch implementation based on https://github.com/jachiam/cpo.
Our hyperparameter selections were also based on these implementations. Our choice of hyperparam-
eters were based on the motivation that we wanted to put discounted TRPO in the best possible light
and compare its performance with ATRPO. Our hyperparameter choices for ATRPO mirrored the
discounted case since we wanted to understand how performance for the average reward case differs
while controlling for all other variables.

We set the reset cost of 100 on all three environments. In the OpenAI Gym API, an agent at some
current state receives an action from some policy, the API gives the next state of the agent, the reward,
and a done signal which indicates whether the agent has reached the terminal state. When the agent
falls (i.e. it receives a done=True signal), we subtract 100 from the reward received by the agent,
and reset the next state using the reset() method from the API. For more information on the Gym
API, see https://gym.openai.com/.

We used a two-layer feedforward neural network with a tanh activation for both our policy and value
networks. The policy is Gaussian with a diagonal covariance matrix. The policy networks outputs
a mean vector and a vector containing the state-independent log standard deviations. States are
normalized by the running mean and the running standard deviation before being fed to any network.
We used the GAE for advantage estimation (see Appendix D). The advantage values are normalized
by the batch mean and batch standard deviation before being used for policy updates. Learning rates
are linearly annealed to 0 over the course of training. Table 1 summarizes the hyperparameters used
in our experiments.
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Table 1: Hyperparameter Setup

Hyperparameter ATRPO/TRPO

No. of hidden layers 2
No. of hidden nodes 64
Activation tanh
Initial log std -1
Batch size 10,000
Training trajectory length 10,000
GAE parameter 0.95
Learning rate for policy 3× 10−4

Learning rate for value net 3× 10−4

L2-regularization coeff. for value net 3× 10−3

Damping coeff. 0.01
Backtracking coeff. 0.8
Max backtracking iterations 10
Max conjugate gradient iterations 10
Trust region bound δ 0.01
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