
A Appendix511

Code Availability: Our code will be made available upon acceptance.512

The organization of the appendix is as follows:513

1. Subsection A.1 provides the necessary background and preliminary information required514

for the proofs.515

2. Subsection A.2 presents the proof of the optimality bound for the INTERACTIVE policy.516

3. Subsection A.3 describes the details of the experimental setup.517

4. Subsection A.4 contains additional results related to object detection experiments.518

5. Subsection A.5 presents experimental analysis focusing on the diminishing return property.519

6. Subsection A.6 reports the results of the experiments with non-submodular and non-520

monotone objectives.521

7. Subsection A.7 includes the function evaluation and runtime complexity analysis of the522

algorithms.523

A.1 Preliminaries524

Here, we provide basic definitions of submodular functions, monotone functions, and matroids that525

we use in our proof.526

Definition 2 (Submodular Function). A set function f : 2X → R is submodular if for all A ⊆ B ⊆527

X and x ∈ X \B, we have528

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B).

Definition 3 (Monotone Function). A set function f : 2X → R is monotone if for all A ⊆ B ⊆ X ,529

we have530

f(A) ≤ f(B).

Based on the definitions of submodular and monotone functions, we can directly write the following:531

Corollary 1. Let f be a monotone submodular function. Then, f is also subadditive, and we have
that:

∀A ⊂ X, B ⊂ X : f(B) ≤ f(A) +
∑

x∈B\A

fA(x).

Here, we denote the marginal gain of adding an element to set A as fA(x) = f(A ∪ {x}) − f(A),532

which is also monotone and submodular.533

Proof. This is a standard result in submodularity. See Corollary 5 in [66].534

Definition 4 (Matroid). A matroid is a pair M = (E, I) where E is a finite set (called the ground535

set) and I is a nonempty set of subsets of E (called the set of independent sets) with the following536

conditions:537

1. ∀B ∈ I : A ⊂ B ⇒ A ∈ I .538

2. ∀A,B ∈ I : |A| < |B| ⇒ ∃x ∈ B \A : A ∪ {x} ∈ I .539

Definition 5 (Basis of a Matroid). A basis of a matroid is an independent set of the matroid which540

is not contained in any other independent set.541

Corollary 2. IfB1 andB2 are two bases of a matroidM , then there exists a bijection φ : B1\B2 →542

B2 \B1 such that:543

∀x ∈ B1 \B2 : B1 ∪ φ({x}) \ {x} ∈ I.

Proof. This is a standard result in matroid theory. See Proposition 11 in [66].544

Definition 6 (Partition Matroid). A partition matroid is a matroid where the ground set E is parti-545

tioned into l disjoint subsets E1, E2, . . . , El and the set of independent sets is defined as follows:546

I = {B ⊆ E : |B ∩ Ei| ≤ ki,∀i ∈ {1, 2, . . . , l}}.
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A.2 Proof of Optimality Bound for the Interactive Policy547

First, we show that the robots’ feasible action spaces Ar and the union set of all observed data Xr548

form a partition matroid.549

Lemma 2 (Robots’ feasible action space and set of all observed images form Partition Matroid). The550

robots’ feasible action space Ar and the union of all observed data Xr form a partition matroid551

Mr = (Xr,Ar), where Xr =
⋃Nrobot

i=1 Xr
i and Xr

i ∩Xr
j = ∅ ∀i 6= j. The action space is defined552

as Ar = {
⋃Nrobot

i=1 ari : ari ∈ Ari ∀i = 1, . . . , Nrobot}.553

Proof. The proof follows directly from the definition of action and observed data points. For all554

a ∈ Ar, if s ⊂ a, then we know that for all j, |s ∩ Xr
j | ≤ |a ∩ Xr

j | ≤ N cache
j meaning s ∈ Ar.555

And we know that for all a, s ∈ Ar, if |s|< |a|, then there exists a subset Xr
j ⊂ Xr such that556

|s ∩Xr
j | < |a ∩Xr

j | ≤ N cache
j and Xr

j ∩ a \ s 6= ∅. Then for any element x ∈ Xr
j ∩ a \ s, it holds557

that s ∪ {x} ∈ Ar.558

Now we prove the main theorem of our paper. Our proof is similar to the proof given in [66], while559

our proof involves sequential optimization methods, such as the one shown in Alg. 4.560

Theorem. The algorithm given in Alg. 4 achieves a solution greater than 1/2 of the optimal solu-561

tion.562

Proof. Assume that aOPT is the optimal solution for the problem 1. First, we show that aOPT and
aI are bases of the matroid (Xr,Ar). Since we assume that the objective function f is monotone
(Assmp. 2), it is trivial to see that |aOPT ∩ Xr

i | = N cache
i for all i ∈ {1, . . . , Nrobot}, making

aOPT a basis of matroid (Xr,Ar). aI is a basis as well, since in Alg. 4 we construct it such that
|aI ∩Xr

i | = N cache
i for all i. For matroids, there exists a bijection φ : aOPT → aI , which maps the

optimal solution to the solution of the INTERACTIVE policy. We can express these solution sets as
follows:

aOPT = {xOPT
1,1 , xOPT

1,2 , . . . , xOPT
Nrobot,Ncache

Nrobot

} and aI = {x1,1, x1,2, . . . , xNrobot,Ncache
Nrobot

}.

Here xi,j = φ(xOPT
i,j ) for all i, j. Let aIi,j = {x1,1, . . . , xi,j} and aIi,0 = {x1,1, . . . , xi−1,Ncache

i−1
}563

denote the sets of actions taken up to the i-th robot and the j-th cache and actions taken up to the564

i-th robot repectively. Then for fDr
c
(x) = f(Drc ∪ {x})− f(Drc), we can write the following:565

fDr
c
(aOPT)− fDr

c
(aI) ≤

Nrobot∑
i=1

Ncache
i∑
j=1

fDr
c∪aI (xOPT

i,j )

≤
Nrobot∑
i=1

Ncache
i∑
j=1

fDr
c∪aIi,j−1

(xOPT
i,j )

≤
Nrobot∑
i=1

Ncache
i∑
j=1

fDr
c∪aIi,j−1

(xi,j)

=

Nrobot∑
i=1

Ncache
i∑
j=1

fDr
c
(aIi,j)− fDr

c
(aIi,j−1) = fDr

c
(aI).

The first inequality is a result of Corollary 1, while the second inequality stems from the submodu-566

larity of the function fDr
c
. In the third inequality, we utilize the fact that in each iteration of Alg. 4,567

we select the element with the maximum marginal gain. Next, in the first equality, we use the fact568

that aIi.j−1 ∪ {xi,j} = aIi,j . The last equality follows from the fact that for fDr
c
(∅) = 0, the sum of569

the marginal gains equals to the value of fDr
c
(aI).570

Therefore we have:571

fDr
c
(aI) ≥ 1

2
fDr

c
(aOPT).

This concludes the proof, showing that the INTERACTIVE policy achieves at least half of the value572

of the optimal solution.573
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A.3 Experiments574

To demonstrate the effectiveness of our proposed policy, we conducted simulations in scenarios in-575

volving multiple robots engaged in data collection from heterogeneous observation distributions. To576

create these heterogenous environments, we sampled incoming class distributions from the Dirichlet577

distribution, incorporating a skewness parameter denoted as α. This way, we ensure that environ-578

ments have nonidentical incoming class distributions (non-i.i.d). Then, within each environment,579

we simulated robots that observed the same data points.580

Initially, an initial dataset denoted as D0
c was chosen from the training set to train the initial model581

fDNN(.; θ0i ). The initial dataset was generated with uniform class distribution, employing the Dirich-582

let distribution with a skewness parameter value of α = 5. In each subsequent round, the vision583

model was retrained from the pre-trained vision model to ensure a fair evaluation of the performance584

using the selected training set. To prevent overfitting, when identical data points were selected from585

multiple devices, the redundant instances were filtered out, and only a single data point was added586

to the training set.587

A.3.1 Embedding Functions:588

To generate embeddings for the data points, we utilized multiple vision and language models de-589

pending on the datasets. Initially, we made use of the embeddings generated by the CLIP model590

[4], which is trained to create outputs in the same embedding space for both language and vision591

model inputs. However, we observed that when the embeddings generated by the CLIP model start592

to perform poorly on the datasets when there is a mismatch of the targets of the CLIP model with our593

classification output or the images are out-of-distribution for the CLIP model. For these datasets,594

we instead employ the embeddings generated by BADGE [33]. BADGE embeddings essentially595

correspond to the gradients of the final layer of the network with respect to the input.596

A.3.2 Classification Experiments597

In all classification experiments, we used the Adam optimizer with a learning rate of 0.001 with a598

batch size of 1000. Additionally, the learning rate scheduler is used with a decay rate of 0.99. We599

trained the DNNs in each round for 300 epochs. We did not apply any data augmentation to the600

training set. To ensure robustness, we conducted these experiments for 25 different seeds. Now,601

we provide additional explanations regarding the details and dataset-specific parameters used in the602

simulations.603

MNIST: In our paper, we used the MNIST dataset to show the efficacy of our algorithm in a simple604

setting. The MNIST dataset is a collection of handwritten digits that contains 60,000 training images605

and 10,000 test images. Each image is a 28× 28 grayscale image.606

Simulation Parameters: In MNIST simulations, we used 5 heterogeneous environments, each607

containing 4 robots that observe identical samples, resulting in a total system of 20 robots. To608

create heterogenous incoming class distributions, we set the skewness parameter of the Dirichlet609

distribution to α = 1.3. In each round, robots are observing 1000 data samples and collectN cache =610

3 data samples from their observations. We started with an initial dataset of size 16 and collected611

the data for 10 rounds. The final training dataset consists of 616 data points.612

DNN and Embedding Function: We used a simple DNN with 6 layers, with 4 convolutional613

layers and 2 fully connected layers. Between each convolutional layer, we used the ReLU activation614

function and applied dropout with a probability of 0.3. To create embeddings, we utilized BADGE615

[33].616

CIFAR-10: The CIFAR-10 dataset consists of 60,000 32× 32× 3 RGB images with ten different617

classes. The dataset is split into training and testing datasets of size 50,000 and 10,000, respectively.618

The classes in the dataset are truck, ship, horse, frog, dog, deer, cat, bird, automobile, and airplane.619

Simulation Parameters: In CIFAR-10 simulations, we used 6 heterogeneous environments, each620

containing 4 robots that observe identical samples, resulting in a total system of 24 robots. To621

create heterogenous incoming class distributions, we set the skewness parameter of the Dirichlet622
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distribution to α = 1.6. In each round, robots are observing 1000 data samples and collectN cache =623

1 data samples from observations. We started with an initial dataset of size 10 and collected the data624

for 10 rounds. The final training dataset consists of 250 data points.625

DNN and Embedding Function: We leveraged a pre-trained ResNet-50 model [64] as the back-626

bone for our vision model. To adapt it for our task, we replaced the final layer of the ResNet-50 with627

two fully connected layers, incorporating ReLU activation, and applied dropout with a probability of628

0.3 to mitigate overfitting. Only these replaced layers were retrained, following the transfer learning629

approach. This strategy significantly reduces training time while mitigating overfitting risks. To630

create embeddings, we utilized embeddings created by the CLIP model [4].631

Adverse-Weather Dataset The Adverse-Weather dataset comprises numerous RGB image se-632

quences, each with dimensions of 720 × 1280 × 3. These sequences were collected from moving633

vehicles around the University of Michigan campus, capturing diverse weather conditions. While634

most sequences exhibit dynamic scenes, some of them include static recordings. The dataset in-635

cludes two metadata classes: weather and time of day. The weather class consists of labels such as636

rain, fog, snow, sleet, overcast, sunny, and cloudy. The time of day class includes labels for Sunset,637

Afternoon, and Dusk. By combining these weather and time of day labels, we established a total of638

11 classes to train our model on. To avoid redundancy, we subsampled the images from the video639

sequences, selecting one image every 10 frames. Consequently, we constructed a dataset comprising640

36,230 images, which we divided into a training set of 31,701 images and a test set of 4,529 images.641

Simulation Parameters: In Adverse-Weather simulations, we used 6 heterogeneous environ-642

ments, each containing 4 robots that observe identical samples, resulting in a total system of 24643

robots. To create heterogenous incoming class distributions, we set the skewness parameter of the644

Dirichlet distribution to α = 1.2. In each round, robots are observing 1000 data samples and col-645

lect N cache = 1 data samples from observations. We started with an initial dataset of size 10 and646

collected the data for 10 rounds. The final training dataset consists of 250 data points.647

DNN and Embedding Function: We adopted a pre-trained Vit-H14 model [63] as the backbone648

for our vision model. To adapt it to our specific task, we replaced the final layer of the Vit-H14649

with two fully connected layers, employing ReLU activation, and incorporated dropout with a prob-650

ability of 0.3 to mitigate overfitting. Only these replaced layers were subjected to retraining. This651

methodology significantly reduces training time while effectively preventing overfitting. To create652

embeddings, we have utilized BADGE [33].653

DeepDrive Dataset: The DeepDrive data following the transfer learning approach, only encom-654

passes 100,000 images taken from driving videos in diverse cities and weather conditions. It com-655

prises 70,000 training images, 10,000 validation images, and 20,000 testing images. However, the656

testing images are not publicly accessible, so our analysis focused solely on the original training and657

validation datasets. The classification model was designed to predict weather labels, including rainy,658

snowy, clear, overcast, partly cloudy, and foggy. However, due to a limited number of foggy images659

(only 181), the foggy class was excluded from the simulations. Consequently, the classification660

model was trained on a subset of five classes.661

Simulation Parameters: In DeepDrive simulations, we used 5 heterogeneous environments, each662

containing 6 robots that observe identical samples, resulting in a total system of 30 robots. To663

create heterogenous incoming class distributions, we set the skewness parameter of the Dirichlet664

distribution to α = 3.3. In each round, robots observe 1000 data samples and collect N cache = 20665

data samples from observations. We started with an initial dataset of size 50 and collected the data666

for 20 rounds. The final training dataset consists of 12,050 data points.667

DNN and Embedding Function: We used a pre-trained Vit-H14[63] model and replaced the final668

layer of the vision model with 2 fully connected layers with the ReLU activation layer and applied669

dropout with a probability of 0.3. We only retrained the replaced layers of the network. This670

approach, known as transfer learning, reduces training time and helps to prevent overfitting. To671

create embeddings, we utilized BADGE [33].672

A.3.3 Object Detection Experiments673

We ran object detection experiments on the DeepDrive dataset. As in the classification case, we674

used the training and validation images to train our model and report the final mean average precision675
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(mAP) scores. We used an SGD optimizer with a learning rate of 0.01 in this experiment. We trained676

the DNNs at the start and end of the data collection rounds. We applied all data augmentations677

detailed in [65].678

Simulation Parameters: In object detection experiments, we used 5 heterogeneous environments,679

each containing 5 robots that observe identical samples, resulting in a total system of 25 robots.680

We set skewness parameter α = 1. In each round, robots observe 1000 data samples and collect681

N cache = 50 data samples from observations. We started with an initial dataset of size 5000 and682

collected the data for 20 rounds. The final training dataset consists of 30,000 data points.683

DNN and Embedding Function: We used a pretrained YOLOv8-small model [65] and retrained all684

model weights in each training. Since we are dealing with the objects, we utilized the CLIP model685

[4] to create embeddings.686

A.4 Object Detection Experiments Metrics687

In the object detection experiments, we used several metrics to evaluate the performance of the poli-688

cies. These metrics include mAP50, representing the mean of average precision at the intersection689

over union with a threshold of 50%; mAP50-95, denoting the mean of the average precision at the in-690

tersection over union for thresholds ranging from 50% to 95%; precision, and recall. We conducted691

the experiments with 25 different seeds and averaged the metrics across the seeds. We present re-692

sults in Table 2. Our INTERACTIVE policy shows a similar performance to the CENTRALIZED policy693

while outperforming the DISTRIBUTED policy. In mAP50 results, the INTERACTIVE policy shows694

an improvement of 9.2%, whereas, in mAP50-95 results, the INTERACTIVE policy demonstrates a695

development of 6.1%. Furthermore, our INTERACTIVE policy surpasses the DISTRIBUTED policy696

in precision and recall results by 11.6% and 6.5%, respectively.697

Method mAP@50 mAP@50-95 Precision Recall
INITIAL 33.2± 0.012 17.7± 0.007 51.5± 0.048 32.7± 0.01

DISTRIBUTED 37.2± 0.009 20.2± 0.006 56.3± 0.046 35.5± 0.008
CENTRALIZED 46.5± 0.003 26.3± 0.007 67.6± 0.007 42.4± 0.004
INTERACTIVE 46.4± 0.002 26.3± 0.002 67.9± 0.007 42.0± 0.003

Table 2: Additional metrics for object detection experiments

A.5 Diminishing Returns between accuracy and the percentage of training data698

To support our claim about dataset quality being submodular in Assumption 3, and monotone 2.699

We conducted 5 experiments training classification models on four datasets of varying sizes. In700

Fig. 5, we show the accuracy of the classification models accuracy across the different percentages701

of the datasets. We can see in the general plot (Fig. 5-right) and zoomed-in version to smaller702

percentages ((Fig. 5-left) accuracy shows a diminishing returns property in terms of accuracy as the703

training dataset size increases. This indicates that the incremental improvement gained from adding704

new samples decreases with a larger dataset. Additionally, the accuracy of the models consistently705

increases as the dataset size grows, providing evidence for the monotonicity of dataset quality. These706

observations align with our assumption about dataset quality being submodular (Assmp. 3) and707

monotone (Assmp. 2).708

A.6 Accuracy When Objective Function is Non-submodular, Non-monotone709

In this section, we investigate the performance of our INTERACTIVE policy when the objective710

function f is not monotone or submodular through experiments. Instead of the submodular facility711

location function, we employed a variant called the maximin facility location function. This function712

aims to maximize the minimum distance between any two points in a set. Formally, we can define713

the maximin facility location function as follows:714

fmaximin(S) = max
si∈S

min
sj∈S\{si}

‖si − sj‖

where si is the ith point in the set S and ‖si−sj‖ is a distance function. We used the same simulation715

parameters and models as we did with the facility location objective function. The accuracy results716
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Figure 5: Accuracy shows diminishing returns to training dataset size. Each line represents the accuracy
of the classification models on a different dataset. The x-axis represents the percentage of datasets used for
training the model, while the y-axis represents accuracy. The left figure provides a closer view of the right
figure, specifically focusing on training percentages ranging from 0 to 0.5. Across all datasets, we observe
a consistent improvement in accuracy as the percentage of training data increases. However, as the dataset
size grows, the slope of the curve gradually decreases, indicating diminishing returns where the incremental
contributions of new data samples become smaller. This observation supports our assumption of dataset quality
function being submodular and monotone.

MNIST CIFAR10 Adverse-Weather DeepDrive

Figure 6: Comparison of performance under non-monotone and non-submodular objective We con-
ducted the same experiments as in Fig. 3 but with a non-submodular and non-monotone objective function,
described in A.6. Similar to Fig. 3, we observe that both the INTERACTIVE and CENTRALIZED policies out-
perform the DISTRIBUTED policy by a significant margin. This demonstrates the robustness and effectiveness
of the INTERACTIVE and CENTRALIZED policies under non-submodular and non-monotone objectives.

of the simulations are presented in Fig. 6. Similar to the previous case, our INTERACTIVE policy717

exhibits equivalent performance to the CENTRALIZED policy and outperforms the DISTRIBUTED718

policy in all simulations.719

A.7 Complexity Analysis720

For all algorithms, suppose that there are Nrobot robots, each robot i observes samples Xr
i in each721

data collection round, and in each round at most N cache
i samples have to be chosen from samples722

Xr
i for each robot i.723
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It is a known result that the total number of function evaluations of the greedy algorithm that is used724

for submodular maximization is O(|V |k), where V is the ground set for observations and k is the725

number of data points that need to be selected [51].726

The CENTRALIZED Algorithm: In the CENTRALIZED algorithm, a central server carries out all727

the computation required in a data collection round to choose the samples that are going to be added728

to the cloud dataset. That is, the central server has access to all the observations made by the robots729

and has to selectN cache
i samples from the observation setXr

i of each robot i. Therefore, our ground730

set is ∪Nrobot
i=1 Xr

i , and the number of points that need to be selected is
∑Nrobot

i=1 N cache
i . Because731

the observed sets Xr
i of the robots are disjoint, the total number of elements in our ground set is732

| ∪Nrobot
i=1 Xr

i | =
∑Nrobot

i=1 |Xr
i |. This makes the computational complexity of the CENTRALIZED733

algorithm in terms of total number of function evaluations O(
∑Nrobot

i=1 |Xr
i | ×

∑Nrobot

i=1 N cache
i ).734

The DISTRIBUTED Algorithm: In the DISTRIBUTED algorithm, all robots carry out the data selec-735

tion process themselves. Therefore, for each robot i, the ground set is Xr
i and the number of points736

that have to be selected is N cache
i . Summing the number of function evaluations over all robots, the737

total complexity of the DISTRIBUTED algorithm is O(
∑Nrobot

i=1 |Xr
i | ×N cache

i ).738

The INTERACTIVE Algorithm: In our INTERACTIVE algorithm, just like the DISTRIBUTED al-739

gorithm, the robots select data points in the confines of their observation sets. Thus, the ground740

sets and the number of points to be selected from each ground set is again Xr
i and N cache

i , re-741

spectively. Summing again over all robots, the total complexity of our INTERACTIVE algorithm is742

O(
∑Nrobot

i=1 |Xr
i | ×N cache

i ), which is the same as the DISTRIBUTED algorithm.743

Number of Message Exchanges: Since our problem is distributed in nature, we should also ana-744

lyze the total number of messages passed between robots. The CENTRALIZED algorithm requires745 ∑Nrobot

i=1 N cache
i iterations over all robots, resulting in total of O(Nrobot

∑Nrobot

i=1 N cache
i ) message746

exchanges. On the other hand, our INTERACTIVE policy requires only one iteration over all robots,747

leading to a significantly lower number of message exchanges, specifically O(Nrobot). Lastly, since748

the DISTRIBUTED policy is executed without any interaction between robots, there are no message749

exchanges involved.750
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