
A Simulation Training Details813

In this section, we provide details about simulation training, including the used simulator backend,814

task designs, reinforcement learning (RL) training of teacher policy, and student policy distillation.815

A.1 The Simulator816

We use Isaac Gym Preview 4 [9] as the simulator backend. NVIDIA PhysX1 is used as the physics817

engine to provide realistic and precise simulation. Simulation settings are listed in Table A.I. The818

robot model is from Franka ROS package2. We borrow furniture models from FurnitureBench [84]819

to create various tasks that require complex and contact-rich manipulation.820

Table A.I: Simulation settings.
Hyperparameter Value

Simulation Frequency 60 Hz
Control Frequency 60 Hz

Num Substeps 2
Num Position Iterations 8
Num Velocity Iterations 1

A.2 Task Implementations821

We implement four tasks based on the furniture model square table: Stabilize, Reach and Grasp,822

Insert, and Screw. An overview of simulated tasks is shown in Fig A.1. We elaborate on their initial823

conditions, success criteria, reward functions, and other necessary information.824

A.2.1 Stabilize825

In this task, the robot needs to push the square tabletop to the right corner of the wall such that it826

is supported and remains stable in following assembly steps. The robot is initialized such that its827

gripper locates at a neutral position. The tabletop is initialized at the coordinate (0.54, 0.00) relative828

to the robot base. We then randomly translate it with displacements drawn from U(�0.015, 0.015)829

along x and y directions (the distance unit is meter hereafter). We also apply random Z rotation with830

values drawn from U(�15°, 15°). Four table legs are initialized in the scene. The task is successful831

only when the following three conditions are met:832

1) The square tabletop contacts the front and right walls;833

2) The square tabletop is within a pre-defined region;834

3) No table leg is in the pre-defined region.835

We use the following reward function:836

rt = wsuccess1success � wq̇kq̇tk � wactionkatk, (A.1)

where wsuccess is the success reward, 1success indicates the success according to aforementioned837

conditions, wq̇ penalizes large joint velocities, q̇t is the joint velocity, waction penalizes large action838

commands, and at represents the action command at time step t. We set wsuccess = 10, wq̇ = 10�5,839

and waction = 10�5. The episode length is 100. One episode terminates upon success or timeout.840

A.2.2 Reach and Grasp841

In this task, the robot needs to reach and grasp a table leg that is randomly spawned in the valid842

workspace region. The task is successful once the robot grasps the table leg and lifts it for a certain843

1https://developer.nvidia.com/physx-sdk
2https://github.com/frankaemika/franka_ros

21

https://developer.nvidia.com/physx-sdk
https://github.com/frankaemika/franka_ros

(a) Stabilize (b) Reach and Grasp

(c) Insert (d) Screw

Figure A.1: Visualization of simulated tasks.

height. The object’s irregular shape limits certain grasping poses. For example, the end-effector844

needs to be near orthogonal to the table leg in the xy plane and far away from the screw thread.845

Therefore, we design a curriculum over the object geometry to warm up the RL learning. It gradually846

adjusts the object geometry from a cube, to a cuboid, and finally the table leg. In all curriculum847

stages, the reward function is848

rt = wdistanced+ wlifted1lifted + wsuccess1success. (A.2)

Here, wdistance is the weight for distance reward, wlifted is the reward for the leg being lifted, and849

wsuccess is the success weight. d is the distance to the table leg and is calculated as850

d = 1� tanh

✓
10

4
(deef + dleft finger + dright finger + dorthogonal)

◆
, (A.3)

where deef is the distance between the end-effector and the table leg, dleft finger is the distance851

between the left gripper tip to the table leg, dright finger is the distance between the right gripper tip852

to the table leg, and dorthogonal is the difference between the current and the orthogonal grasping853

orientations. We set wdistance = 0.1, wlifted = 1.0, and wsuccess = 200.0. The episode length is854

50. One episode terminates upon success or timeout.855

A.2.3 Insert856

In this task, the robot needs to insert a pre-grasped table leg into the far right assembly hole of857

the tabletop, while the tabletop is already stabilized. The tabletop is initialized at the coordinate858

(0.53, 0.05) relative to the robot base. We then randomly translate it with displacements sam-859

pled from U(�0.02, 0.02) along x and y directions. We also apply random Z rotation with values860

drawn from U(�45°, 45°). We further randomize the robot’s pose by adding noises sampled from861

U(�0.25, 0.25) to joint positions. The task is successful when the table leg remains vertical and862

is close to the correct assembly position within a small threshold. We design curricula over the863

randomization strength to facilitate the learning. The following reward function is used:864

rt = wdistanced+ wsuccess1success, (A.4)

22

where wdistance is the weight for distance-based reward, d is the distance between the table leg865

and target assembly position, wsuccess is the success weight, and 1success indicates task success.866

The distance d consists of an Euclidean distance dposition and an orientation distance dvertical to867

encourage the robot to keep the table leg vertical.868

d = 1� tanh

✓
10

2
(dposition + dvertical)

◆
(A.5)

We set wdistance = 1.0 and wsuccess = 100.0. The episode length is 100. One episode terminates869

upon success or timeout.870

A.2.4 Screw871

In this task, the robot is initialized such that its end-effector is close to an inserted table leg. It needs872

to screw the table leg clockwise into the tabletop. We design curricula over the action space: at873

the early stage, the robot only controls the end-effector’s orientation; at the latter stage, it gradually874

takes full control. We slightly randomize object and robot poses during initialization. The reward875

function is876

rt = (1� 1failure) (wscrewdscrew + wsuccess1success)� wdeviationddeviation. (A.6)

Here, 1failure indicates the task failure, wscrew is the screwing reward weight, dscrew measures877

the screwed angle, wsuccess is the success weight, and 1success indicates the task success. The task878

is considered as successful when the leg has been screwed 180° into the tabletop. It is considered879

as failed when the table leg tilts more than 10° from the vertical pose. We set wscrew = 0.1,880

wsuccess = 100.0, and wdeviation = 10�2. The episode length is 200. One episode terminates upon881

success, failure, or timeout.882

A.3 Teacher Policy Training883

A.3.1 Model Details884

Observation Space Besides proprioceptive observations, teacher policies also receive privileged885

observations to facilitate the learning. They include objects’ states (poses and velocities), end-886

effector’s velocity, contact forces, gripper left and right fingers’ positions, gripper center position,887

and joint velocities. Full observations are summarized in Table A.II.888

Table A.II: The observation space for teacher policies.
Name Dimension Name Dimension

Proprioceptive Privileged

Joint Position 7 Objects States Nobjects⇥ 13
Cosine Joint Position 7 End-Effector Velocity 6

Sine Joint Position 7 Contact Forces Nobjects⇥ 3

End-Effector Position 3 Left and Right
Fingers’ Positions 6

End-Effector Rotation 4 Gripper Center Position 3
Gripper Width 1 Joint Velocity 7

Controller and Action Space An operational space controller (OSC) [72] is used in teacher889

policy training to improve sample efficiency. We follow Mistry and Righetti [108] to add nullspace890

control torques to prevent large changes in joint configuration. The action space is thus the change891

of end-effector’s pose. We further add a binary action to control gripper’s opening and closing. For-892

mally, it can be expressed as Ateacher = (�x, �y, �z, �r, �p, �y,1gripper), where (�x, �y, �z) 2 R3893

is the translation change, (�r, �p, �y) 2 R3 is the rotation change, and 1gripper 2 {0, 1} is the894

gripper action.895

23

Model Architecture We use feed-forward policies in RL training. It consists of MLP encoders to896

encode proprioceptive and privileged vector observations, and unimodal Gaussian distributions as897

the action head. Model hyperparameters are listed in Table A.III.898

Table A.III: Model hyperparameters for RL teacher policies.
Hyperparameter Value Hyperparameter Value

Obs. Encoder Hidden Depth 1 Obs. Encoder Activation ReLU
Obs. Encoder Hidden Dim 256 Action Head Hidden Layers [256, 128, 64]
Obs. Encoder Output Dim 256 Action Head Activation ELU [109]

A.3.2 Domain Randomization899

We apply domain randomization during RL training to learn more robust teacher policies. Parame-900

ters are summarized in Table A.IV.901

Table A.IV: Domain randomization used in RL training.
Parameter Type Distribution

Robot
Mass Scaling U(0.5, 1.5)

Friction Scaling U(0.7, 1.3)
Joint Lower Limit Scaling logU(1.00, 1.01)
Joint Upper Limit Scaling logU(1.00, 1.01)

Joint Stiffness Scaling logU(1.00, 1.01)
Joint Damping Scaling logU(1.00, 1.01)

Simulation
Gravity Additive U(0.0, 0.4)

Objects
Mass Scaling U(0.5, 1.5)

Friction Scaling U(0.5, 1.5)
Rolling Friction Scaling U(0.5, 1.5)
Torsion Friction Scaling U(0.5, 1.5)

Restitution Additive U(0.0, 1.0)
Compliance Additive U(0.0, 1.0)

A.3.3 RL Training Details902

We use the model-free RL algorithm Proximal Policy Optimization (PPO) [80] to learn teacher903

policies. Hyperparameters are listed in Table A.V. We customize the framework from Makoviichuk904

and Makoviychuk [110] to use as our training framework.905

Table A.V: Hyperparameters used in PPO training.
Hyperparameter Value Hyperparameter Value

Learning Rate 5⇥10-4 Critic Weight 4
Discount Factor 0.99 GAE [111] � 0.95
Entropy Weight 0 PPO ✏ 0.2

Optimizer Adam [112] Horizon 32

24

A.4 Student Policy Distillation906

A.4.1 Data Generation907

We use trained teacher policies as oracles to generate data for student policies training. Concretely,908

we roll out each teacher policy to generate 10, 000 successful trajectories for each task. We exclude909

trajectories that are shorter than 20 steps.910

A.4.2 Observation Space911

Student policies receive observations that can be obtained in the real world. They are point-912

cloud and proprioceptive observations. We synthesize point clouds from objects’ 6D poses to im-913

prove the training throughput. Concretely, given the groundtruth point cloud of the m-th object914

P(m)
2 RK⇥3, we transform it into the global frame through P(m)

g = P(m)
�
R(m)

�|
+

�
p(m)

�|
.915

Here R(m)
2 R3⇥3 and p(m)

2 R3⇥1 denote the object’s orientation and translation in the916

global frame. Further, the point-cloud representation of a scene S with M objects is aggregated917

as PS =
S

M

m=1 P
(m)
g . For the robot, we only include point clouds for its two fingers and ignore918

other parts. To facilitate policies to differentiate gripper fingers from the scene, we extend the co-919

ordinate dimension to include a semantic label 2 {0, 1} that indicates gripper fingers or not. This920

information can be obtained on real robots through forward kinematics. A full point cloud is then921

downsampled to 768 points. Table A.VI lists the observation space.922

Table A.VI: The observation space for student policies.
Name Dimension

Point Cloud 768 ⇥ 4

Proprioceptive

Joint Position 7
Cosine Joint Position 7
Sine Joint Position 7

End-Effector Position 3
End-Effector Rotation 4

Gripper Width 1

A.4.3 Action Space Distillation923

To reduce the controller sim-to-real gap before transfer, we train student policies to output in the924

configuration space. To achieve that, we relabel actions â in trajectories generated by teacher policies925

from end-effector’s delta poses to absolute joint positions. This is equivalent to set ât = qt+1 for926

all time steps. Therefore, the action space for student policies is Astudent = (q,1gripper), where927

q 2 R7 is the joint position within the valid range. In simulation, student policies’ actions are928

deployed with a joint position controller.929

A.4.4 Model Architecture930

We use feed-forward policies for tasks Reach and Grasp and Insert and recurrent policies for tasks931

Stabilize and Screw as we find they achieve the best distillation results. PointNets [81] are used to en-932

code point clouds. Recall that each point in the point cloud also contains a semantic label indicating933

the gripper or not. We concatenate point coordinates with these semantic labels’ vector embeddings934

before passing into the PointNet encoder. We use Gaussian Mixture Models (GMM) [67] as the935

action head. Detailed model hyperparameters are listed in Table A.VII.936

25

Table A.VII: Model hyperparameters for student policies.
Hyperparameter Value Hyperparameter Value

Point Cloud RNN

PointNet Hidden Dim 256 RNN Type LSTM [113]
PointNet Hidden Depth 2 RNN Num Layers 2
PointNet Output Dim 256 RNN Hidden Dim 512
PointNet Activation GELU [114] RNN Horizon 5

Gripper Semantic Embd Dim 128 GMM Action Head

Feature Fusion Hidden Dim 128
MLP Hidden Dim 512 Hidden Depth 3

MLP Hidden Depth 1 Num Modes 5
MLP Activation ReLU Activation ReLU

A.4.5 Data Augmentation937

We apply strong data augmentation during distillation. For point-cloud observations, random trans-938

lation and random jitter are independently applied with a probability Ppcd aug = 0.4. We also add939

Gaussian noises to proprioceptive observations. Augmentation parameters are listed in Table A.VIII.940

Table A.VIII: Data augmentation used in distillation.
Hyperparameter Value

Point Cloud

Augmentation Probability 0.4
Random Translation Distribution U(�0.04, 0.04)

Random Jittering Ratio 0.1
Random Jittering Distribution N (0, 0.01)

Random Jittering Low -0.015
Random Jittering High 0.015

Proprioception

Prop. Noise Distribution N (0, 0.1)
Prop. Noise Low -0.3
Prop. Noise High 0.3

A.4.6 Training Details941

To regularize point-cloud features, we separately collect a dataset containing 59 pairs of matched942

point clouds in simulation and reality. One pair from them is visualized in Fig A.2. Student policies943

are trained by minimizing the loss in Sec. 2.2, where we set � = 10�3. We use the Adam opti-944

mizer [112] with a learning rate of 10�4 during training. We periodically roll out student policies in945

simulation for 1, 000 episodes. We then select the checkpoint that corresponds to the highest success946

rate to use as the base policy in the real-world learning stage.947

26

Figure A.2: Visualization of paired point clouds in simulation (red) and reality (blue).

27

B Real-World Learning Details948

In this section, we provide details about real-world learning, including the hardware setup, human-949

in-the-loop data collection, and residual policy training.950

B.1 Hardware Setup951

As shown in Fig. A.3, our system consists of a Franka Emika 3 robot mounted on the tabletop.952

We use four fixed cameras and one wrist camera for point cloud reconstruction. They are three953

RealSense D435 and two RealSense D415. There is also a 3d-printed three-sided wall glued on954

top of the table to provide external support. We use a joint position controller from the Deoxys955

library [115] to control our robot at 1000 Hz.

Figure A.3: System setup. Our system consists of a Franka Emika 3 robot mounted on the tabletop,
four fixed cameras and one wrist camera (positioned at the rear side of the end-effector) for point
cloud reconstruction, and a 3d-printed three-sided wall glued onto tabletop to provide external sup-
port.

956

B.2 Obtaining Point Clouds from Multi-View Cameras957

We use multi-view cameras for point cloud reconstruction to avoid occlusions. Specifically, we first958

calibrate all cameras to obtain their poses in the robot base frame. We then transform captured point959

clouds in camera frames to the robot base frame and concatenate them together. We further per-960

form cropping based on coordinates and remove statistical and radius outliers. To identify points961

belonging to the gripper so that we can add gripper semantic labels (Sec. A.4.2), we compute poses962

for two gripper fingers through forward kinematics. We then remove measured points correspond-963

ing to gripper fingers through K-nearest neighbor, given fingers’ poses and synthetic point clouds.964

Subsequently, we add semantic labels to points belonging to the scene and synthetic gripper’s point965

28

Figure A.4: Visualization of real-world point-cloud observations. We obtain them by 1) cropping
point clouds fused from multi-view cameras based on coordinates, 2) removing statistical and radius
outliers, 3) removing points corresponding to gripper fingers and replacing with synthetic point
clouds through forward kinematics, 4) uniformly sampling without replacement, and 5) appending
semantic labels to indicate gripper fingers (red) and the scene (blue).

clouds. Finally, we uniformly down-sample without replacement. We opt to not use farthest point966

sampling [116] due to its slow speed. One example is shown in Fig. A.4.967

B.3 Human-in-the-Loop Data Collection968

This data collection procedure is illustrated in Algorithm 1. As shown in Fig. A.5, we use a 3Dcon-969

nexion SpaceMouse as the teleoperation device. We design a specific UI (Fig. A.6) to facilitate the970

synchronized data collection. Here, the human operator will be asked to intervene or not. The oper-971

ator answers through keyboard. If the operator does not intervene, the base policy’s next action will972

be deployed. If the operator decides to intervene, the SpaceMouse is then activated to teleoperate973

the robot. After the correction, the operator can exit the intervention mode by pressing one button974

on the SpaceMouse. We use this system and interface to collect 20, 100, 90, and 17 trajectories975

with correction for tasks Stabilize, Reach and Grasp, Insert, and Screw, respectively. We use 90%976

of them as training data and the remaining as held-out validation sets. We visualize the cumulative977

distribution function of human correction in Fig. A.7.978

Figure A.5: Real workspace setup for human-in-the-loop data collection. The human operator
provides online correction through a 3Dconnexion SpaceMouse while monitoring the robot’s exe-
cution.

B.4 Residual Policy Training979

B.4.1 Model Architecture980

The residual policy takes the same observations as the base policy (Table A.VI). Furthermore, to981

effectively predict residual actions, it is also conditioned on base policy’s outputs. Its action head982

outputs eight-dim vectors, while the first seven dimensions correspond to residual joint positions983

29

Algorithm 1: Human Intervention and Online Correction Data Collection
input : Base policy ⇡B , human policy ⇡H , real-world environment E

output : Human correction dataset D
H

initialize: D
H
 ;

o E .reset()
while not E .terminated do

. deploy the base policy for one step

aB aB ⇠ ⇡B(o)
onext E .deploy(aB)
. human decides intervention or not

1H
 ⇡H .intervene(o, onext)

if 1H then
qpre

 E .robot state
. deploy human correction

aH aH ⇠ ⇡H(o, onext)
onext E .deploy(aH)
qpost

 E .robot state
. update dataset

D
H
 D

H
[
�
qpre,qpost,1H , o

�

end
. update observation for the next step
o onext

end

and the last dimension determines whether to negate base policy’s gripper action or not. Besides,984

a separate intervention head predicts whether the residual action should be applied or not (learned985

gated residual policy, Sec. 2.4).986

For tasks Stabilize and Insert, we use a PointNet [81] as the point-cloud encoder. For tasks Reach987

and Grasp and Screw, we use a Perceiver [82, 83] as the point-cloud encoder. Residual policies988

are instantiated as feed-forward policies in all tasks. We use GMM as the action head and a simple989

two-way classifier as the intervention head. Model hyperparameters are summarized in Table A.IX.990

Table A.IX: Model hyperparameters for residual policies.
Hyperparameter Value Hyperparameter Value

PointNet Feature Fusion

PointNet Hidden Dim 256 MLP Hidden Dim 512
PointNet Hidden Depth 2 MLP Hidden Depth 1
PointNet Output Dim 256 MLP Activation ReLU
PointNet Activation GELU GMM Action Head

Gripper Semantic Embd Dim 128 Hidden Dim 128
Perceiver Hidden Depth 3

Perceiver Hidden Dim 256 Num Modes 5
Perceiver Number of Heads 8 Activation ReLU

Perceiver Number of Queries 8 Intervention Head
Gripper Semantic Embd Dim 128 Hidden Dim 128

Base Policy Action Conditioning Hidden Depth 3
Base Policy Gripper Action Embd Dim 64 Activation ReLU

30

(...)

system: need human intervention? (y/n)

user: n

(deploying the next action)

system: need human intervention? (y/n)

user: y

(correction through teleopeartion)

system: exiting human intervention...

(...)

Figure A.6: The UI for synchronized human-in-the-loop data collection.

0 50 100
Task Progress (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
of

P
co

rr
ec

ti
on

Stabilize

Reach and Grasp

Insert

Screw

Figure A.7: Cumulative distribution function (CDF) of human correction. Shaded regions rep-
resent standard deviation. Human correction happens at different times across tasks. This fact
necessitates TRANSIC’s learned gating mechanism.

B.4.2 Training Details991

To train the learned gated residual policy, we first only learn the feature encoder and the action head.992

We then freeze the entire model and only learn the intervention head. We opt for this two-stage993

training since we find that training both action and intervention heads at the same time will result994

in sub-optimal residual action prediction. We follow the best practice for policy training, including995

using learning rate warm-up and cosine annealing [117]. Training hyperparameters are listed in996

Table A.X.997

Table A.X: Hyperparameters used in residual policy training.
Hyperparameter Value

Learning Rate 10�4

Weight Decay 0
Learning Rate Warm Up Steps 1, 000

Learning Rate Cosine Decay Steps 100, 000
Minimal Learning Rate 10�6

Optimizer Adam

31

C Experiment Settings and Evaluation Details998

In this section, we provide details about our experiment settings and evaluation protocols.999

C.1 Task Definition1000

As shown in Fig. 3, we quantitatively benchmark four tasks. They are fundamental skills required1001

to assemble a square table from FurnitureBench [84]. We randomize objects’ initial poses during1002

evaluation.1003

• Stabilize: The robot pushes the square tabletop to the right corner of the wall such that it1004

remains stable in following assembly steps.1005

• Reach and Grasp: The robot reaches and grasps the table leg. It needs to properly adjust1006

the end effector’s orientation to avoid infeasible grasping poses.1007

• Insert: The robot inserts the pre-grasped table leg to the far right assembly hole of the1008

tabletop.1009

• Screw: The robot’s end-effector is initialized close to an inserted table leg and it screws the1010

table leg clockwise into the tabletop.1011

C.2 Main Experiments1012

We evaluate all methods on four tasks for 20 trials. Each trail starts with different objects and1013

robot poses. We make our best efforts to ensure the same initial settings when evaluating different1014

methods. Specifically, we take pictures for these 20 different initial configurations and refer to1015

them when resetting a new trial. See Figs. A.15, A.16, A.17, A.18 for initial configurations of tasks1016

Stabilize, Reach and Grasp, Insert, and Screw, respectively. We follow Liu et al. [90] to label reward1017

for IQL. Full numerical results are provided in Table A.XI.1018

Table A.XI: Success rates per tasks. TRANSIC outperforms all baseline methods in all four tasks.
Tasks TRANSIC

Direct
Transfer

DR. & Data
Aug. [52]

BC
Fine-Tune

IQL
Fine-Tune HG-Dagger [65] IWR [66] BC [85] BC-RNN [67] IQL [68]

Stabilize 100% 10% 35% 55% 0% 65% 65% 40% 40% 5%
Reach and Grasp 95% 35% 60% 35% 0% 30% 40% 25% 0% 5%

Insert 45% 0% 15% 15% 25% 35% 40% 10% 5% 0%
Screw 85% 0% 35% 50% 65% 40% 40% 15% 25% 0%

C.3 Experiments with Different Sim-to-Real Gaps1019

C.3.1 Experiment Setup1020

We explain how different sim-to-real gaps are created.1021

Perception Error This is done by applying random jitter to 25% points from point clouds, which1022

corresponds to adding noise in observation space O. We test this sim-to-real gap on the task Reach1023

and Grasp. As visualized in Fig. A.8, with probability P = 0.6, we apply random jitter to 25%1024

points from the point-cloud observation. The jittering noise is sampled independently from the1025

distribution N (0, 0.03). We clip the noise to be within the ± 0.03 range.1026

Underactuated Controller This is done by making the joint position controller less accurate,1027

which corresponds to mismatched action space A. We test this gap on the task Insert. We emulate1028

an underactuated controller through early stopping. Concretely, at every time a new joint position1029

goal qgoal is set, we record the distance to the goal in configuration space dq = kq � qgoalk1030

and sample a factor � ⇠ U(0.80, 0.95). The controller will stop reaching the desired goal once it1031

achieves � progress, i.e., stop early when kq� qgoalk  (1� �)dq. Fig. A.9 visualizes the effect.1032

32

(a) (b)

Figure A.8: Visualization of introduced perception error. a) The original point-cloud observation.
b) The erroneous point-cloud observation with random jitter.

�0.2 0.0 0.2
End-E�ector X Position (m)

�0.2

0.0

0.2
E

n
d
-E

�
ec

to
r

Y
P
os

it
io

n
(m

)

Reference Normal Controller Underactuated Controller

0

18

36

T
ra

je
ct

or
y

T
im

e
S
te

p
Figure A.9: Visualization of the trajectory realized by an underactuated controller. The plot
displays the end-effector’s position in the XY plane. It shows a reference circular movement, a
trajectory tracked by the normal controller, and a trajectory tracked by the underactuated controller.

Embodiment Mismatch This is done by changing the robot gripper to be shorter length as demon-1033

strated in Fig. A.10, which corresponds to discrepancy in state space S and transition function T .1034

We test this gap on the task Screw. We notice that the 9 cm length difference incurs a significant gap.1035

Dynamics Difference This is done by changing object surfaces and increasing friction, which1036

corresponds to different transition function T . We test this gap on the task Stabilize. Concretely, we1037

Figure A.10: Two different gripper fingers used to create embodiment mismatch. Policies are
trained with the longer finger and tested on the shorter finger.

33

(a) (b)

Figure A.11: Two square tabletops used to create dynamics difference. a) The original surface
is smooth. b) We attach friction tapes to change the dynamics.

(a) (b)

Figure A.12: Two objects used to create asset mismatch. a) Policies are trained with the table leg.
b) We test policies with an unseen light bulb.

attach friction tapes to the square tabletop’s surface to increase friction, hence change the dynamics1038

(Fig. A.11).1039

Object Assert Mismatch As shown in Fig. A.12, this is done by replacing the table leg with a1040

light bulb, which corresponds to change in emitting function ⌦. We test this gap on the task Reach1041

and Grasp.1042

C.3.2 Evaluation1043

We conduct 20 trails with different initial configurations. Initial conditions for first four experi-1044

ments are the same as main experiments (Figs. A.15, A.16, A.17, A.18). Fig. A.19 shows initial1045

configurations for the experiment Object Asset Mismatch.1046

C.4 Data Scalability Experiments1047

In Table A.XII, we show quantitative results for scalability with human correction dataset size on1048

four tasks.1049

C.5 Ablation Studies1050

C.5.1 Effects of Different Gating Mechanisms1051

We introduce the learned gated residual policy in Sec. 2.4 where the gating mechanism controls1052

when to apply residual actions. To assess the quality of learned gating, we compare its performance1053

with an actual human operator performing gating. Results are shown in Table 1 (row “w/ Human1054

34

Table A.XII: Quantitative results for scalability with human correction dataset size on four
tasks.

Method Correction Dataset Size (%)
0 25 50 75 100

Stabilize

TRANSIC 35% 80% 80% 100% 100%
IWR [66] 70% 75% 80% 65%

Reach and Grasp

TRANSIC 60% 65% 80% 90% 95%
IWR [66] 60% 65% 40% 40%

Insert

TRANSIC 5% 20% 35% 40% 45%
IWR [66] 5% 15% 30% 40%

Screw

TRANSIC 35% 50% 65% 75% 85%
IWR [66] 20% 40% 40% 40%

Gating”). It is evident that the learned gating mechanism only incurs negligible performance drops1055

compared to human gating. This suggests that TRANSIC can reliably operate in a fully autonomous1056

setting once the gating mechanism is learned.1057

C.5.2 Policy Robustness1058

We investigate the policy robustness against 1) point cloud observations with inferior quality by re-1059

moving two cameras, and 2) suboptimal correction data with noise injection. We remove two cam-1060

eras and only keep three. Note that this is the same number of cameras as in FurnitureBench [84].1061

For tasks other than Insert, we keep the wrist camera, the right front camera, and the left rear camera.1062

For the task Insert, we keep two front cameras and the left rear camera. We simulate suboptimal1063

correction data by injecting noise into residual actions aR. This noise is of large magnitude, which1064

follows the normal distribution with zero mean and standard deviation corresponding to 5% of the1065

largest residual action in the dataset. Results are shown in Table 1 (rows “Reduced Cameras” and1066

“Noisy Correction”). We highlight that TRANSIC is robust to partial point cloud inputs caused by1067

the reduced number of cameras. We attribute this to the heavy point cloud downsampling employed1068

during training. Fishman et al. [118] echos our finding that policies trained with downsampled syn-1069

thetic point cloud inputs can generalize to partial point cloud observations obtained in the real world1070

without the need for shape completion. Meanwhile, when the correction data used to learn residual1071

policies are suboptimal, TRANSIC only shows a relative decrease of 6% in the average success rate.1072

We attribute this to the advantage of our integrated deployment—when the residual policy behaves1073

suboptimally, the base policy could still compensate for the error in subsequent steps.1074

C.5.3 Consistency in Learned Visual Features1075

To learn consistent visual features between the simulation and reality, we propose to regularize the1076

point cloud encoder during the distillation stage. As shown in Table 1 (row “w/o Regularization”),1077

the performance significantly decreases without such regularization, especially for tasks that require1078

fine-grained visual features. Without it, simulation policies would overfit to synthetic point cloud1079

observations and hence are not ideal for sim-to-real transfer.1080

35

(a) Error Recovery (b) Unsticking

(c) Safety-aware Actions (d) Failure Prevention

Figure A.13: Emergent behaviors learned by TRANSIC. a) Error recovery. Left: The robot tries
to insert the table leg but the direction is wrong; Right: TRANSIC raises the end effector and moves
to the correct insertion position. b) Unsticking. Left: The robot hovers for a while and never reaches
the light bulb; Right: TRANSIC helps the robot get unstuck and move to the bulb. c) Safety-aware
actions. Left: When pushing the tabletop, the gripper is too low and bends. This might damage
the robot; Right: TRANSIC compensates for the command that causes the end effector to move too
low. d) Failure prevention. Left: The light bulb will fall and break after gripper opening; Right:
TRANSIC adjusts the bulb to a stable pose to prevent failure.

C.6 Qualitative Analysis and Emergent Behaviors1081

We examine the distribution of the collected human correction dataset. During the human-in-the-1082

loop data collection, the probability of intervening and correcting is reasonably low (Pcorrection ⇡1083

0.20). This is consistent with our intuition that, with a good base policy, interventions are not neces-1084

sary for most of the time. However, they become critical when the robot tends to behave abnormally1085

due to unaddressed sim-to-real gaps. Moreover, as highlighted in Fig. A.7, interventions happen1086

at different times across tasks. This fact renders heuristics-based methods [119] for deciding when1087

to intervene difficult, and further necessitates our learned residual policy. Several representative1088

behaviors learned by TRANSIC are demonstrated in Fig. A.13.1089

36

D Additional Experiment Results and Discussions1090

D.1 Empirical Justifications for Action Space Distillation1091

Reasons for the proposed action space distillation are twofold.1092

The first is mainly because an OSC is hard to sim-to-real transfer, while a joint position controller1093

can be seamlessly transferred. As suggested in Nakanishi et al. [73], an OSC requires accurate mod-1094

eling of robot parameters, such as the task-space inertia matrix and gravity compensation. System1095

identification helps but is insufficient. Furthermore, it is often the case that given the same joint1096

torque, the end-effector moves differently in simulation and the real world. Because an OSC uses a1097

task-space error to compute joint torques, this will lead to large joint position deviation.1098

The second is for better training efficiency. As shown in Fig. A.14, it is almost impossible to directly1099

train RL with point cloud inputs and joint position action space. Even after 7-day training, RL still1100

shows no sign of improvement. In contrast, TRANSIC takes around 3 days to train on NVIDIA1101

GeForce RTX 3090 GPUs. Therefore, the distillation is important to make the training feasible.1102

(a) Stabilize (b) Reach and Grasp

(c) Insert (d) Screw

Figure A.14: Learning curves for RL with point-cloud observations and joint position actions.

D.2 Distilling Simulation Base Policy with Diffusion Policy1103

We experiment with learning simulation base policies (Sec. 2.2) with the Diffusion Policy [105].1104

Concretely, when performing action space distillation to learn student policies, we replace the1105

Gaussian Mixture Model (GMM) action head with the Diffusion Policy. Proper data augmenta-1106

tion (Table A.VIII) is also applied to robustify learned policies. Hyperparameters are provided in1107

Table A.XIII.1108

Table A.XIII: Diffusion Policy hyperparameters.
Hyperparameter Value Hyperparameter Value

Architecture UNet To 2
UNet Hidden Dims [64, 128] Ta 8
UNet Kernel Size 5 Tp 16

UNet GroupNorm Num Groups 8 Num Denoising Steps (Train) 100
Diffusion Step Embd Dim 128 Num Denoising Steps (Eval) 16

37

The comparison between GMMs on the real robot is shown in Table. A.XIV. We highlight two find-1109

ings. First, the significant domain difference between simulation and reality generally exists regard-1110

less of different policy modeling methods. Second, since the Diffusion Policy plans and executes1111

a future trajectory, it is more vulnerable to simulation-to-reality gaps due to planning inaccuracy1112

and the consequent compounding error. Only executing the first action from the planned trajectory1113

and re-planning at every step may help, but the inference latency renders the real-time execution1114

infeasible.1115

Table A.XIV: The real-robot performance difference between GMM and Diffusion Policy. The
policy error caused by simulation-to-reality gaps will be amplified by the Diffusion Policy because
it plans and executes a future trajectory.

Average Stablize Reach
and Grasp Insert Screw

GMM 33.7% 35% 60% 5% 35%
Diffusion Policy 22.5% 35% 50% 5% 0%

D.3 Gating Mechanism Conceptual Comparison1116

Recall several design choices in the proposed gating mechanism: 1) takes inputs of unstructured1117

sensory observations (point cloud); 2) conditioned on base policy’s outputs for effective prediction;1118

3) the intervention classifier shares the same feature encoder with the residual policy; and 4) the1119

entire pipeline is learned end-to-end. We contrast against several mechanisms from the literature.1120

Table A.XV: Gating mechanism conceptual comparison.
How to decide

apply gating or not Input Condition on
base policy’s outputs

Shared
feature encoder

Ours End-to-end learned Point cloud
and proprioception Yes Yes

Residual Policy Learning [78] No gating Low-dimensional state No No
Residual RL [77] No gating Low-dimensional state No No

ThriftyDAgger [119] Thresholded based
on neural network ensemble Low-dimensional state No No

Runtime Monitoring [103] End-to-end learned RGB and proprioception No Yes

D.4 Long-Horizon Tasks Statistics1121

We show statistics about task length from FurnitureBench [84] in Table A.XVI.1122

Table A.XVI: Statistics about long-horizon tasks from FurnitureBench [84].
Number of Steps Average Human Demo Length

Lamp 594 2 Minutes
Square Table 1689 6 Minutes

38

E Extended Preliminaries1123

E.1 Problem Formulation1124

We formulate a robot manipulation task as an infinite-horizon discrete-time Partially Observable1125

Markov Decision Process (POMDP) M := (S,O,⌦,A, T , R, �, ⇢0), where S is the state space,1126

O is the observation space, and A is the action space. At time step t, a robot observes ot 2 O1127

emitted from observation function ⌦ (ot|st, at�1) : S⇥A! O, executes an action at, and receives1128

a scalar reward rt from the reward function R(st, at) : S ⇥ A ! R. The environment proceeds1129

to the next state governed by the transition function T (st+1|st, at) : S ⇥ A ! S . The robot1130

learns a parameterized policy ⇡✓ (·|o) : O ! �A to maximize the expected discounted return1131

J := E⌧⇠p⇡
✓
[
P1

t=0 �
trt] over induced trajectory distribution ⌧ := (s0, o0, a0, r0, ...) ⇠ p⇡✓

, where1132

s0 ⇠ ⇢0 is sampled from the initial state distribution. Additionally, � 2 [0, 1) is a discount factor.1133

In this work, we model simulation and real environments as two different POMDPs.1134

E.2 Intervention-Based Policy Learning1135

We adopt an intervention-based learning framework [65, 66, 90] where a human operator can inter-1136

vene and take control during the execution of the robot base policy ⇡B . Denote the human policy as1137

⇡H , the following combined policy is deployed during data collection:1138

⇡deployed = 1H⇡H +
�
1� 1H

�
⇡B , (A.7)

where 1H is a binary function indicating human interventions. Introducing a trajectory distribution1139

q(⌧) that consists of two observation-action distributions generated by the robot ⇢B and human1140

operator ⇢H , the original RL objective leads to the maximization of a variational lower bound on1141

logarithmic return [66, 120]:1142

J (✓, q) = Eq(⌧) [logR(⌧) + log p⇡✓
� log q(⌧)] , (A.8)

where p⇡✓
is the induced trajectory distribution. While the human operator optimizes Eq. A.81143

through intervention and correction, the robot learner maximizes it through1144

✓ = argmax
✓2⇥

E(o,a)⇠q(⌧) [log ⇡✓(a|o)] . (A.9)

Various intervention-based policy learning methods have been derived by weighting observation-1145

action pairs in Eq. A.9 differently. For example, HG-Dagger [65] completely ignores robot data D
B1146

and only trains on human data D
H that contain intervention samples. This is equivalent to q(⌧) /1147

⇢H . Intervention Weighted Regression (IWR) [66] balances the data distribution by emphasizing1148

human intervention: q(⌧) / ↵⇢H + ⇢B with ↵ = |D
B

|/|DH
|. Non-intervention-based methods1149

such as traditional behavior cloning (BC) [85] only learn on D
H with full human demonstrations1150

instead of intervention. This effectively sets q(⌧) / ⇢H .1151

39

F Extended Related Work1152

Robot Learning via Sim-to-Real Transfer Physics-based simulations [6–10, 49, 121–123] have1153

become a driving force [1, 2] for developing robotic skills in tabletop manipulation [124–127],1154

mobile manipulation [128–131], fluid and deformable object manipulation [132–135], dexterous1155

in-hand manipulation [13–17], locomotion with various robot morphology [18–26, 136], object1156

tossing [79], acrobatic flight [28, 29], etc. However, the domain gap between the simulators and1157

the reality is not negligible [10]. Successful sim-to-real transfer includes locomotion [18–27],1158

in-hand re-orientation for dexterous hands where objects are initially placed near the robot [13–17],1159

and non-prehensile manipulation limited to simple tasks [30–39]. In this work, we tackle more1160

challenging sim-to-real transfer for complex manipulation tasks and successfully demonstrate that1161

our approach can solve sophisticated contact-rich manipulation tasks. More importantly, it requires1162

significantly fewer real-robot data compared to the prevalent imitation learning and offline RL1163

approaches [67, 68, 85]. This makes solutions that are based on simulators and sim-to-real transfer1164

more appealing to roboticists.1165

Sim-to-Real Gaps in Manipulation Tasks Despite the complex manipulation skills recently1166

learned with RL in simulation [137], directly deploying learned control policies to physical robots1167

often fails. The sim-to-real gaps [10, 40, 44, 138] that contribute to this performance discrepancy can1168

be coarsely categorized as follows: a) perception gap [18, 41–43], where synthetic sensory observa-1169

tions differ from those measured in the real world; b) embodiment mismatch [18, 44, 45], where the1170

robot models used in simulation do not match the real-world hardware precisely; c) controller inac-1171

curacy [46–48], meaning that the results of deploying the same high-level commands (such as in con-1172

figuration space [139] and task space [140]) differ in simulation and real hardware; and d) poor phys-1173

ical realism [49], where physical interactions such as contact and collision are poorly simulated [86].1174

Although these gaps may not be fully bridged, traditional methods to address them include system1175

identification [18, 30, 50, 51], domain randomization [13, 52–54], real-world adaptation [55], and1176

simulator augmentation [57–59]. However, system identification is mostly engineered on a case-by-1177

case basis. Domain randomization suffers from the inability to identify and randomize all physical1178

parameters. Methods with real-world adaptation, usually through meta-learning [87], incur potential1179

safety concerns during the adaptation phase. Most of these approaches also rely on explicit and1180

domain-specific knowledge about tasks and the simulator a priori. For instance, to perform system1181

identification for closing the embodiment gap for a quadruped, Tan et al. [18] disassembles the1182

physical robot and carefully calibrates parameters including size, mass, and inertia. Kim et al. [32]1183

reports that collaborative robots, such as the commonly used Franka Emika robot, have intricate joint1184

friction that is hard to identify and randomized in typical physics simulators. To make a simulator1185

more akin to the real world, Chebotar et al. [39] deploys trained virtual robots multiple times to1186

refine the distributions of simulation parameters. This procedure not only introduces a significant1187

real-world sampling effort, but also incurs potential safety concerns due to deploying suboptimal1188

policies. In contrast, our method leverages human intervention data to implicitly overcome the1189

transferring problem in a domain-agnostic way and also leads to safer deployment.1190

Human-in-The-Loop Robot Learning Human-in-the-loop machine learning is a prevalent frame-1191

work to inject human knowledge into autonomous systems [61, 88, 89]. Various forms of human1192

feedback exist [62], ranging from passive judgement, such as preference [141–150] and evalua-1193

tion [151–156], to active involvement, including intervention [157–159] and correction [160, 161].1194

They are widely adopted in solutions for sequential decision-making tasks. For instance, interactive1195

imitation learning [65, 66, 90, 162] leverages human intervention and correction to help naı̈ve1196

imitators address data mismatch and compounding error. In the context of RL, reward functions can1197

be derived to better align agent behaviors with human preferences [144, 147, 148, 151]. Noticeably,1198

recent trend focuses on continually improving robots’ capability by iteratively updating and1199

deploying policies with human feedback [90], combining active human involvement with RL [161],1200

and autonomously generating corrective intervention data [91]. Our work further extends this trend1201

40

by showing that sim-to-real gaps can be effectively eliminated by using human intervention and1202

correction signals.1203

In shared autonomy, robots and humans share the control authority to achieve a common goal [63,1204

64, 92–94]. This control paradigm has been largely studied in assistive robotics and human-robot1205

collaboration [95–97]. In this work, we provide a novel perspective by employing it in sim-to-real1206

transfer of robot control policies and demonstrating its importance in attaining effective transfer.1207

41

Figure A.15: Initial settings for evaluating the task Stabilize.

Figure A.16: Initial settings for evaluating the task Reach and Grasp.

Figure A.17: Initial settings for evaluating the task Insert.

Figure A.18: Initial settings for evaluating the task Screw.

Figure A.19: Initial settings for the experiment Object Asset Mismatch.

42

	Introduction
	Sim-to-Real Policy Transfer by Learning from Online Correction
	Preliminaries
	Learning Base Policies in Simulation with RL
	Learning Residual Policies from Online Correction
	An Integrated Deployment Framework
	Implementation Details

	Experiments
	Tasks, Baselines, and Evaluation Protocol
	Results

	Related Work
	Limitations
	Conclusion
	Simulation Training Details
	The Simulator
	Task Implementations
	Stabilize
	Reach and Grasp
	Insert
	Screw

	Teacher Policy Training
	Model Details
	Domain Randomization
	RL Training Details

	Student Policy Distillation
	Data Generation
	Observation Space
	Action Space Distillation
	Model Architecture
	Data Augmentation
	Training Details

	Real-World Learning Details
	Hardware Setup
	Obtaining Point Clouds from Multi-View Cameras
	Human-in-the-Loop Data Collection
	Residual Policy Training
	Model Architecture
	Training Details

	Experiment Settings and Evaluation Details
	Task Definition
	Main Experiments
	Experiments with Different Sim-to-Real Gaps
	Experiment Setup
	Evaluation

	Data Scalability Experiments
	Ablation Studies
	Effects of Different Gating Mechanisms
	Policy Robustness
	Consistency in Learned Visual Features

	Qualitative Analysis and Emergent Behaviors

	Additional Experiment Results and Discussions
	Empirical Justifications for Action Space Distillation
	Distilling Simulation Base Policy with Diffusion Policy
	Gating Mechanism Conceptual Comparison
	Long-Horizon Tasks Statistics

	Extended Preliminaries
	Problem Formulation
	Intervention-Based Policy Learning

	Extended Related Work

