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Supplementary Materials — SPA:
A Graph Spectral Alignment Perspective for Domain Adaptation

In the appendix, we firstly provide more details of experiment setup in Section [A] including ex-
perimental environment and implementation details. In the Section [B} we offer more details of
experiments to unsupervised domain adaptation in Section and then show the extension on
semi-supervised domain adaptation in Section [B.2} Finally, we further give a detailed model analysis
of our SPA model in Section [B.3] including robust analysis, parameter sensitivity, the analysis of
transferability and discriminability, and finally more feature visualization.

A More Setup

Hardware and Software Configurations. All experiments are conducted on a server with the
following configurations:

* Operating System: Ubuntu 20.04.4 LTS
* CPU: Intel(R) Xeon(R) Platinum 8358P CPU @ 2.60GHz, 32 cores, 128 processors
* GPU: NVIDIA GeForce RTX 3090

More Implementation Details. We use PyTorch and tllib toolbox [12] to implement our method
and fine-tune ResNet pre-trained on ImageNet [[10, [11]. Following the standard protocols for
unsupervised domain adaptation in previous methods [20} 22]], we use the same backbone networks
for fair comparisons. For Office31 and OfficeHome dataset, we use ResNet-50 as the backbone
network. For VisDA2017 and DomainNet dataset, we use ResNet-101 as the backbone network.
Following previous work [20]], we adopt mini-batch stochastic gradient descent (SGD) to learn the
feature encoder by fine-tuning from the ImageNet pre-trained model with the learning rate 0.001,
and new layers, as bottleneck layer and classification layer. The learning rates of the layers trained
from scratch are set to be 0.01. We use the the same learning rate schedule in [20} 21]], including a
learning rate scheduler with a momentum of 0.9, a weight decay of 0.005, the bottleneck size of 256,
and batch size of 32.

We report main experimental results with the average accuracy over 5 random trials with the initial
seed 0. For transductive unsupervised domain adaptation, the reported accuracy is computed on
the complete unlabeled target data, following established protocol for UDA [[7, 21} |14} 13} 20]]. For
inductive unsupervised domain adaptation on DomainNet, the reported accuracy is computed on
the provided test dataset.. We use a standard batch size of 32 for both source and target in all
experiments and for all variants of our method. The reverse validation [19} 30] is conducted to select
hyper-parameters. For both unsupervised domain adaptation (UDA) and semi-supervised domain
adaptation (SSDA) scenarios, we fix the coefficient of £,,,s as 0.2 and the coefficient of L, as
1.0, while we will offer a sensitivity analysis for this two coefficients in the following section. More
details refer to our code in the supplemental materials.

B More Experiments

B.1 Unsupervised Domain Adaptation

In the main paper, we present the classification accuracy results on VisDA2017 dataset for unsuper-
vised domain adaptation and leave out per-category accuracy details. In the appendix, Table[T} we
give the full table on VisDA2017, using ResNet101 as backbone. Looking into this table, we can
find that our SPA model consistently outperforms most of domain adaptation methods. For classic
baselines, we improve DANN [7] by 30.3%, and CDAN [21]] by 14 %. For recent and state-of-the-art
baselines, our results is 4% higher than NWD [2] and 0.5 % better than FixBi [22]. Our SPA model
ranks top in 6 out of 12 categories, ranks top 2 in 9 out of 12 categories, and SPA also achieves the
best classification accuracy in total.
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Furthermore, in the main paper, we present the classification accuracy results on original DomainNet
with 365 categories. While the original DomainNet dataset has noisy labels, the previous work [25]]
use a subset of it that contains 126 categories from C, P, R and S, 4 domains in total, which we refer
to as DomainNet126. In the appendix, Table[2] we show the results on DomainNet126. Our SPA
model consistently ranks top among 12 tasks across 4 domains and achieves the best accuracy of 77.1
%, which is 12.3 % better than the second one. For classic baselines, we improve DANN [7] by 20.2
%, and CDAN [21]] by 16 %.

Table 1: Per-category Accuracy (%) on VisDA2017 for unsupervised domain adaptation, using
ResNet101 as backbone. All the results are based on ResNet101 except those with mark . which are
based on ResNet50. The best accuracy is indicated in bold and the second best one is underlined.

Method | aero bike bus car horse knife motor person plant skate train truck | Avg.
Source Only [10] | 55.1 533 619 59.1 80.6 179 79.7 312 810 265 735 85 | 524
DANN [7] 819 777 828 443 812 295 65.1 286 519 546 828 7.8 | 574
CDAN [21] 852 669 83.0 508 842 749 88.1 745 834 760 819 38.0 | 73.7
MixMatch [I] 939 71.8 935 821 953 0.7 90.8 381 945 960 863 22 | 704
BSP [3] 924 61.0 81.0 575 89.0 80.6 90.1 77.0 842 779 821 384 | 759
NPL [17] 909 746 732 558 89.6 646 868 68.7 90.7 648 895 477 | 747
GVB [3] - - - - - - - - - - - - | 75.3f
MCC [14] 922 829 768 666 909 785 879 73.8  90.1 76.1 87.1 41.0 | 788
BNM [4] 93.6 683 789 703 91.1 8.8 93.0 787 909 765 89.1 409 | 795
ATDOC [20] 953 847 824 756 958 977 887 766 940 917 915 619 | 863
FixBi [22] 96.1 87.8 90.5 903 968 953 928 88.7 972 942 909 257 | 872
SDAT [24] 948 77.1 828 609 923 952 917 799 899 912 885 412 | 821
NWD 2] 96.1 827 768 714 925 968 82 813 922 887 841 537 | 837
SPA (Ours) | 985 922 863 630 975 954 935 80.7 972 952 911 614 | 877

Table 2: Classification Accuracy (%) on DomainNet126 for unsupervised domain adaptation, using
ResNet101 as backbone. The best accuracy is indicated in bold and the second best one is underlined.

Method \ C—-p C—-»R C—=S P—-C P—-R P=S R—-C R—=P R—=S S—=C S—P S—=R \ Avg.
Source Only [10] | 384 509 439 503 667 399 546 579 437 525 435 483 | 492
DANN [7] 465 582 516 527 642 529 617 603 539 627 567 61.6 | 569
MCD [26] 437 557 476 519 678 450 529 573 404 563 508 568 | 52.3
BSP [3] 457 587 555 486 652 486 552 60.8 486 568 558 614 | 551
CDAN [21] 509 616 548 594 685 555 704 669 5777 642 59.1 643 | 61.1
SAFN [29] 50.0 587 524 563 737 535 558 648 485 607 595 643 | 582
RSDA [9] 455 566 46,6 457 604 486 546 615 509 561 540 58.6 | 534
PAN [28] 588 652 546 575 705 531 676 667 559 644 602 666 | 61.8
MemSAC [15] 53.6 665 588 632 712 581 732 705 615 688 641 676 | 64.8

SPA (Ours)

735 840 706 765 859 719 766 770 698 783 768 839 | 77.1

Table 3: Classification Accuracy (%) on DomainNet126 for 1-shot and 3-shot semi-supervised
domain adaptation, using ResNet34 as backbone. The best accuracy is indicated in bold and the
second best one is underlined.

Method C—S P—C P—R R—C R—P R—S S—P Avg.
1- 3- 1- 3- 1- 3- 1- 3- 1- 3- 1- 3- 1- 3- 1- 3-

S+ T [10] 548 579 592 63.0 737 756 612 639 645 663 520 560 604 622|608 63.6
DANN [7] 528 554 703 722 563 59.6 582 598 614 628 522 549 574 599|584 60.7
ENT [8] 546 600 654 71.1 750 786 652 71.0 659 692 521 61.1 597 621|626 67.6
MME [25] 563 618 69.0 717 76.1 785 70.0 722 677 69.7 610 619 648 668 | 66.4 689
APE [16] 56.7 63.1 729 767 766 794 704 766 708 721 630 67.8 645 66.1 | 67.6 71.7
BIAT [13] 579 615 716 746 770 786 730 749 680 688 585 62.1 639 675|67.1 697
MixMatch [1] | 59.3 62.7 66.7 687 748 788 694 726 678 688 625 656 663 67.1| 667 692
NPL [17] 625 645 676 707 783 793 709 729 692 707 620 648 67.0 68.6 | 682 702
BNM [4] 584 626 694 727 710 795 69.8 737 698 712 614 651 641 67.6| 671 703
MCC [14] 56.8 605 628 665 753 765 655 672 669 68.1 576 598 634 650|640 662
ATDOC [20] | 65.6 66.7 72.8 742 812 812 749 769 713 725 652 646 68.7 708|714 724
AESL [23] 595 652 746 762 724 741 748 713 794 805 662 69.5 66.6 69.6 | 705 73.2

SPA (Ours) | 659 67.0 748 765 811 823 753 760 718 722 658 672 69.8 711|721 732
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Table 4: Classification Accuracy (%) on OfficeHome for 1-shot and 3-shot semi-supervised domain
adaptation, using ResNet34 as backbone. The best accuracy is indicated in bold and the second best
one is underlined.

Method (1-shot) ‘ A—-C A—-P A—-R C—A C—P C—»R P—-A P—-C P—-R R—-A R—=C R—P ‘ Avg.

S+ T [10] 52.1 78.6 66.2 74.4 48.3 57.2 69.8 50.9 73.8 70.0 56.3 68.1 63.8
DANN [7] 53.1 74.8 64.5 68.4 51.9 55.7 67.9 52.3 73.9 69.2 54.1 66.8 | 62.7
ENT [8] 53.6 81.9 70.4 799 519 63.0 75.0 52.9 76.7 73.2 63.2 73.6 67.9
MME [25] 61.9 82.8 71.2 79.2 57.4 64.7 75.5 59.6 77.8 74.8 65.7 74.5 70.4
APE [16] 60.7 81.6 72.5 78.6 58.3 63.6 76.1 53.9 75.2 72.3 63.6 69.8 | 68.9
CDAC [18] 61.9 83.1 72.7 80.0 59.3 64.6 759 612 785 75.3 64.5 75.1 | 71.0
SPA (Ours) ‘ 62.3 76.7 79.0 66.6 7.3 76.4 65.7 59.1 80.7 71.4 65.2 84.1 ‘ 72.0
Method (3-shot) | A-C A—P A—R C—A C—P C—R P—A P—C P—-R R—A R—=C R—P | Avg
S+ T [10] 55.7 80.8 67.8 73.1 53.8 63.5 73.1 54.0 74.2 68.3 57.6 72.3 | 66.2
DANN [7] 57.3 75.5 65.2 69.2 51.8 56.6 68.3 54.7 73.8 67.1 55.1 67.5 | 63.5
ENT [8] 62.6 85.7 70.2 79.9 60.5 63.9 79.5 61.3 79.1 76.4 64.7 79.1 71.9
MME [25] 646 85 713 801 646 655 790 636 797 166 612 793 | 73.1
APE [16] 664 862 734 8.0 652 661 811 639 802 768 66.6 79.9 | 74.0
CDAC [18] 67.8 85.6 72.2 81.9 67.0 67.5 80.3 659 80.6 80.2 67.4 814 | 742
SPA (Ours) ‘ 63.1 81.0 80.2 68.5 81.7 71.5 69.5 652  82.0 73.9 67.2 87.0 ‘ 74.7

B.2 Semi-supervised Domain Adaptation

We also extend our SPA model to semi-superivsed domain adaptation (SSDA) scenario and conduct
experiments on 1-shot and 3-shot setting, and S + 7" in SSDA task means the model trained only by
the labeled source and target data.

We present the classificaition accuracy results on DomainNet126 and OfficeHome datasets for SSDA
scenario in the Table[3]and Table[d]respectively. Looking at the details, Table[3]shows the classification
results for 1-shot and 3-shot SSDA setting on DomainNet126 dataset. For the 1-shot setting, our SPA
model can improve DANN [7] by 13.7 % and ENT [8]] by 9.5 %. our SPA consistently ranks top
among 4 out of 7 tasks and ranks top 2 among all tasks, achieving the best accuracy of 72.1 %, which
is better 1.6 % then the second one. For the 3-shot setting, our SPA model can improve DANN [7] by
12.5 % and ENT [8] by 5.6 %. SPA achieves the best accuracy of 73.2 %, comparable with recent
work AESL [23]].

Furthermore, Table ] shows the classification results for 1-shot and 3-shot SSDA setting on Office-
Home dataset. To verify that our SPA model can also generalize to SSDA scenario, we compare SPA
with several classic and recent baselines. The first section of the table shows our SPA model can
improve DANN [[7] by 9.3 % and ENT [8]] by 4.1 % in the 1-shot setting. The second section shows
our SPA model can improve DANN [7]] by 11.2 % and ENT [J] by 2.8 % in the 3-shot setting. This
shows that our SPA model can greatly improve the classic baselines and achieve comparable results
with CDAC [18]].

B.3 Model Analysis

Robustness Analysis. In the main paper, we have already verified the robustness of SPA to different
graph structures on OfficeHome dataset. In the appendix, we further show the experimental results
on Office31 dataset in Table[5] Similarly, we conduct experiments on different types of Laplacian
matrix, similarity metric of graph relations, and k number of nearest neighbors of KNN classification
methods. The Laplacian matrices are chosen from the random walk laplacian matrix L, = DA,
and the symmetrically normalized Laplacian matrix Ly, = I — D~/2AD~1/2 where D denotes
the degree matrix based on the adjacency matrix A. In addition, the similarity metrics are chosen from
cosine similarity and Gaussian similarity, and different £ = 3,5 when applying KNN classification
algorithm. From Table[5] We can find that different types of Laplacian matrix still lead to comparable
results. As for the similarity metric, the Gaussian similarity brings better performance than cosine
similarity. On Office31 dataset, 5-NN graphs is superior than 3-NN graphs when combining with
L%, and comparable when combining with L,,,,,. For all these aforementioned experiments results,
the differences between them are within 1% around, confirming the robustness of SPA.
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Table 5: Classification Accuracy (%) on OfficeHome for unsupervised domain adaptation. The table
is divided into three sections corresponding to robustness analysis, and parameter sensitivity, each
separated by a double horizontal line.

Method | A.D AW D—A D—-W WA W=D | Avg
8=0.1 94.2 95.1 76.6 98.9 78.6 99.6 | 90.5
£8=03 94.0 96.2 76.9 98.9 79.3 99.8 | 90.8
=05 94.0 96.4 71.9 99.0 78.0 99.8 90.8
8=0.7 94.4 96.0 79.0 98.6 80.3 100. | 914
8=0.8 94.2 95.7 76.1 98.6 78.3 99.8 | 90.5
L,k W/ cos 93.8 95.0 76.3 98.6 79.7 100. | 90.6

L,k W/ gauss | 95.0 95.6 78.2 98.6 80.0 99.8 91.2
Lyym W/ cos 93.8 93.8 78.5 98.6 79.9 100. 90.8
Lgym W/ gauss | 93.8 95.6 79.4 98.6 78.8 99.8 91.0

Lywr W k=3 93.8 95.2 78.3 98.9 80.4 99.8 | 91.1
Lyyr W k=5 93.8 95.0 76.3 98.6 79.7 100. | 90.6
Lyym W/ k=3 94.0 95.8 75.2 99.0 80.5 100. | 90.7
Lyym W/ k=5 93.8 93.8 78.5 98.6 79.9 100. | 90.8

Parameter Sensitivity. In the main paper, we have already analyzed the experiments on the
hyperparameter 3 of exponential moving averaging strategy for memory updates and verify that SPA
is insensitive to this hyperparameter. Here, we show the experimental results on Office31 dataset in
Table[5} Similarly, we design experiments on the hyperparameter /3 of exponential moving averaging
strategy for memory updates, choosing 5 = 0.1, 0.3, 0.5, 0.7, 0.9 respectively. These results are based
on DANN [7]. From the series of results, we can find that in Office31 dataset, the choice of 5 = 0.7
outperforms than others. In addition, the differences between these results are within 1.0%, which
means that SPA is relatively stable to this hyperparameter.

Furthermore, we design experiments for the coefficient of £, and the coefficient of L5, to analyze
the stability of SPA. The experimental results are shown in the Figure[2] These results are based
on DANN [7]. Fixing the coefficient of £,,,s = 0.2, the coefficient of L, changes from 0.1 to 0.9.
Fixing the coefficient of £, = 1.0, the coefficient of £,,, changes from 0.1 to 0.9. From the series
of results, we can find that in OfficeHome dataset, the choice of different coefficients result in similar
results, which means that SPA is insensitive to these coefficients.

70 70
60| &-comm—=cEmcms T T m e e _ 60 &-cmmm==Em—mo o T T e
;\; - "——————'_1 :\; Cd o——_____:’
> >
] ]
3 3
< 50 £ 50
- e - coefficient of £, - e - coefficient of £,
— e - coefficient of £, - o - coefficient of £, 4
4 4
0 0.1 0.3 0.5 0.7 0.9 0 0.1 0.3 0.5 0.7 0.9
(@A—=C b C—-R

Figure 1: Parameter Sensitivity. The line plot of the coefficient of £, and the coefficient of L,
change from 0.1 to 0.9, leading to different accuracy results. The experiments are conducted on
OfficeHome dataset, where (a) is A — C setting and (b) is C — R setting.

Transferability and Discriminability. The .4-distance [27] measures the distribution discrepancy
that is defined as d 4 = 2 (1 — 2¢), where ¢ is the classifier loss to discriminate the souce and target
domains. Smaller A-distance indicates better domain-invariant features. Figure[2a] shows that SPA
can achieve a lower d 4, implying a lower generalization error. Furthermore, following previous work
[3], we further offer the source accuracy and target accuracy specifically, in Figure [2b]and Figure
We can find that various methods achieve similar results of source accuracy, and SPA can always
achieve higher target accuracy. Combined with the experimental results in Figure [2a] this reveals that
SPA enhances transferability while still keep a strong discriminability. Back to our Introduction, this



109 means that SPA can find a more suitable utilization of intra-domain information and inter-domain
110 information to properly align target samples.
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Figure 2: Transferability and Discriminability. We compare SPA with DANN [7]], BSP [3]] and NPL
[17] on OfficeHome dataset, where (a) is A-distance in A — C and C — R setting, (b) is accuracy
results in A — C setting and (c) is accuracy results in C — R setting.

111 Feature Visualization. To demonstrate the learning ability of SPA, we visualize the features of
112 DANN [7]], BSP [4]], NPL [17] and SPA with the t-SNE embedding [6] under the C — R setting
113 of OfficeHome Dataset in the main paper, referred as Figure [§ In the appendix, we offer more
114 visualization figures, including Figure [3|in A — D setting and Figure [ in A — W setting on
115 Office31 dataset, Figure[5]in A — C setting on OfficeHome dataset. According to all the figures, the
116 observations are consistent that the source features and target features learned by SPA are transferred
117 better. These observations imply the superiority of SPA over discriminability and transferability in
118 unsupervised domain adaptation scenario.

(a) DANN (b) BSP (c) NPL (d) SPA

Figure 3: Feature Visualization. the t-SNE plot of DANN [7], BSP [4], NPL [17]], and SPA features
on office31 dataset in the A — D setting. We use red markers for source domain features and blue
markers for target domain features.
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Figure 4: Feature Visualization. the t-SNE plot of DANN [7], BSP [4], NPL [17]], and SPA features
on Office31 dataset in the A — W setting. We use red markers for source domain features and blue
markers for target domain features.
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(a) DANN (b) BSP (c) NPL (d) SPA

Figure 5: Feature Visualization. the t-SNE plot of DANN [7], BSP [4], NPL [17], and SPA features
on OfficeHome dataset in the A — C setting. We use red markers for source domain features and
blue markers for target domain features.

(a) DANN (b) BSP (c) NPL (d) SPA

Figure 6: Feature Visualization. the t-SNE plot of DANN [7], BSP [4]], NPL [17], and SPA features
on OfficeHome dataset in the C — R setting. We use red markers for source domain features and
blue markers for target domain features.
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