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In the appendix, we firstly provide more details of experiment setup in Section A, including ex-4

perimental environment and implementation details. In the Section B, we offer more details of5

experiments to unsupervised domain adaptation in Section B.1, and then show the extension on6

semi-supervised domain adaptation in Section B.2. Finally, we further give a detailed model analysis7

of our SPA model in Section B.3, including robust analysis, parameter sensitivity, the analysis of8

transferability and discriminability, and finally more feature visualization.9

A More Setup10

Hardware and Software Configurations. All experiments are conducted on a server with the11

following configurations:12

• Operating System: Ubuntu 20.04.4 LTS13

• CPU: Intel(R) Xeon(R) Platinum 8358P CPU @ 2.60GHz, 32 cores, 128 processors14

• GPU: NVIDIA GeForce RTX 309015

More Implementation Details. We use PyTorch and tllib toolbox [12] to implement our method16

and fine-tune ResNet pre-trained on ImageNet [10, 11]. Following the standard protocols for17

unsupervised domain adaptation in previous methods [20, 22], we use the same backbone networks18

for fair comparisons. For Office31 and OfficeHome dataset, we use ResNet-50 as the backbone19

network. For VisDA2017 and DomainNet dataset, we use ResNet-101 as the backbone network.20

Following previous work [20], we adopt mini-batch stochastic gradient descent (SGD) to learn the21

feature encoder by fine-tuning from the ImageNet pre-trained model with the learning rate 0.001,22

and new layers, as bottleneck layer and classification layer. The learning rates of the layers trained23

from scratch are set to be 0.01. We use the the same learning rate schedule in [20, 21], including a24

learning rate scheduler with a momentum of 0.9, a weight decay of 0.005, the bottleneck size of 256,25

and batch size of 32.26

We report main experimental results with the average accuracy over 5 random trials with the initial27

seed 0. For transductive unsupervised domain adaptation, the reported accuracy is computed on28

the complete unlabeled target data, following established protocol for UDA [7, 21, 14, 3, 20]. For29

inductive unsupervised domain adaptation on DomainNet, the reported accuracy is computed on30

the provided test dataset.. We use a standard batch size of 32 for both source and target in all31

experiments and for all variants of our method. The reverse validation [19, 30] is conducted to select32

hyper-parameters. For both unsupervised domain adaptation (UDA) and semi-supervised domain33

adaptation (SSDA) scenarios, we fix the coefficient of Lnas as 0.2 and the coefficient of Lgsa as34

1.0, while we will offer a sensitivity analysis for this two coefficients in the following section. More35

details refer to our code in the supplemental materials.36

B More Experiments37

B.1 Unsupervised Domain Adaptation38

In the main paper, we present the classification accuracy results on VisDA2017 dataset for unsuper-39

vised domain adaptation and leave out per-category accuracy details. In the appendix, Table 1, we40

give the full table on VisDA2017, using ResNet101 as backbone. Looking into this table, we can41

find that our SPA model consistently outperforms most of domain adaptation methods. For classic42

baselines, we improve DANN [7] by 30.3%, and CDAN [21] by 14 %. For recent and state-of-the-art43

baselines, our results is 4% higher than NWD [2] and 0.5 % better than FixBi [22]. Our SPA model44

ranks top in 6 out of 12 categories, ranks top 2 in 9 out of 12 categories, and SPA also achieves the45

best classification accuracy in total.46
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Furthermore, in the main paper, we present the classification accuracy results on original DomainNet47

with 365 categories. While the original DomainNet dataset has noisy labels, the previous work [25]48

use a subset of it that contains 126 categories from C, P, R and S, 4 domains in total, which we refer49

to as DomainNet126. In the appendix, Table 2, we show the results on DomainNet126. Our SPA50

model consistently ranks top among 12 tasks across 4 domains and achieves the best accuracy of 77.151

%, which is 12.3 % better than the second one. For classic baselines, we improve DANN [7] by 20.252

%, and CDAN [21] by 16 %.53

Table 1: Per-category Accuracy (%) on VisDA2017 for unsupervised domain adaptation, using
ResNet101 as backbone. All the results are based on ResNet101 except those with mark †, which are
based on ResNet50. The best accuracy is indicated in bold and the second best one is underlined.

Method aero bike bus car horse knife motor person plant skate train truck Avg.

Source Only [10] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DANN [7] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
CDAN [21] 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.7
MixMatch [1] 93.9 71.8 93.5 82.1 95.3 0.7 90.8 38.1 94.5 96.0 86.3 2.2 70.4
BSP [3] 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9
NPL [17] 90.9 74.6 73.2 55.8 89.6 64.6 86.8 68.7 90.7 64.8 89.5 47.7 74.7
GVB [5] - - - - - - - - - - - - 75.3†

MCC [14] 92.2 82.9 76.8 66.6 90.9 78.5 87.9 73.8 90.1 76.1 87.1 41.0 78.8
BNM [4] 93.6 68.3 78.9 70.3 91.1 82.8 93.0 78.7 90.9 76.5 89.1 40.9 79.5
ATDOC [20] 95.3 84.7 82.4 75.6 95.8 97.7 88.7 76.6 94.0 91.7 91.5 61.9 86.3
FixBi [22] 96.1 87.8 90.5 90.3 96.8 95.3 92.8 88.7 97.2 94.2 90.9 25.7 87.2
SDAT [24] 94.8 77.1 82.8 60.9 92.3 95.2 91.7 79.9 89.9 91.2 88.5 41.2 82.1
NWD [2] 96.1 82.7 76.8 71.4 92.5 96.8 88.2 81.3 92.2 88.7 84.1 53.7 83.7

SPA (Ours) 98.5 92.2 86.3 63.0 97.5 95.4 93.5 80.7 97.2 95.2 91.1 61.4 87.7

Table 2: Classification Accuracy (%) on DomainNet126 for unsupervised domain adaptation, using
ResNet101 as backbone. The best accuracy is indicated in bold and the second best one is underlined.

Method C→P C→R C→S P→C P→R P→S R→C R→P R→S S→C S→P S→R Avg.

Source Only [10] 38.4 50.9 43.9 50.3 66.7 39.9 54.6 57.9 43.7 52.5 43.5 48.3 49.2
DANN [7] 46.5 58.2 51.6 52.7 64.2 52.9 61.7 60.3 53.9 62.7 56.7 61.6 56.9
MCD [26] 43.7 55.7 47.6 51.9 67.8 45.0 52.9 57.3 40.4 56.3 50.8 56.8 52.3
BSP [3] 45.7 58.7 55.5 48.6 65.2 48.6 55.2 60.8 48.6 56.8 55.8 61.4 55.1
CDAN [21] 50.9 61.6 54.8 59.4 68.5 55.5 70.4 66.9 57.7 64.2 59.1 64.3 61.1
SAFN [29] 50.0 58.7 52.4 56.3 73.7 53.5 55.8 64.8 48.5 60.7 59.5 64.3 58.2
RSDA [9] 45.5 56.6 46.6 45.7 60.4 48.6 54.6 61.5 50.9 56.1 54.0 58.6 53.4
PAN [28] 58.8 65.2 54.6 57.5 70.5 53.1 67.6 66.7 55.9 64.4 60.2 66.6 61.8
MemSAC [15] 53.6 66.5 58.8 63.2 71.2 58.1 73.2 70.5 61.5 68.8 64.1 67.6 64.8

SPA (Ours) 73.5 84.0 70.6 76.5 85.9 71.9 76.6 77.0 69.8 78.3 76.8 83.9 77.1

Table 3: Classification Accuracy (%) on DomainNet126 for 1-shot and 3-shot semi-supervised
domain adaptation, using ResNet34 as backbone. The best accuracy is indicated in bold and the
second best one is underlined.

Method C→S P→C P→R R→C R→P R→S S→P Avg.
1- 3- 1- 3- 1- 3- 1- 3- 1- 3- 1- 3- 1- 3- 1- 3-

S + T [10] 54.8 57.9 59.2 63.0 73.7 75.6 61.2 63.9 64.5 66.3 52.0 56.0 60.4 62.2 60.8 63.6
DANN [7] 52.8 55.4 70.3 72.2 56.3 59.6 58.2 59.8 61.4 62.8 52.2 54.9 57.4 59.9 58.4 60.7
ENT [8] 54.6 60.0 65.4 71.1 75.0 78.6 65.2 71.0 65.9 69.2 52.1 61.1 59.7 62.1 62.6 67.6
MME [25] 56.3 61.8 69.0 71.7 76.1 78.5 70.0 72.2 67.7 69.7 61.0 61.9 64.8 66.8 66.4 68.9
APE [16] 56.7 63.1 72.9 76.7 76.6 79.4 70.4 76.6 70.8 72.1 63.0 67.8 64.5 66.1 67.6 71.7
BiAT [13] 57.9 61.5 71.6 74.6 77.0 78.6 73.0 74.9 68.0 68.8 58.5 62.1 63.9 67.5 67.1 69.7
MixMatch [1] 59.3 62.7 66.7 68.7 74.8 78.8 69.4 72.6 67.8 68.8 62.5 65.6 66.3 67.1 66.7 69.2
NPL [17] 62.5 64.5 67.6 70.7 78.3 79.3 70.9 72.9 69.2 70.7 62.0 64.8 67.0 68.6 68.2 70.2
BNM [4] 58.4 62.6 69.4 72.7 77.0 79.5 69.8 73.7 69.8 71.2 61.4 65.1 64.1 67.6 67.1 70.3
MCC [14] 56.8 60.5 62.8 66.5 75.3 76.5 65.5 67.2 66.9 68.1 57.6 59.8 63.4 65.0 64.0 66.2
ATDOC [20] 65.6 66.7 72.8 74.2 81.2 81.2 74.9 76.9 71.3 72.5 65.2 64.6 68.7 70.8 71.4 72.4
AESL [23] 59.5 65.2 74.6 76.2 72.4 74.1 74.8 77.3 79.4 80.5 66.2 69.5 66.6 69.6 70.5 73.2
SPA (Ours) 65.9 67.0 74.8 76.5 81.1 82.3 75.3 76.0 71.8 72.2 65.8 67.2 69.8 71.1 72.1 73.2
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Table 4: Classification Accuracy (%) on OfficeHome for 1-shot and 3-shot semi-supervised domain
adaptation, using ResNet34 as backbone. The best accuracy is indicated in bold and the second best
one is underlined.

Method (1-shot) A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg.

S + T [10] 52.1 78.6 66.2 74.4 48.3 57.2 69.8 50.9 73.8 70.0 56.3 68.1 63.8
DANN [7] 53.1 74.8 64.5 68.4 51.9 55.7 67.9 52.3 73.9 69.2 54.1 66.8 62.7
ENT [8] 53.6 81.9 70.4 79.9 51.9 63.0 75.0 52.9 76.7 73.2 63.2 73.6 67.9
MME [25] 61.9 82.8 71.2 79.2 57.4 64.7 75.5 59.6 77.8 74.8 65.7 74.5 70.4
APE [16] 60.7 81.6 72.5 78.6 58.3 63.6 76.1 53.9 75.2 72.3 63.6 69.8 68.9
CDAC [18] 61.9 83.1 72.7 80.0 59.3 64.6 75.9 61.2 78.5 75.3 64.5 75.1 71.0

SPA (Ours) 62.3 76.7 79.0 66.6 77.3 76.4 65.7 59.1 80.7 71.4 65.2 84.1 72.0

Method (3-shot) A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg.

S + T [10] 55.7 80.8 67.8 73.1 53.8 63.5 73.1 54.0 74.2 68.3 57.6 72.3 66.2
DANN [7] 57.3 75.5 65.2 69.2 51.8 56.6 68.3 54.7 73.8 67.1 55.1 67.5 63.5
ENT [8] 62.6 85.7 70.2 79.9 60.5 63.9 79.5 61.3 79.1 76.4 64.7 79.1 71.9
MME [25] 64.6 85.5 71.3 80.1 64.6 65.5 79.0 63.6 79.7 76.6 67.2 79.3 73.1
APE [16] 66.4 86.2 73.4 82.0 65.2 66.1 81.1 63.9 80.2 76.8 66.6 79.9 74.0
CDAC [18] 67.8 85.6 72.2 81.9 67.0 67.5 80.3 65.9 80.6 80.2 67.4 81.4 74.2

SPA (Ours) 63.1 81.0 80.2 68.5 81.7 77.5 69.5 65.2 82.0 73.9 67.2 87.0 74.7

B.2 Semi-supervised Domain Adaptation54

We also extend our SPA model to semi-superivsed domain adaptation (SSDA) scenario and conduct55

experiments on 1-shot and 3-shot setting, and S + T in SSDA task means the model trained only by56

the labeled source and target data.57

We present the classificaition accuracy results on DomainNet126 and OfficeHome datasets for SSDA58

scenario in the Table 3 and Table 4 respectively. Looking at the details, Table 3 shows the classification59

results for 1-shot and 3-shot SSDA setting on DomainNet126 dataset. For the 1-shot setting, our SPA60

model can improve DANN [7] by 13.7 % and ENT [8] by 9.5 %. our SPA consistently ranks top61

among 4 out of 7 tasks and ranks top 2 among all tasks, achieving the best accuracy of 72.1 %, which62

is better 1.6 % then the second one. For the 3-shot setting, our SPA model can improve DANN [7] by63

12.5 % and ENT [8] by 5.6 %. SPA achieves the best accuracy of 73.2 %, comparable with recent64

work AESL [23].65

Furthermore, Table 4 shows the classification results for 1-shot and 3-shot SSDA setting on Office-66

Home dataset. To verify that our SPA model can also generalize to SSDA scenario, we compare SPA67

with several classic and recent baselines. The first section of the table shows our SPA model can68

improve DANN [7] by 9.3 % and ENT [8] by 4.1 % in the 1-shot setting. The second section shows69

our SPA model can improve DANN [7] by 11.2 % and ENT [8] by 2.8 % in the 3-shot setting. This70

shows that our SPA model can greatly improve the classic baselines and achieve comparable results71

with CDAC [18].72

B.3 Model Analysis73

Robustness Analysis. In the main paper, we have already verified the robustness of SPA to different74

graph structures on OfficeHome dataset. In the appendix, we further show the experimental results75

on Office31 dataset in Table 5. Similarly, we conduct experiments on different types of Laplacian76

matrix, similarity metric of graph relations, and k number of nearest neighbors of KNN classification77

methods. The Laplacian matrices are chosen from the random walk laplacian matrix Lrwk = D−1A,78

and the symmetrically normalized Laplacian matrix Lsym = I−D−1/2AD−1/2, where D denotes79

the degree matrix based on the adjacency matrix A. In addition, the similarity metrics are chosen from80

cosine similarity and Gaussian similarity, and different k = 3, 5 when applying KNN classification81

algorithm. From Table 5, We can find that different types of Laplacian matrix still lead to comparable82

results. As for the similarity metric, the Gaussian similarity brings better performance than cosine83

similarity. On Office31 dataset, 5-NN graphs is superior than 3-NN graphs when combining with84

Lrwk, and comparable when combining with Lsym. For all these aforementioned experiments results,85

the differences between them are within 1% around, confirming the robustness of SPA.86
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Table 5: Classification Accuracy (%) on OfficeHome for unsupervised domain adaptation. The table
is divided into three sections corresponding to robustness analysis, and parameter sensitivity, each
separated by a double horizontal line.

Method A→D A→W D→A D→W W→A W→D Avg.

β = 0.1 94.2 95.1 76.6 98.9 78.6 99.6 90.5
β = 0.3 94.0 96.2 76.9 98.9 79.3 99.8 90.8
β = 0.5 94.0 96.4 77.9 99.0 78.0 99.8 90.8
β = 0.7 94.4 96.0 79.0 98.6 80.3 100. 91.4
β = 0.8 94.2 95.7 76.1 98.6 78.3 99.8 90.5

Lrwk w/ cos 93.8 95.0 76.3 98.6 79.7 100. 90.6
Lrwk w/ gauss 95.0 95.6 78.2 98.6 80.0 99.8 91.2
Lsym w/ cos 93.8 93.8 78.5 98.6 79.9 100. 90.8
Lsym w/ gauss 93.8 95.6 79.4 98.6 78.8 99.8 91.0

Lrwk w/ k = 3 93.8 95.2 78.3 98.9 80.4 99.8 91.1
Lrwk w/ k = 5 93.8 95.0 76.3 98.6 79.7 100. 90.6
Lsym w/ k = 3 94.0 95.8 75.2 99.0 80.5 100. 90.7
Lsym w/ k = 5 93.8 93.8 78.5 98.6 79.9 100. 90.8

Parameter Sensitivity. In the main paper, we have already analyzed the experiments on the87

hyperparameter β of exponential moving averaging strategy for memory updates and verify that SPA88

is insensitive to this hyperparameter. Here, we show the experimental results on Office31 dataset in89

Table 5. Similarly, we design experiments on the hyperparameter β of exponential moving averaging90

strategy for memory updates, choosing β = 0.1, 0.3, 0.5, 0.7, 0.9 respectively. These results are based91

on DANN [7]. From the series of results, we can find that in Office31 dataset, the choice of β = 0.792

outperforms than others. In addition, the differences between these results are within 1.0%, which93

means that SPA is relatively stable to this hyperparameter.94

Furthermore, we design experiments for the coefficient of Lnas and the coefficient of Lgsa to analyze95

the stability of SPA. The experimental results are shown in the Figure 2. These results are based96

on DANN [7]. Fixing the coefficient of Lnas = 0.2, the coefficient of Lgsa changes from 0.1 to 0.9.97

Fixing the coefficient of Lgsa = 1.0, the coefficient of Lnas changes from 0.1 to 0.9. From the series98

of results, we can find that in OfficeHome dataset, the choice of different coefficients result in similar99

results, which means that SPA is insensitive to these coefficients.100

(a) A → C (b) C → R

Figure 1: Parameter Sensitivity. The line plot of the coefficient of Lnas and the coefficient of Lgsa

change from 0.1 to 0.9, leading to different accuracy results. The experiments are conducted on
OfficeHome dataset, where (a) is A → C setting and (b) is C → R setting.

Transferability and Discriminability. The A-distance [27] measures the distribution discrepancy101

that is defined as dA = 2 (1− 2ϵ), where ϵ is the classifier loss to discriminate the souce and target102

domains. Smaller A-distance indicates better domain-invariant features. Figure 2a shows that SPA103

can achieve a lower dA, implying a lower generalization error. Furthermore, following previous work104

[3], we further offer the source accuracy and target accuracy specifically, in Figure 2b and Figure 2c.105

We can find that various methods achieve similar results of source accuracy, and SPA can always106

achieve higher target accuracy. Combined with the experimental results in Figure 2a, this reveals that107

SPA enhances transferability while still keep a strong discriminability. Back to our Introduction, this108
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means that SPA can find a more suitable utilization of intra-domain information and inter-domain109

information to properly align target samples.110

(a) A-distance (b) A → C (c) C → R

Figure 2: Transferability and Discriminability. We compare SPA with DANN [7], BSP [3] and NPL
[17] on OfficeHome dataset, where (a) is A-distance in A → C and C → R setting, (b) is accuracy
results in A → C setting and (c) is accuracy results in C → R setting.

Feature Visualization. To demonstrate the learning ability of SPA, we visualize the features of111

DANN [7], BSP [4], NPL [17] and SPA with the t-SNE embedding [6] under the C → R setting112

of OfficeHome Dataset in the main paper, referred as Figure 6. In the appendix, we offer more113

visualization figures, including Figure 3 in A → D setting and Figure 4 in A → W setting on114

Office31 dataset, Figure 5 in A → C setting on OfficeHome dataset. According to all the figures, the115

observations are consistent that the source features and target features learned by SPA are transferred116

better. These observations imply the superiority of SPA over discriminability and transferability in117

unsupervised domain adaptation scenario.118

(a) DANN (b) BSP (c) NPL (d) SPA

Figure 3: Feature Visualization. the t-SNE plot of DANN [7], BSP [4], NPL [17], and SPA features
on office31 dataset in the A → D setting. We use red markers for source domain features and blue
markers for target domain features.

(a) DANN (b) BSP (c) NPL (d) SPA

Figure 4: Feature Visualization. the t-SNE plot of DANN [7], BSP [4], NPL [17], and SPA features
on Office31 dataset in the A → W setting. We use red markers for source domain features and blue
markers for target domain features.
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(a) DANN (b) BSP (c) NPL (d) SPA

Figure 5: Feature Visualization. the t-SNE plot of DANN [7], BSP [4], NPL [17], and SPA features
on OfficeHome dataset in the A → C setting. We use red markers for source domain features and
blue markers for target domain features.

(a) DANN (b) BSP (c) NPL (d) SPA

Figure 6: Feature Visualization. the t-SNE plot of DANN [7], BSP [4], NPL [17], and SPA features
on OfficeHome dataset in the C → R setting. We use red markers for source domain features and
blue markers for target domain features.
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