Published as a conference paper at ICLR 2025

SLOPE: DOUBLE-PRUNED SPARSE PLUS LAZY LOW-
RANK ADAPTER PRETRAINING OF LLMS

Mohammad Mozaffari Amir Yazdanbakhsh
Department of Compute Science Google DeepMind
University of Toronto Mountain View, USA
mmozaffari@cs.toronto.edu ayazdan@google.com
Zhao Zhang Maryam Mehri Dehnavi
Department of Electrical and Computer Engineering Department of Compute Science
Rutgers University University of Toronto
zhao.zhang@rutgers.edu mmehride@cs.toronto.edu
ABSTRACT

We propose SLOPE, a Double-Pruned Sparse Plus Lazy Low-rank Adapter
Pretraining method for LLMs that improves the accuracy of sparse LLMs while
accelerating their pretraining and inference and reducing their memory footprint.
Sparse pretraining of LLMs reduces the accuracy of the model, to overcome this,
prior work uses dense models during fine-tuning. SLOPE improves the accuracy of
sparsely pretrained models by adding low-rank adapters in the final 1% iterations
of pretraining without adding significant overheads to the model pretraining and
inference. In addition, SLOPE uses a double-pruned backward pass formulation
that prunes the transposed weight matrix using N:M sparsity structures to enable an
accelerated sparse backward pass. SLOPE accelerates the training and inference of
models with billions of parameters up to 1.25x and 1.54x respectively (OPT-33B
and OPT-66B) while reducing their memory usage by up to 0.63x and 0.61 x for
training and inference respectively

1 INTRODUCTION

Large Language Models (LLMs) demonstrate significant potential for natural language understanding
and generation; however, they are expensive to train and execute because of their extensive parameter
count and the substantial volume of training data required. The training process of LLMs include
a pretraining (45) and a fine-tuning stage. In the pretraining phase, the model is trained on a large
high-quality text (17; 1) and then fine-tuned on different downstream tasks (57; 48). Both phases
require significant amounts of computation, memory, and communication.

Model sparsity, in which the less important parts of the model are pruned, can reduce the computation
and memory overheads of LLM pretraining (24). Sparsity is unstructured if elements are removed
from arbitrary locations in the tensors. Unstructured sparsity is hard to accelerate due to non-existing
hardware/software support (58)). To resolve this, structured sparsity imposes constraints on where
the zero elements can appear (28}; 33)), creating dense blocks of nonzeros in the matrix to leverage
dense compute routines. The drawback of the structured sparse methods is that they limit the choice
for sparsity patterns leading to a reduction in accuracy in the sparse model when compared to dense
(9). NVIDIA has recently introduced sparse tensor cores (43) to their hardware that accelerate more
flexible structured sparsity patterns, i.e. 2:4 sparsity; hardware support for N:M sparsity where at
most N out of M consecutive elements are zero is not yet available but machine learning practitioners
are developing algorithms for these patterns (295|345 47) .

Applying N:M sparse masks to a model leads to accuracy loss because of their limited choice of
sparsity patterns. Changing the sparsity mask dynamically throughout pretraining is one of the
approaches proposed to address this issue (L1). Zhou et al. (61) proposes a novel metric for finding
the N:M sparsity patterns that lead to higher accuracy in each iteration. (29) suggest the use of
decaying masks to further improve the accuracy of the models. STEP (34) proposes a new optimizer

'Code and data for SLOPE is available at: https://bit.ly/slope-11lm

mailto:
mailto:
mailto:
mailto:
https://bit.ly/slope-llm

Published as a conference paper at ICLR 2025

that improves the convergence of models with adaptive masks. While the adaptive methods can
improve the accuracy of the models, they require storing the dense weights and possibly additional
metrics for updating the new sparsity patterns, while wasting a portion of the training computations
to train the weights that will be pruned in later iterations. SPDF (55)) and Sparse-Dense Pretraining
(FST) (26)), one can compensate for the loss imposed by sparsity with a dense fine-tuning. But the
dense fine-tuning stage will disable the memory and compute savings of sparse methods at inference.
Inspired by this, we introduce additional non-zeros to the weight in the last steps of pretraining. To
avoid storing a dense model during inference while getting the same capabilities of a dense weight,
we add the non-zeros in the form of low-rank adapters (25). Our experiments show that using low
rank adaptors leads to noticeably faster convergence compared to when the same number of learnable
parameters are added to the sparse weights.

The use of N:M sparsity in LLM pretraining is limited to accelerating the forward pass in the training
loop because the row-wise N:M structure in the weight sparsity pattern will be lost when the weights
are transposed in the backward pass. Prior work (275 160; 26) attempt to leverage sparsity in both
forward and backward passes by finding transposable masks through various methods: greedy search
algorithms, searching among random permutations, and searching among the results of convolution.
However, these transposable masks reduce model accuracy and add significant runtime overheads (26),
often resulting to slow-downs (up to 8. 4 x). To address these issues, we propose a double-pruned
backward pass formulation with theoretical convergence guarantees. Instead of enforcing the weight
transpose to be N:M sparse, our approach transposes the N:M weight matrix first and then imposes
N:M sparsity. This allows the weight matrices to exhibit a wider range of sparsity patterns, leading to
improved accuracy.

Our method, SLOPE, is a Double-Pruned Sparse Plus Lazy Low-rank Adapter Pretraining method
for LLMs. It employs a static N:M sparsity mask with a double-pruned backward pass formulation to
accelerate both the forward and backward passes. Key contributions of SLOPE are:

* Double-Pruned backward pass — We propose to transpose an already sparsified N:M weight
matrix (forward pass) before imposing another round of N:M sparsity (backward pass), improving
model quality and reducing mask search overheads.

* Lazy Low-Rank adapters — We introduce additional parameters with minimal compute and
memory overheads, merely for the last 1% iterations of pretraining, improving model capacity (see

Figure).

* Optimized CUDA kernels — We jointly optimize Nvidia 2:4 sparse kernels and low-rank calls
through efficient tiling and scheduling. Our highly-optimized CUDA kernels result to 1.25Xx
end-to-end training speedup and 1. 54 x inference speedup on LLMs with billions of parameters,
while reducing training and inference memory footprint by up to 0. 63 x and 0. 61 X, respectively.

2 SPARSE PLUS LOW-RANK PRETRAINING OF LLMS

Equation [T} [2] and [3]depict the formulas for the forward and backward pass of the i-th linear layer
in a neural network. Here, the weight tensor is denoted as W; € R%ut*din and the input tensor is
denoted as X; € RP*%in_ The forward pass generates an output tensor represented as); € R0*dout,
In all equations, d;,, and d,,,; refer to the input and output dimensions of the respective layer.

FWD = Y; = W/)
BWD — 1 Vy, L = Vy. LT X; 2)
BWD—QHinEZVYiﬁwi 3)

The dimension along which N:M pruning occurs corresponds to the reduction dimension in Matrix-
Matrix multiplication. Without this restriction, the sparse Matrix-Matrix operation can not be
accelerated on GPU (41). With this restriction in mind, to leverage weight sparsity in forward and
backward pass, one needs to prune elements along the columns of W in (FWD) and W;
in To satisfy this requirement, it is necessary to prune elements of the weight tensor W;
along both row and column dimensions.

Published as a conference paper at ICLR 2025

N:M Sparse Pretraining with
Lossy Backward Pass
(99% of iterations)

Sparse + Lazy Low-Rank
Pretraining
(1% of iterations)

|

|

|

|
2 L

i
’é Vi = A 5 Y B A + X |
i .

|

T ! T
Wi | WR
Row-wise Pruned : Row-wise Pruned

i

|
é Vw, L & VYiET X; i 2 Vw, L |= Vyi[:T X; & Gradients for Low-Rank Tensors
& |
o =

i
2 g
8 _ &

Vx,L 7 VyL | Vx,L = VyL + Vy.L |2
i
R.C | R,C
W 3 wi
|

Row- and Column-wise Pruned Row- and Column-wise Pruned

Figure 1: The sparse training pipeline in SLOPE. Here, X,), and WV denote the input, output, and
the weight tensors for a specific layer, respectively. V. L represents the gradient of the loss function.
L and R are the low-rank terms that are introduced only in the final 1% iterations. Superscript
R shows row-wise pruning using N:M scheme and R, C' shows both column and row-wise N:M
sparsification, leading to extra imposed zeros. Blue elements represent non-zero values, while white
elements represent pruned values, and red elements indicate additional zeros introduced during the
backward pass.

2.1 DOUBLE-PRUNED BACKWARD PASS

Various approaches can be used to exploit N:M sparsity during both the forward and backward passes.
For example, one may prune the activation tensor &; in FWD along the row dimension and W; in
BWD-2 along the column dimension. Although diverse combinations exist for pruning, our focus in
this study is primarily on the sparsification of weight tensors for two reasons: (a) the sparsification
of weight tensors directly impact the resource required for model storage and serving, and (b) our
initial findings indicate that pruning weight tensors during both forward and backward passes has a
comparatively lesser adverse impact on the overall end-to-end model quality. More details on our
experiments can be found infJ] As such, we posit a double-pruned backward pass formulation that
can productively accelerate FWD and BWD-2 computations.

In addition, we prove that such materialization of pruned weight tensors, despite being lossyEI, exhibits
convergence properties. For the rest of this paper, we represent the weight tensor subjected to row-
wise pruning as W/, while the concurrent row-wise and column-wise pruning (double-pruned) is
presented as WZ-R *C. We rewrite the training equations to accommodate these modifications, with
proposed changes highlighted in blue:

FWD -), = Wi @
BWD — 1 Vi, L = Vy, LT X, 5)
BWD — 2 Vx, £ = Vy, LWC (6)

Using this formulation for training, we can accelerate both forward and backward passes owing to
the existence of N:M sparsity along both dimensions of weight tensors.

Memory footprint analysis. Inducing N:M structured sparsity not only improves computational
efficiency of GEMM operations but also reduces the memory footprint for storing sparse tensors.

*We term this formulation “lossy” because the weight matrix undergoes information loss during the backward
pass compare to its state in the forward pass.

Published as a conference paper at ICLR 2025

It is noteworthy, however, that the storage of auxiliary meta-data becomes necessary, containing
information about the locations of non-zero elements in a supporting matrix. Equation [7] delineates
the requisite number of bits for storing the indices in the N:M sparsity format, where [.] denoting the
ceiling function. We present the detailed results on the memory footprint reduction in[section 3|

= ()

Convergence analysis. [Theorem 2.1|(proof in [subsection T.I)) shows the additional sparsity resulting

from double pruning to an initially row-wise N:M pruned matrix. Following this lemma, we quantify
the increased sparsity induced by double pruning with 1:2, 2:4, and 2:8 sparsity patterns as 12.5%,
9.375%, and 3.39%, respectively. This observation underscores that as the value of M in N:M
increases, the surplus of zero elements in a double-pruned matrix diminishes. This reduction in zero
elements consequently implies a decrease in computational errors, enhancing the robustness of the
computations. We expound further insights into this phenomenon in

Lemma 2.1. Consider a randomly initialized matrix A. Following our notations, we denote the
row-wise pruned version of A by AT and the joint column- and row-wise pruned version of A by
ABC We use D(.) to present the density ratio of a matrix. shows the additional zero

elements in matrix A that are introduced by double-pruning, where s = %

Moom j—N
Ry _ R,CY _ Gl aM—jJ —
D(A®) - D(A)52 <j)s(1 s) i (8)
j=N+1
states that the dynamic alteration of the column-wise mask in [Equation 5|during each

training iteration does not exert a detrimental impact on the convergence of the optimizer. This
phenomenon can be attributed to the equivalence between the left-hand side of which
corresponds to [BWD-2], and the averaging effect achieved through multiple training
iterations of backpropagation with distinct sparsity mask. However, for arbitrary values of N and
M,] and[5]can be used in the training with convergence guarantee (proof in [subsection T.I). The
sparsity mask is chosen randomly at initialization, i.e. all the weights have the same probability of
being zero or non-zero. This is because at initialization the location of weights with larger magnitude
is arbitrary. After choosing the sparsity mask at initialization, we keep the mask fixed throughout the
entire training process. This policy ensures that each element in the weight has the same probability
of being non-zero at initialization and satisfies the assumption in Lemma[2.1]

Theorem 2.2. Assuming a loss function LW, X)) for a random sample X;, and considering a
random mask M;, Equation@]holds, where E|.] is the expectation operator and © is the element-wise
multiplication.

M
Ex,[Vx,L(W;, X3)] = ~ B [Ex, [Vy, L(W;, Xi)(M © W;)]] ©)

2.2 LAZY LOW-RANK ADAPTERS

Pruning weight tensors in FWD and BWD-2 computations is desirable for computational efficiency
but may have detrimental impact on quality. To mitigate this adverse impact on model quality, we
augment the doubly-pruned weight matrix with a low-rank matrix. The decomposition of the doubly-
pruned weight matrix, combined with the low-rank matrix, maintains the computational efficiency
of spare Matrix-Matrix multiplication during forward and backward passes. Simultaneously, this
approach holds promise in alleviating the adverse effects of double pruning on overall model quality.

Considering the dense weight matrix, denoted by Wyepse € Rout Xdin_[Equation 10|illustrates the
. dout X din . 0

proposed matrix decomposition. In this expression, Wpqrse € R signifies a doubly-pruned

matrix and L € R%«*" and R € R"*%» are components of the low-rank approximation. The

variable r denotes the rank of this low-rank approximation. r functions as a hyperparameter that

controls the trade-offs between memory footprint, computational efficiency, and model quality.

Wdense = sparse +LR (10)

Published as a conference paper at ICLR 2025

The matrix decomposition of doubly-pruned matrix combined w1th a low-rank matrix approximation
reduces the memory footprint of W from d;,dous t0 dindout 2 37 T (din + dout)r, Where 7 <<
min(din, doyt). The computational complexity of dense Matrix-Matrix multiplication, however,
changes from bd;,,d ¢ t0 b doyt % + b(diyn, + dout)7. Given the substantially smaller value of r
in comparison to b, d;,, and d,,;, our formulation effectively reduces both memory footprint and
computational complexity of Matrix-Matrix multiplication by a factor of % X

We empirically show that the convergence rate of low-rank adapters surpasses that of sparse weights.
We attribute this behavior to the notably lower parameter counts inherent in low-rank adapters.
Leveraging this observation, we incorporate low-rank adapters exclusively during the final 1% of
the training iterations. This confined usages of low-rank adapters results in additional reduction of
training cost, specifically in terms of total number of operations. We term the proposed usage of
low-rank adapters in the final steps of the training as lazy low-rank adapters.

2.3 SPARSE KERNELS

cuSPARSELLt is a CUDA library designed explicitly for sparse Matrix-Matrix multiplication, where
one operand undergoes pruning with the 2:4 sparsity pattern. However, this library does not offer
APIs for other algebraic routines such as addition and assignment for sparse tensors. We now delve
into the details of different kernels for training and overview our implementation methodology.

Algorithm [T] shows the training process of a single linear layer taken from an attention-based model.
We assume the use of weight decay in the optimizers, and subsequently design the requisite sparse
APISs to facilitate the optimizer operations. The training starts with matrix initialization (line 2) and
setting up sparse formats to store weight tensors and their corresponding transpose (line 3 and 4 4)
Then, for every mini-batch in the training set, we compute the forward pass following [Equation 4]
(line 8). As part of the backward pass, the derivative of the loss function with respect to the output
activation is computed (line 10). Subsequently, the gradients of the loss function with respect to
the input activation (line 11) and the weight tensor (line 12) are computed using and
IEquation 2| respectively. In order to circumvent the necessity of updating weights with zero values
and mitigate the associated memory footprint overhead, we employ a strategy wherein we mask the
gradients for pruned weights. The computed values are stored in a sparse format (line 13). Next, in
order to implement weight decay in the optimizer and mitigate the impact of gradient scaling, we
compute the value of %VWE + aW (line 15). Here, « is the weight decay applied in the optimizer,
while ~ denotes the gradient scaling factor for numerical stability during the half-precision backward
pass. The updated values for the weight tensor are calculated according to the optimizer update rule
(line 16). Finally, the value of weight tensor and its transpose are updated directly in a sparse format
(line 17 and line 18). More details about the implementation of the custom kernels used in Algorithm
[T can be found in Appendix

2.4 SLOPE RUNTIME OPTIMIZATION

While SLOPE improves the training and inference of LLMs by introducing sparse weights and
low-rank adapters, a naive implementation can hinder its full performance improvement. Specifically,
cuSPARSELL (40) SpMM kernels exhibit sensitivity to input and weight tensor shapes, and intro-
ducing low-rank adapters at inference increases can increase the number of calls during the forward
pass of each linear layer. This section covers our approach to optimize SLOPE’s implementation and
further improve model performance.

Efficient tiling of upsample tensors. Figure [3}(a) showcases the speedup achieved by the cuS-
PARSELLt backend across a range of tensor shapes commonly used in LLMs. While the speedup of
SpMM in downsample tensors increases gradually as their sizes increase, the speedup of upsample
tensor drops off at around hidden dimension = 4000. To overcome this limitation, we tile the upsample
tensor into multiple smaller matrices of equal size, each of which benefits from improved speedup
when multiplied by the input using 2:4 sparsity. By tuning the size of the tiles, we figured that the
best performance can be achieved by using square tiles. The results of these multiplications are then
concatenated. This optimization, as detailed in Appendix [E] leads to a 12% improvement in inference
speed and a 4% increase in training speed with SLOPE.

Efficient kernel for combined SpMM-+low-rank adapters. A straightforward implementation
of low-rank adapters requires four kernel calls: one for sparse matrix multiplication, two for low-

Published as a conference paper at ICLR 2025

Algorithm 1 Accelerated Sparse Pretraining Algorithm for a Linear Layer

1: Input: Weight: W, Training Set: D, Weight Decay: «, Gradient Scaling Factor: v
backend.init()
WSparseTranspose = backend.setup(W.tranpose())
WSparse = backend.setup(W)
sparseMask = (WSparse != 0) // Element-wise
for (X, Y) € D do

// Forward Pass
Y = backend.spmm(X, WSparseTranspose)

9: //Backward Pass
10: gradOutput = Vy L
11: gradInput = backend.spmm(gradOutput, WSparse)
12: gradWeight = backend.matmul(gradOutput.transpose(), X)
13: gradWeightSparse = backend.pruneAndCompress(gradWeight, sparseMask)
14: // Optimizer with Weight Decay
15: g =backend.sparseAdd(gradWeightSparse, WSparse, %, o)
16: WNew = optimizer.updateWeight(g)
17: backend.updateSparseMatrix(WSparse, WNew)
18: backend.updateSparseMatrix(WSparseTranspose, WNew.transpose())
19: end for

rank computations, and one for adding the results. In addition, our experiments demonstrate that
multiplying matrices with low-rank adapters does not scale proportionally with the adapter’s rank,
leading to significant overheads due to their low arithmetic intensity (see Appendix|C). To address this,
we introduce two optimizations: (/) concatenating the downsample tensor to the sparse weight tensor,
reducing kernel calls and increasing arithmetic intensity as in Equation [TTHeft, and (2) leveraging a
cuBLAS fused matrix multiplication and addition kernel, minimizing cache access and kernel calls
as in Equation [TT}right. As demonstrated in Appendix [D} these optimizations collectively contribute
to a speedup improvement of up to 6% in the end-to-end inference speed.

[Vi[d2] = XWT|L); V=WR+V (11)

3 EXPERIMENTAL RESULTS

This section evaluates the efficacy of SLOPE in accelerating the pretraining while achieving memory
savings. Due to the substantial computational resources required for LLM pretraining, our accuracy
evaluation is primarily focused on smaller-scale LLMs up to 774M parameters. However, the speedup
and memory reduction results extend to a wider range of models, from 2.6B up to 66B parameters.

3.1 END-TO-END SPEEDUP AND MEMORY SAVING: PRETRAINING AND INFERENCE

We evaluate the speedup and memory reduction by SLOPE during pretraining and inference across
LLMs with different model parameter sizes. To demonstrate the scalability and efficiency of our
method, we conducted extensive benchmarking on OPT (2.6 B to 66 B) and LLaMA-3-8B and
Mistral-v0.3-7B models. In all the experiments, we have enabled FlashAttention-2 (8) (Appendix [M]
presents detailed ablation study on the impact of FlashAttention). To mitigate the impact of outliers,
we conducted 1,000 iterations for each speedup experiment and reported the median value. For
the memory reduction experiments, we performed five independent runs and similarly reported the
median outcome. These methodologies were chosen to provide a more reliable measure of central
tendency in our results

31t is noteworthy that for benchmarking speedup and memory savings, which require comparatively fewer
computational resources than comprehensive pretraining accuracy experiments, we utilized the OPT, LLaMMA-
3, and Mistral-v0.3 model families. These families were selected due to their diverse range of model parameter
sizes, allowing for a more thorough study of performance across different scales.

Published as a conference paper at ICLR 2025

Table 1: Comparative analysis of end-to-end pretraining and inference speedup (x) comparison
between SLOPE and the latest work (FST) on accelerating pretraining with 2:4 sparsity (ICML
2024) (26). Note that the lack of inference speedup in FST is because of the final dense pretraining
during the final iterations, resulting in a dense model for inference. E-SR-STE stands for Extened
SR-STE.

MODEL ‘ METHOD ‘ No Ajl;]/:?;iIRN((iTO) ‘ NO ADAPTER (7 =0) {%\ISEEVI:?I;TPTER 6.25% ADAPTER
oo |] M | W W
o | | W [I 1
i 0 N R N i E
omesn | W[[I i i
G 0 I N N I e
wonass | et | | B i
MISTRAL-V0.3-7B ‘ SII;;];E ‘ }ég ‘ }gg }?)(2) }g(l)

We compared our method against dense pretraining and inference directly in PyTorch, which uses
efficient cuBLAS backend. As the sparse pretraining benchmark, we compare our work against
Sparse-Dense Pretraining (FST) (26), the state-of-the-art 2:4 pretraining method and the only semi-
structured sparse pretraining work that provides end-to-end speedups. Note that methods targeting
LLM pretraining with N:M sparsity often suffer from inefficiency due to mask search overheads
and/or compression setup. Appendix [H|and Appendix [B|detail the profiling in Bi-Mask (60) and
FST (26), which similarly use N:M sparsity on both forward and backward passes.

Notably, our approach, SLOPE, diverges significantly from recent work Fully Sparse Training (FST)
(26) in two key aspects. Firstly, we comprehensively prune all weights in the model, encompassing
both MLP and Self-Attention modules, whereas FST only prunes weights in the MLP modules.
Secondly, FST employs dynamic transposable weights, which introduce additional computation
and memory overhead during training. Finally, FST necessitates dense fine-tuning (~17% of
pretraining), thereby negating their speedup advantages during inference. In contrast, our approach
achieves efficient and accurate large language models during both training and inference without
such limitations.

SLOPE speedup for pretraining and inference. Table [T|summarizes the speedups achieved by
our method during both training and inference. Since over 99% of training occurs without low-rank
adapters, the training speedup is largely independent of the adapter rank. Conversely, inference
speedup is directly influenced by the adapter rank. Given the varying hidden dimensions across differ-

ent model sizes, we report the inference speedup for various adapter rank ratios: —odepter—rank _
hidden—dimension

Figure [3}(a) illustrates that cuSPARSELL achieves higher speedups for large matrices until it reaches
its maximum performance capacity (2x). A similar trend is observed in the pretraining and inference
speedups of the models. For small matrices used in low-rank adapters, the lower arithmetic intensity
of low-rank adapter multiplication results in higher overhead relative to sparse multiplication. This is
because low arithmetic intensity limits the full utilization of GPU resources, leading to inefficiencies.

SLOPE memory reduction in pretraining and inference. For training, the memory consumption
of a dense model includes weights, gradients, and optimizer states, amounting to 4 x 16 bits for
weights, 4 x 16 bits for gradients, and 2 x 4 x 32 bits for optimizer states. The sparse model, however,
stores non-zero weights and indices twice (for both weights and transposed weights), along with a
binary mask, gradients, and reduced optimizer states. This adds up to 2 x (16 4 3) bits (weights and
transposed weights), 4 x 8 bits (binary mask), 2 x 16 bits (gradients), and 2 x 2 x 32 bits (optimizer
states). Consequently, the memory footprint during training is reduced by 68%. For inference, a
dense model requires storing weights with a total memory cost of 4 x 16 bits. In contrast, our sparse

Published as a conference paper at ICLR 2025

Table 2: Comparative analysis of end-to-end memory reductions (x) during training and inference
between SLOPE and the latest work (FST) on accelerating pretraining with 2:4 sparsity (ICML
2024) (26)). Values greater than 1.00x show memory overhead.

MODEL ‘ METHOD TRAINING Pencr
NO ADAPTER (7 = 0) NO ADAPTER (7 = 0) 1.56% ADAPTER 6.25% ADAPTER

OPT-66B ‘ sLop ‘ .67 ‘ oo e Vo0
S I S R Voo Vo0
oz | S | M0 | M Voo it
OPT-6.6B ‘ SLoPE ‘ 0.08 ‘ Vo0 Vo0 100
OPT-2.6B ‘ SLoPE ‘ ?t% ‘ ?fgg ?igg %g
LLAMA-3-8B ‘ Sror ‘ "t ‘ o0 100 Vo0
MISTRAL-V0.3-7B ‘ SIEg"?E ‘ (1“152 ‘ ?gg ‘l)gg ‘l)gg

model optimizes memory usage by storing only the non-zero weights and their indices, resulting in
2 x 16 bits for non-zeros and three bits for indices (see equation[7). This leads to a 54% reduction in
memory usage during inference.

Table [2] presents the memory reduction for different low-rank adapter ranks and OPT, LLaMA-2,
and Mistral model variants. The memory reduction is slightly less than the theoretical expectation,
primarily because of additional memory usage from other model components, such as layer norms,
and dense model parameters.

3.2 PRETRAINING ACCURACY RESULTS

To assess the impact of SLOPE on model accuracy, we conducted pretraining experiments across
various models and datasets (details in Appendix [O). In all experiments, the classifications heads and
the first linear layer following the input are dense.

GPT2 (Small/Large). We pretrained both the small (117 M parameters) and large (774 M parameters)
variants of GPT2 (46)) on the OpenWebText dataset (1)). For a fair comparison, we evaluate the models
on MMLU (23)), Arc Challenge (6)), and OpenBookQA (33)) zero-shot tasks implemented in Language
Model Evaluation Harness (18). Additionally, we evaluate the validation perplexity of the models
following the same experimental settings described in FlashAttention (10;[8). We compare SLOPE
against two state-of-the-art sparse pretraining methods, including (a) Wanda (51) — a one-shot
pruning technique, (b) Extended SR-STE (61;26) — a dynamic mask pretraining method for N:M
sparsity, which serves as the foundation of follow-up work (27; 60; 26). Please note that SR-STE
only supports stochastic gradient descent optimization, and FST extended it to other optimizers.
We use the extension provided by FST in our work, and call it Extended SR-STE. The difference
between Extended SR-STE and FST is that FST requires dense pretraining (fine-tuning) in the last
17% of pretraining and only prunes the MLP layers of the model, while SR-STE is fully sparse and
prunes both the MLP and the Self-Attention layers of the model.

Figure [2] compare the validation perplexity and zero-shot accuracy of GPT2-Small and GPT2-Large
across a range of sparse pretraining methods with different hyperparameters. We have additionally
added lazy low-rank adapters to Extended SR-STE (61)) to show the effectiveness of our approach in
other methods and also compare both methods with more similar settings. While a gap in perplexity
consistently exists between sparse and dense models, SLOPE achieves a lower perplexity compared
to Wanda (51) and Extended SR-STE. Additionally, Table [3]summarizes the achieved accuracy of
the models on zero-shot tasks, showing that SLOPE is consistently achieving a higher accuracy in
comparison to Extended SR-STE. Moreover, adding lazy low-rank adapters can benefit both static
and dynamic training methods. This improved accuracy stems from SLOPE’s efficient allocation
of the training budget. Specifically, Extended SR-STE, with its dynamic pruning masks, expends
a significant portion of its training budget (e.g. gradient updates) updating weights that may be

Published as a conference paper at ICLR 2025

2:4 — SR-STE — v,

S
=)

GPT2 Small Perplexity GPT2 Large Perplexity
40 - =
80 F —— Dense
35 ff 2:4 - SloPe
70 | Sloke
— Dente i —— 2:4 - Wanda
Z 60 2:4 - SloPe » 30y
i 50 —— 2:4 — Wanda 5 9 4\
B —— 2:4 — SR-STE — v,y =6e-6 -
o 3]
a = . [

/
|

o2
(
|

PN IR WA R A WA Wi RV AR WA WA A I WA W |
10
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

Iteration (X 1000) Iteration (X 1000)

Figure 2: Validation perplexity of GPT2-Small and GPT2-Large on OpenWebText. ,, shows the
value of the decay factor parameter in Extended SR-STE (FST).

Table 3: GPT2-Small accuracy results on zero-shot tasks. Adapter rank is the ratio of the low-rank
adapter to the hidden dimension of the model. For Extended SR-STE, we have used a decay factor
of 6e-6, since it resulted in the lowest perplexity in OpenWebText. The best performing sparse
configuration is highlighted in bold.

ADAPTER ARC OPEN- WINO- HELLA-

METHOD ‘ RANK ‘ MMLU 1 CHALLENGET BOOKQA?T GRANDET SWAGT MATHQAT PIQAT RaCET
DENSE | N/A | 229 20.7 16.2 50.6 28.5 21.8 59.8 28.4
2.1% 23.0 19.3 16.4 50.8 27.5 20.8 57.6 27.2
SLOPE 0.05% 23.0 19.4 16.2 50.5 27.4 20.8 57.5 27.1
0 23.0 19.3 16.0 50.1 27.5 20.8 57.4 27.1
EXTENDED 2.1% 24.2 18.3 14.2 47.5 26.9 21.4 55.2 24.2
SR-STE 0.05% 24.1 18.4 14.2 47.5 26.8 21.2 54.5 24.2
0 24.1 18.3 12.6 47.5 26.9 21.2 54.8 24.0

ultimately pruned and not used at inference, leading to wasted resources. Appendix [A] provides
further details and supporting evidence for this observation. Additional validation results for GPT
experiments on GLUE dataset are also provided in Appendix [Q|and [P

BERT-Large-Uncased. We pretrain BERT-Large-Uncased (13)) (355 M parameters) and fine-tune
it for various question-answering and text classification tasks, following a similar approach to (42}
36; 44) for both pretraining and fine-tuning. Appendix [G| provides details on the pretraining and
fine-tuning process. We evaluate the performance of BERT-Large-Uncased on the SQuAD v1.1 (48)
and GLUE (57) tasks. We report the average metric score for GLUE and present the task-specific
metrics in Appendix [Please note that in all the experiments corresponding to BERT-Large-Uncased,
when using Wanda, we have fine-tuned the model after pruning to improve the accuracy of the models,
since using Wanda alone led to extremely low accuracy results.

Effects of low-rank adapters. To understand the impact of low-rank adapters on pretraining
performance, we conducted ablations using low-rank adapter ranks of 4, 16, and 64 for 1% of the total
number of iterations. These ranks represent up to 6. 25% of the model’s hidden dimension. Table]
shows the results of these settings on SQuAD and GLUE downstream tasks. We present per-task
metrics for GLUE in Appendix [As expected, adding low-rank adapters improve the model’s final
accuracy across all tasks. Additionally, higher ranks improve the model’s performance at the cost of
increased computational requirements. It is also worth to note that incorporating low-rank adapters
only in the final iterations (1% of total iterations) is sufficient to recover pretraining accuracy.

Convergence rate of low-rank adapters. We hypothesized that low-rank adapters would converge
faster due to their significantly fewer learnable parameters. To test this, we introduced low-rank
adapters in the second phase of BERT-Large-Uncased pretraining and monitored their convergence
rate. Figure [3]shows the cosine similarity of the adapters, with the downsample adapter converging
rapidly within 100 iterations and the upsample adapter converging slightly slower. Despite this,
limiting training to 100 iterations still yields comparable results on downstream tasks.

Effects of mixed N:M sparsity. To study the sensitivity of different blocks to varying sparsity
ratios and to assess their relative importance, we experiment across a range of configurations: (a)
[2:4-2:4] — uniformly applying 2:4 sparsity across all layers (b) [2:4-2:8] — applying 2:4 sparsity

Published as a conference paper at ICLR 2025

Table 4: SQuADvV1.1 and GLUE results on BERT-Large-Uncased with different adapter ranks. r

denotes the ratio of the low-rank adapter to the hidden dimension (1024).

Speedup

DATASET DENSE r=0 7r=0.39% r=156% r=6.25%
SQUAD 90.44 89.1 89.1 89.2 89.5
GLUE 80.22 77.4 77.7 77.8 78.2

cuSPARSELt SpMM Speedup

""" Attention
Upsample

rrrrr Downsample

—e— Upsample Tiling (Ours)
““““““““““ I I I I

Low-Rank Adapter Similarity with Converged Weight

1.0

o
»

o
>

o
=

Key
—— Value

Cosine Similarity

o
v

4000 6000

Hidden Dimension

(a)

Query

Projection

—— Upsample

—— Downsample
I

400 600 800

Iterations

(b)

0 200 1000 1200

L
1400

Figure 3: (a) The speedup achieved using cuSPARSELt backend in PyTorch for Attention (dyy: =
d;n), Upsample (dy¢ = 4d;y,,) and Downsample (dyy: = %) matrices with a batch size of 2048. (b)
The cosine similarity of the low-rank adapters and the converged adapters for different layers in the
model. The cosine similarities are averaged among the 24 layers of BERT-Large-Uncased.

pattern to the first 12 blocks and a 2:8 sparsity pattern to the last 12 blocks and (c) [2:8-2:4] — we
reverse the sparsity ratios for the first and last 12 blocks. Note that, to reduce computational costs, we
use the same dense checkpoint for Phase-1 in all settings and a low-rank adapter of rank 40 for all
models. We also replicate this experiment using Wanda (51)) and report the comparison results.

Table 5: SQuADv1.1 results on BERT-Large-Uncased for different sparsity settings.

SPARSITY PATTERN SQUAD SQUAD GLUE GLUE

(FIRST 12 BLOCKS - LAST 12 BLOCKS) SLOPE WANDA SLOPE ‘WANDA
2:4-2:4 90.17 89.93 79.08 78.84

2:4-2:8 89.85 89.55 79.03 77.24

2:8-2:4 89.67 86.57 75.92 69.08

Table 5] summarizes the GLUE and SQuAD results for these settings. As the results show, increasing
the sparsity ratio reduces the accuracy of the model on all tasks. But when the first 12 blocks of the
model are pruned, the accuracy drop is significantly higher, especially on the GLUE dataset. We
conclude that the first blocks of the model are more sensitive to sparsity during pretraining, but one
can sparsify the last blocks of LLMs more aggressively. We observe a similar pattern in Wanda
results as well, but Wanda performs consistently worse than SLOPE in these cases.

Effects of sparsification on different modules. Each block in LLMs consists of a self-attention
module and an MLP module, each containing multiple linear layers. We have analyzed the sensitivity
of SLOPE to pruning each of those modules. Our results in Appendix [F]demonstrate that SLOPE can
sustain competitive quality results while pruning all modules in the model.

4 CONCLUSION

In conclusion, SLOPE improves both pretraining and inference times while reducing memory
footprint with negligible impact on model performance. SLOPE achieves these benefits by effectively
using N:M sparsity and lazy low-rank adapters in both forward and backward passes, supported
by an efficient design of CUDA kernels. Additionally, the use of lazy low-rank adapters allows
for balancing memory footprint and model accuracy across a wide range models. The results show
that SLOPE achieve up to 1.25x and 1.54x speedup for pretraining and inference, respectively.
These speedups achieved while our method reduces the effective memory footprint by up to 0.63 x
(pretraining) and 0.61 x (inference).

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work was also supported in part by NSERC Discovery Grants (RGPIN-06516, DGECR00303),
the Canada Research Chairs program, Ontario Early Researcher award, the Canada Research Chairs
program, the Ontario Early Researcher Award, and the Digital Research Alliance of Canada (www |
alliancecan.ca)). Work of Zhao Zhang was supported by National Science Foundation OAC-
2401246. We also acknowledge the Texas Advanced Computing Center (TACC) at The University of
Texas at Austin for providing HPC resources that have contributed to the research results reported
within this paper (http://www.tacc.utexas.edu). We extend our gratitude towards David
Fleet, Karolina Dziugaite, Suvinay Subramanian, Cliff Young, and David Anugraha for reviewing the
paper and providing insightful feedback. We also thank the extended team at Google DeepMind who
enabled and supported this research direction.

11

www.alliancecan.ca
www.alliancecan.ca
http://www.tacc.utexas.edu

Published as a conference paper at ICLR 2025

REFERENCES
[1] Ellie Pavlick Aaron Gokaslan, Vanya Cohen and Stefanie Tellex. OpenWebText Corpus, 2019.

[2] Dimitris Bertsimas, Ryan Cory-Wright, and Nicholas AG Johnson. Sparse Plus Low Rank
Matrix Decomposition: A Discrete Optimization Approach. JMLR, 2023.

[3] Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain:
Unifying Sparse and Low-rank Attention Approximation. arXiv preprint arXiv:2110.15343,
2021.

[4] Stanley F Chen, Douglas Beeferman, and Roni Rosenfeld. Evaluation Metrics for Language
Models. Carnegie Mellon University, 1998.

[5] Zhaodong Chen, Zheng Qu, Yuying Quan, Liu Liu, Yufei Ding, and Yuan Xie. Dynamic N:M
Fine-grained Structured Sparse Attention Mechanism. In PPoPP, 2023.

[6] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

[7] Compute Canada. Compute Canada. https://computecanada.ca/.

[8] Tri Dao. Flashattention-2: Faster Attention with Better Parallelism and Work Partitioning. arXiv
preprint arXiv:2307.08691, 2023.

[9] Tri Dao, Beidi Chen, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher Re.
Pixelated Butterfly: Simple and Efficient Sparse Training for Neural Network Models. arXiv
preprint arXiv:2112.00029, 2021.

[10] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast
and Memory-Efficient Exact Attention with [O-Awareness. In NeurIPS, 2022.

[11] Tim Dettmers and Luke Zettlemoyer. Sparse Networks from Scratch: Faster Training without
Losing Performance. arXiv preprint arXiv:1907.04840, 2019.

[12] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient
Finetuning of Quantized LLMS. arXiv preprint arXiv:2305.14314, 2023.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. @ BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint
arXiv:1810.04805, 2018.

[14] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear Mode
Connectivity and the Lottery Ticket Hypothesis. In ICML, 2020.

[15] Elias Frantar and Dan Alistarh. SparseGPT: Massive Language Models can be Accurately
Pruned in One-shot. In ICML, 2023.

[16] Trevor Gale, Erich Elsen, and Sara Hooker. The State of Sparsity in Deep Neural Networks.
arXiv preprint arXiv:1902.09574, 2019.

[17] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The Pile: An 800GB Dataset of Diverse
Text for Language Modeling. arXiv preprint arXiv:2101.00027, 2020.

[18] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas
Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,
Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A frame-
work for few-shot language model evaluation, 07 2024. URL https://zenodo.org/
records/12608602.

12

https://computecanada.ca/
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602

Published as a conference paper at ICLR 2025

[19] Han Guo, Philip Greengard, Eric P Xing, and Yoon Kim. LQ-LoRA: Low-rank Plus
Quantized Matrix Decomposition for Efficient Language Model Finetuning. arXiv preprint
arXiv:2311.12023, 2023.

[20] Song Han, Huizi Mao, and William J Dally. Deep Compression: Compressing Deep Neu-
ral Networks with Pruning, Trained Quantization and Huffman Coding. arXiv preprint
arXiv:1510.00149, 2015.

[21] Song Han, Jeff Pool, John Tran, and William Dally. Learning both Weights and Connections
for Efficient Neural Network. NeurIPS, 2015.

[22] Babak Hassibi and David Stork. Second Order Derivatives for Network Pruning: Optimal Brain
Surgeon. NeurlPS, 1992.

[23] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

[24] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in
Deep Learning: Pruning and Growth for Efficient Inference and Training in Neural Networks.
JMLR, 2021.

[25] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank Adaptation of Large Language Models. arXiv
preprint arXiv:2106.09685, 2021.

[26] Yuezhou Hu, Kang Zhao, Weiyu Huang, Jianfei Chen, and Jun Zhu. Accelerating Transformer
Pre-Training with 2:4 Sparsity. In ICML, 2024.

[27] Ttay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel Soudry.
Accelerated Sparse Neural Training: A Provable and Efficient Method to find N:M Transposable
Masks. NeurlIPS, 2021.

[28] Yu Ji, Ling Liang, Lei Deng, Youyang Zhang, Youhui Zhang, and Yuan Xie. TETRIS: Tile-
matching the Tremendous Irregular Sparsity. NeurIPS, 2018.

[29] Sheng-Chun Kao, Amir Yazdanbakhsh, Suvinay Subramanian, Shivani Agrawal, Utku Evci,
and Tushar Krishna. Training Recipe for N:M Structured Sparsity with Decaying Pruning Mask.
arXiv preprint arXiv:2209.07617, 2022.

[30] Yann LeCun, John Denker, and Sara Solla. Optimal Brain Damage. NeurIPS, 2, 1989.

[31] Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
LoSparse: Structured Compression of Large Language Models based on Low-Rank and Sparse
Approximation. arXiv preprint arXiv:2306.11222, 2023.

[32] Hong Liu, Sang Michael Xie, Zhiyuan Li, and Tengyu Ma. Same Pre-training Loss, Better
Downstream: Implicit Bias Matters for Language Models. In ICML, 2023.

[33] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and
Jian Sun. MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning. In
ICCV, 2019.

[34] Yucheng Lu, Shivani Agrawal, Suvinay Subramanian, Oleg Rybakov, Christopher De Sa, and
Amir Yazdanbakhsh. STEP: Learning N:M Structured Sparsity Masks from Scratch with
Precondition. arXiv preprint arXiv:2302.01172, 2023.

[35] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

[36] Mohammad Mozaffari, Sikan Li, Zhao Zhang, and Maryam Mehri Dehnavi. MKOR:
Momentum-Enabled Kronecker-Factor-Based Optimizer Using Rank-1 Updates. In NeurIPS,
2023.

13

Published as a conference paper at ICLR 2025

[37] Tan Nguyen, Vai Suliafu, Stanley Osher, Long Chen, and Bao Wang. FMMformer: Efficient and
Flexible Transformer via Decomposed Near-field and Far-field Attention. In NeurIPS, 2021.

[38] Mahdi Nikdan, Soroush Tabesh, and Dan Alistarh. RoSA: Accurate Parameter-Efficient Fine-
Tuning via Robust Adaptation. arXiv preprint arXiv:2401.04679, 2024.

[39] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. CUDA, release: 10.2.89, 2020. URL
https://developer.nvidia.com/cuda-toolkitl

[40] NVIDIA Corporation. NVIDIA cuSPARSELt. https://docs.nvidia.com/cuda/
cusparselt/index.html).

[41] NVIDIA Corporation. NVIDIA cuSPARSELt Functions. https://docs.nvidia.com/
cuda/cusparselt/functions.html).

[42] NVIDIA Corporation. NVIDIA Deep Learning Examples. https://github.com/
NVIDIA/DeepLearningExamples, .

[43] NVIDIA Corporation. NVIDIA Ampere Architecture In-Depth. https://developer.
nvidia.com/blog/nvidia—ampere—architecture—in—-depth,.

[44] J Gregory Pauloski, Qi Huang, Lei Huang, Shivaram Venkataraman, Kyle Chard, Ian Foster,
and Zhao Zhang. KAISA: An Adaptive Second-order Optimizer Framework for Deep Neural
Networks. In SC, 2021.

[45] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving Language
Understanding by Generative Pre-training. OpenAl, 2018.

[46] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language Models are Unsupervised Multitask Learners. OpenAl blog, 1(8):9, 2019.

[47] Abhimanyu Rajeshkumar Bambhaniya, Amir Yazdanbakhsh, Suvinay Subramanian, Sheng-
Chun Kao, Shivani Agrawal, Utku Evci, and Tushar Krishna. Progressive Gradient Flow for
Robust N:M Sparsity Training in Transformers. arXiv e-prints, 2024.

[48] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+
Questions for Machine Comprehension of Text. arXiv preprint arXiv:1606.05250, 2016.

[49] Victor Sanh, Thomas Wolf, and Alexander Rush. Movement Pruning: Adaptive Sparsity by
Fine-Tuning. NeurIPS, 2020.

[50] Seongjin Shin, Sang-Woo Lee, Hwijeen Ahn, Sungdong Kim, HyoungSeok Kim, Boseop
Kim, Kyunghyun Cho, Gichang Lee, Woomyoung Park, Jung-Woo Ha, et al. On the Effect of
Pretraining Corpora on In-context Learning by a Large-scale Language Model. arXiv preprint
arXiv:2204.13509, 2022.

[51] Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A Simple and Effective Pruning
Approach for Large Language Models. arXiv preprint arXiv:2306.11695, 2023.

[52] Wei Sun, Aojun Zhou, Sander Stuijk, Rob Wijnhoven, Andrew O Nelson, Henk Corporaal,
et al. DominoSearch: Find Layer-wise Fine-grained N:M Sparse Schemes from Dense Neural
Networks. In NeurIPS, 2021.

[53] Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin,
Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé,
et al. Gemma 2: Improving open language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

[54] Texas Advanced Computing Center. Lonestar 6. https://tacc.utexas.edu/
systems/lonestar6/l

[55] Vithursan Thangarasa, Abhay Gupta, William Marshall, Tianda Li, Kevin Leong, Dennis
DeCoste, Sean Lie, and Shreyas Saxena. SPDF: Sparse Pre-training and Dense Fine-tuning for
Large Language Models. arXiv preprint arXiv:2303.10464, 2023.

14

https://developer.nvidia.com/cuda-toolkit
https://docs.nvidia.com/cuda/cusparselt/index.html
https://docs.nvidia.com/cuda/cusparselt/index.html
https://docs.nvidia.com/cuda/cusparselt/functions.html
https://docs.nvidia.com/cuda/cusparselt/functions.html
https://github.com/NVIDIA/DeepLearningExamples
https://github.com/NVIDIA/DeepLearningExamples
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth
https://tacc.utexas.edu/systems/lonestar6/
https://tacc.utexas.edu/systems/lonestar6/

Published as a conference paper at ICLR 2025

[56] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[57] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding.
arXiv preprint arXiv:1804.07461, 2018.

[58] Lucas Wilkinson, Kazem Cheshmi, and Maryam Mehri Dehnavi. Register Tiling for Unstruc-
tured Sparsity in Neural Network Inference. PLDI, 2023.

[59] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An Insightful Visual
Performance Model for Multicore Architectures. Communications of the ACM, 2009.

[60] Yuxin Zhang, Yiting Luo, Mingbao Lin, Yunshan Zhong, Jingjing Xie, Fei Chao, and Rongrong
Ji. Bi-directional Masks for Efficient N:M Sparse Training. arXiv preprint arXiv:2302.06058,
2023.

[61] Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and

Hongsheng Li. Learning N:M Fine-grained Structured Sparse Neural Networks from Scratch.
arXiv preprint arXiv:2102.04010, 2021.

15

Published as a conference paper at ICLR 2025

Appendix

Table of Contents

|A~ Comparison with Dynamic Sparsity: SR-STE]| 16
[B~ cuSPARSELC{ Initialization Overhead: Stafic vs. Dynamic Sparsity| 17
|C Low-Rank Adapter Performance: Scaling and Arithmetic Intensity| 18
[D " Efficient low-rank adapter implementation| 18
[EEfficient weight tiling implementation| 18
[FSLOPE sensitivity to pruning different module in transformer] 19
|G BERT-Large-Uncased: Pretraining and Downstream Evaluation| 19
[Performance overhead of bidirectional maskl 20
[T"Sparsity rafio analysis of double-pruned backward pass| 21
|J_Sensitivity to the choice of pruning matrix| 21
[K” Tmplementation details| 22
[L Task-specific GLUE results| 23
[M Tntegration with Flash Attention| 23
[N_Addifional related work] 23
|0 Experiment setup, hyperparameters, compute resources| 24
[P Comparison with dense models| 24
[QZero-shot GLUE resulis for GPT] 25
[R Extended SR-STE and FST implementation details| 25
S__Comparison of Depth and Width Pruning| 27
[TProofs| 27

M Temmalldl.o o 27

T2 TheoremB22l 29

A COMPARISON WITH DYNAMIC SPARSITY: SR-STE

We pretrained GPT2-Small (Section[3.2)) using the SR-STE method (61)) and reported the perplex-
ity results in Figure 2] SR-STE aims to mitigate the Sparse Architecture Divergence (SAD) by
dynamically adjusting the sparsity mask throughout training. We have tested various decay factor
hyperparameters to find the optimal optimization strategy for SR-STE.

To understand the performance gap between SR-STE and SLOPE (our method) for the same training
budget, we analyzed the mask dynamics in SR-STE. We plotted the average number of mask elements

16

Published as a conference paper at ICLR 2025

changes during training compared to the final converged mask sparsity pattern. High mask change
values indicate that training resources are spent on updating weights that ultimately get pruned and
do not necessarily contribute to the final model accuracy.

Figure[d shows this average mask difference per iteration relative to the converged model. As training
progresses, the mask difference decreases, demonstrating SR-STE’s convergence to a specific sparsity
pattern. However, in SLOPE, where all resources are dedicated to optimizing weights under a static
maskﬂ SR-STE’s dynamic approach leads to wasted computation (represented by the area under the
curve in Figured)). Consequently, for the same training budget, SLOPE achieves a lower perplexity
in comparison to SR-STE due to its static mask approach.

GPT2-Small SR-STE Average Mask Change
0.5

0.4

0.3

Difference

0.1

0.0 T T T T T T
50 100 150 200 250 300

Iteration (x 1000)

Figure 4: Average mask difference between each iteration and the converged sparsity pattern in
GPT2-Small pretraining using SR-STE. The highlighted area shows the ratio of the resources used
for updating weights that are pruned and not used in the inference of the model.

B CUSPARSELT INITIALIZATION OVERHEAD: STATIC VS. DYNAMIC
SPARSITY

This section analyzes the time breakdown of the cuSPARSELt SpMM pipeline, highlighting the
significant overheads associated with dynamically changing sparsity masks. The cuSPARSELt SpMM
operation consists of two main phases: (/) Setup and (2) Matrix Multiplication. The setup phase
involves initializing matrix handles and compressing the 2:4 sparse matrix. This compression copies
non-zero values into a contiguous memory layout and generates indices for those values. The matrix
multiplication phase leverages this metadata to perform the sparse matrix-matrix multiplication.

Figure[5]shows the setup and multiplication time for square matrices using the cuSPARSELt SpMM
backend. As evident from the figure, the setup overhead is significantly larger than the actual matrix
multiplication time. For SLOPE, which employs static sparsity masks, the setup cost is incurred only
once and becomes negligible compared to the numerous matrix multiplications performed during
training and inference. However, for dynamic sparsity patterns, such as Sparse-Dense Pretraining (26)),
Bidirectional Masks (60), and other similar methods(27} 1525 [34; 61)), this setup overhead can be
substantial, leading to reduced speedup (as observed in Section [3.1|for Sparse-Dense Pretraining) or
slowdowns in some configurations (as discussed in Appendix

*We determine the pruning mask at the very first iteration and maintain it for the rest of training.
>A recent work observed a similar overhead using dynamic sparsity in cuSPARSELt SpMM pipeline (5).

17

Published as a conference paper at ICLR 2025

cuSPARSELt SpMM Time Breakdown

5 - EEE Setup Time
Multiplication Time

4 -

Time (ms)
w
1

N
1

768 1024 2048 2560 4096 5120 7168 9216

Matrix Dimension

Figure 5: The setup and multiplication time for square matrices using the cuSPARSELt SpMM
backend.

C LoOW-RANK ADAPTER PERFORMANCE: SCALING AND ARITHMETIC
INTENSITY

As discussed in Section [2:4] the computation time of low-rank adapters does not scale linearly with
their rank. This section provides experimental results to illustrate this behavior in more detail. The
computational complexity of low-rank matrix multiplications is O(brd), where b, r, and d represent
the batch size, low-rank, and input/output dimensions of the layer, respectively. Based on this
complexity, we expect the computation time to be a linear function of 7. In other words, reducing r
by a factor of « should result in a corresponding «a-fold reduction in computation time. However,
in practice, this linearity does not hold. This deviation arises because the assumption underlying
this expectation — that matrix multiplication is compute-bound — is not always true. Specifically,
the arithmetic intensity of the operation can fall below the machine’s balance point, as described
in the Roofline model (39). Figure [6] shows the speedup achieved for different low-rank values
using PyTorch’s matrix multiplication function, which relies on the CUBLAS backend (39). The
figure demonstrates that the achieved speedups are significantly lower than the ideal linear scaling,
particularly when reducing the rank. Moreover, it is evident that as the matrix dimensions increase,
the gap between the ideal speedup and the observed speedup diminishes. This behavior can be
attributed to the increased arithmetic intensity for larger matrices, leading to better utilization of
tensor cores.

D EFFICIENT LOW-RANK ADAPTER IMPLEMENTATION

As discussed in Section [2.4] a naive implementation of low-rank adapters can lead to significant
performance overheads due to the increased number of kernel launches and the low arithmetic
intensity of their multiplications. To address these issues, we introduced two key optimizations: (1)
concatenating one of the low-rank adapters with the sparse weights, and (2) fusing the multiplication
of the other low-rank adapter with the subsequent result addition. These optimizations reduce kernel
calls and increase arithmetic intensity, leading to more efficient utilization of GPU resources. Table[6]
summarizes the speedup improvements achieved with these optimizations, demonstrating an inference
speedup increase of up to 6%.

E EFFICIENT WEIGHT TILING IMPLEMENTATION

We observed that the dimensions and aspect ratios of matrices significantly influence system speedup
(Section[2.4). To mitigate this, we implemented a matrix tiling strategy, dividing upsample matrices

18

Published as a conference paper at ICLR 2025

Low-Rank Matrix Multiplication Speedup

100 = —— Ideal Speedup —*-- Dim: 4096
[Dim: 768 Dim: 5120
[l - Dim: 1024 = - Dim: 7168
80 |- e Dim: 2048 Dim: 9216
[Dim: 2560
a 60 -
=] L
°
o4
o3
2, L
@40 -
20 -
————————————————————— =]
) S
= —g-omooooooooooiT 1
Off I I | ‘
1.0 0.1 0.05 0.02 0.01
Rank

Figure 6: The speedup achieved by low-rank adapters in comparison to a dense matrix-multiplication.

Table 6: End-to-end speedup (%) before (left) and after (right) efficient implementation of low-rank
adapters.

MODEL INFERENCE INFERENCE
1.56% ADAPTER 6.25% ADAPTER
OPT-66B 1.15-1.20 1.12-1.19
OPT-30B 1.13-1.18 1.10-1.16
OPT-13B 1.11-1.10 1.09-1.10
OPT-6.6B 1.07-1.12 1.06-1.11
OPT-2.6B 1.01-1.06 0.97-1.00

into multiple square matrices. This approach significantly improves performance, as shown in Table[7]
Our results demonstrate that matrix tiling can enhance training speed by up to 4% and inference
speed by up to 12%, highlighting its effectiveness in optimizing system performance.

F SLOPE SENSITIVITY TO PRUNING DIFFERENT MODULE IN TRANSFORMER

LLMs typically consist of two main modules: the MLP and the self-attention. The attention module’s
weights are represented as a matrix in R9*3¢, while the MLP uses weights in R?*4? and R*?*?, where
d denotes the hidden dimension. To investigate the impact of sparsity on these modules, we conducted
two experiments during Phase-2 of BERT-Large-Uncased pretraining: (a) [MLP] — pruning both
MLP and self-attention modules. Table [§] presents the SQuAD and GLUE results for these settings.
As expected, we observe a consistent, albeit slight, decrease in model quality as more modules are
sparsified. The marginal decrease in performance suggests that models are relatively insensitive to
the specific modules being pruned when using our SLOPE pretraining method. This observation
underscores the robustness of our approach and its ability to maintain competitive quality across
diverse sparsity configurations.

G BERT-LARGE-UNCASED: PRETRAINING AND DOWNSTREAM EVALUATION

BERT-Large-Uncased pretraining consists of two phases, as illustrated in Figure[7] Phase 1 comprises
7,038 iterations with a global batch size of 65,536 and a sequence length of 128. Phase 2 includes
1,563 iterations with a global batch size of 32,768 and a sequence length of 512.

19

Published as a conference paper at ICLR 2025

Table 7: End-to-end speedup (x) before (left) and after (right) splitting the upsample matrix. In both
cases, the optimization discussed in|§| 1s used.

MODEL TRAINING INFERENCE INFERENCE INFERENCE
NO ADAPTER 1.56% ADAPTER 6.25% ADAPTER

OPT-66B 1.10-1.13 1.22-1.34 1.20-1.31 1.19-1.30

OPT-30B 1.09-1.14 1.23-1.32 1.18-1.28 1.16-1.27

OPT-13B 1.10-1.12 1.23-1.30 1.10-1.30 1.10-1.12

OPT-6.6B 1.08-1.08 1.21-1.19 1.12-1.13 1.11-1.12

OPT-2.6B 1.03-1.02 1.02-1.07 1.06-1.05 1.00-1.00

Table 8: SQuADvVI.1 results on BERT-Large-Uncased for different pruned modules.

PRUNED MODULES SQUAD GLUE
DENSE 90.44 80.22
MLP 90.28 79.03

MLP + SELF-ATTENTION 89.35 77.72

Figure [7] shows the training loss for both phases under different sparsity settings. We observe
that higher sparsity ratios generally lead to higher training loss in both phases. Interestingly, the
loss/perplexity gap does not directly correlate with the observed accuracy drops in downstream
tasks (451325 150).

BERT-Large-Uncased Pretraining Phase 1 BERT-Large-Uncased Pretraining Phase 2

== 5.5 —— Dense
2:4 Sparsity

2:4 Sparsity 5
5.0 —— Mixed 2:4 and 4:8 Sparsity

—— Mixed 2:4 and 4:8 Sparsity
4.5

n wn
3 S 40
= ==
2 ¥ 35
:é £ 30
= =
= 2.5
2.0
15 RN S e
T 0 O Y M ’ S et e e e e
0 1000 2000 3000 4000 5000 6000 7000 0 200 400 600 800 1000 1200 1400
Iterations Iterations

Figure 7: Training loss of BERT-Large-Uncased on WikiCorpus dataset for phase 1 and 2.

We evaluated the pretrained BERT-Large-Uncased models on the SQuAD v1.1 (48) and GLUE (57)
benchmarks. SQuAD vl1.1, a comprehensive question-answering dataset based on Wikipedia, is
widely used for LLM training. We report the F1 score for SQuAD throughout the paper. GLUE,
a diverse benchmark for natural language understanding tasks, provides a single aggregated score
across various challenges, facilitating model comparisons. The paper presents the average metric
score for GLUE, while task-specific metrics are detailed in Appendix [[]

H PERFORMANCE OVERHEAD OF BIDIRECTIONAL MASK

Table [9 presents the runtime results of Bidirectional Masks (60), a state-of-the-art N:M sparsity
method. Our analysis demonstrates that the mask search and associated overheads of this approach
result in significant slowdowns compared to dense baselines. For these experiments, we utilized the
repository provided in (60) and employed the same models used in their evaluation.

20

Published as a conference paper at ICLR 2025

Table 9: End-to-end slow-down of Bi-directional Mask (60) in comparison to the dense baseline.

MODEL DATASET SLOW-DOWN (X)
MOBILENET V2 CIFARI10 5.08
RESNET-32 CIFAR10 5.07
VGG19 CIFAR10 8.41
RENET-18 IMAGENET 3.66
RESNET-50 IMAGENET 3.01

I SPARSITY RATIO ANALYSIS OF DOUBLE-PRUNED BACKWARD PASS

As described in Section [2.T} our proposed sparse pretraining approach involves pruning weights in
both the forward and backward passes. During the backward pass, we apply both row-wise and
column-wise pruning, which introduces additional zero values to the column-wise pruned weight
matrices used in the forward pass. Theorem 2.1 demonstrates that the resulting sparsity ratio can be
calculated using Equation [8] Figure[§]visualizes the imposed sparsity ratios for various N:M sparsity
patterns. As expected, smaller N/M ratios lead to lower imposed sparsity ratios. Moreover, in most
cases, the imposed sparsity ratio is significantly smaller than the original matrix’s density ratio.

Imposed Sparsity in Row-wise and Column-wise Pruning

-®- 1: M
2: M
o e 4: M
‘é 8 e
fa'ed
o .
—
3
)
L} \\.‘
o 40
o
197}
g .
2+ A *
g
— o e
I I I I T
4 8 16 32 64

M

Figure 8: The imposed sparsity ratio when pruning the weight matrices in the backward pass.

J SENSITIVITY TO THE CHOICE OF PRUNING MATRIX

In linear layers, three matrices are involved in the forward and backward passes: the input, the
output gradient, and the weights. Pruning each of these matrices can have distinct effects on model
performance.

To identify the optimal pruning strategy, we conducted an experiment where we pretrained GPT2-
Small for 100,000 iterations (a quarter of the full pretraining) while systematically applying both
static and dynamic pruning to each of the three matrices. Static pruning involves generating a random
mask at initialization and applying it throughout training. Dynamic pruning, on the other hand, prunes
matrices based on their magnitude at each iteration. For dynamic pruning, the dense matrix values
are computed and stored, and then pruned at every step.

Figure[Qpresents the validation perplexity for these experiments. Notably, pruning the output gradient
led to model divergence after a few iterations and is not shown in the figure.

Analysis. As shown in Figure[9] static pruning consistently achieved lower perplexities. This behavior
suggests that focusing computational resources on elements that remain active throughout training

21

Published as a conference paper at ICLR 2025

GPT2-Small Test Perplexity
32

30
28
26
24

22

Test Perplexity

20

18

= 1 1 L L 1 L 1
0 20 40 60 80 100

Tterations (x1000)

Figure 9: Validation perplexity on GPT2-Small pretraining for 100,000 iterations for different matrix
pruning settings. Pruning the output gradients leads to divergence within the few iterations and hence
is not reported.

can lead to improved performance. Furthermore, pruning weights resulted in lower perplexities
compared to pruning inputs, indicating that weights are generally a better target for pruning.

Intuition. Pruning weights is analogous to removing connections between neurons. Pruning activation
tensors is similar to introducing a non-linear function (akin to max-pooling) before each linear layer.
Pruning output gradients, however, lacks practical justification and introduces errors into the backward
pass, leading to model divergence.

K IMPLEMENTATION DETAILS

This section details the implementation of the custom functions and CUDA kernels used in Algo-
rithm [T]to facilitate efficient sparse training.

Initialization, sparse matrix setup, and SpMM kernels. Before utilizing the cuSPARSELt APIs, a
crucial initialization phase ensures proper configuration of essential variables for our computational
task. Following initialization, we configure the sparse data formats tailored for sparse matrices.
This involves initializing matrix descriptors, pruning the matrices, and compressing them into a
more compact representation. cuSPARSELt employs an automated search to determine the optimal
kernel for executing SpMM. While setting up these sparse data formats incurs a non-negligible
computational cost, this overhead is mitigated by the repetitive nature of matrix multiplications during
the training process.

Prune and compress. The gradient of the loss function with respect to the weights requires pruning
using the same mask as the weight matrix. Consequently, it contains 50% extra zero values in the
dense format. To address this redundancy, we developed an optimized CUDA kernel, integrated

into PyTorch, that masks the gradients accordingly, eliminating the storage of unnecessary data and

din
2

reducing memory usage. The output of this operation is a new matrix in R%ou >

Sparse matrix addition. The cuSPARSELL sparse data format does not natively support addition
operations. However, for matrices A and B sharing the same sparsity patterns, we developed an
optimized CUDA kernel seamlessly integrated into the PyTorch training workflow. This kernel
efficiently computes linear combinations of the form 5A + vB, where 3 and -y are arbitrary user-
defined constants. This functionality is particularly useful for adding sparse weights to gradients in
optimizers that utilize weight decay.

Update Sparse Matrix. After the optimizer updates the weight tensor values based on its rules,
we need to update the sparse matrix format to reflect these changes. We implemented an optimized

22

Published as a conference paper at ICLR 2025

Table 10: GLUE results for each task in the experiments discussed in section 3]

First Last
Method Phase Rank 12 12 CoLA SST2 MRPC STS-B QQP RTE MNLI QNLI
Blocks Blocks (mcc) (acc) (f1) (corr) (f1) (acc) (acc) (acc)
Dense 1,2 0 2:4 2:4 51.6 91.9 81.2 87.5 87.8 66.4 84.1 91.3
SLOPE
MLP Mixer 2 0 2:4 2:4 41.8 914 88.7 87.2 85.9 65 82.1 90.1
Only
SLOPE
MLP Mixer + 2 0 2:4 2:4 38.8 90.4 85.9 86.4 85.9 63.5 81.5 89.3
Self-Attention
SLOPE with
Non-Lazy 2 40 2:4 2:4 433 90.8 89 87 86 64.6 823 89.6
Adapters
SLOPE with
Non-Lazy 2 40 2:8 2:4 29 89.7 83.7 85.6 85.2 66.8 79.9 87.4
Adapters
SLOPE with
Non-Lazy 2 40 2:4 2:8 44.1 91.1 89.8 86.6 86.3 62.5 82.3 89.6
Adapters
SLOPE 1,2 0 2:4 2:4 37.9 914 854 86.6 85.8 62.5 80.7 88.6
SLOPE 1,2 4 2:4 2:4 38.5 914 85.8 86.8 85.8 63.9 80.8 88.4
SLOPE 1,2 16 2:4 2:4 39.2 91.3 86.4 86.6 86 63.5 80.8 88.2
SLOPE 1,2 64 2:4 2:4 42.7 90.3 85.1 86.8 85.7 66.4 80.3 88.5
WANDA N/A 0 2:4 2:4 43.0 91.4 88.3 86.9 86.1 63.5 81.9 89.6
WANDA N/A 0 2:8 2:4 4.6 0.88 81.3 81 83.3 53.8 76.7 83.9
WANDA N/A 0 2:4 2:8 42.1 91.7 84.4 87.2 85.6 63.5 81.5 81.9

CUDA kernel that copies the weight tensors from the PyTorch format into the cuSPARSELLt data
type, enabling efficient storage and manipulation of sparse weights.

L TASK-SPECIFIC GLUE RESULTS

The GLUE benchmark (57) comprises eight distinct natural language understanding classification
tasks. While Section 3| presented the average GLUE score as a measure of overall model performance,
this section provides a more detailed analysis by presenting the complete task-specific results for
each training setting in Table[I0]

M INTEGRATION WITH FLASH ATTENTION

To show the compatibility of SLOPE with other optimization methods, we test integrate SLOPE with
FlashAttention-2 (8) and show that these approaches are orthogonal in practice and can boost the
performance of the model separately. Table[TT|summarizes the speedup achieved with and without
SLOPE or FlashAttention-2. As it can be observed, each of these methods can improve the speed of
the model both in training and inference, and adding them together will increase the speedup even
further.

N ADDITIONAL RELATED WORK

Model pruning. Pruning the models has been one of the most effective methods to reduce the
complexity of LLMs (24)). One can pretrain the LLMs sparsely (14) or the pruning can happen after a
dense pretraining (22;|30), possibly followed by a fine-tuning stage to recover part of the lost accuracy
(16; 20). Pruning the models after pretraining can be costly (49 21) and typically fails to maintain
their accuracy (15;51). While the sparse pretraining methods improve the accuracy of the model,
they either use unstructured sparsity patterns that cannot be accelerated with the current hardware

23

Published as a conference paper at ICLR 2025

Table 11: Speedup of SLOPE and FlashAttention-2 (FA2) on OPT models.

MODEL TRAINING INFERENCE INFERENCE INFERENCE
SIZE FA2 SLOPE SLOPE+FA2 | FA SLOPE SLOPE+FA2 | FA2 SLOPE+FA2 | FA2 SLOPE+FA2
66B | 1.28 1.13 1.53 | 136 134 1.99 | 131 1.95 | 1.30 1.91
30B | 136 1.14 1.66 | 146 132 2.24 | 1.28 2.24 | 1.27 2.20
3B | 147 112 1.84 | 161 1.30 2.48 | 1.30 2.24 | 112 2.19
6.7B | 1.60 1.08 1.94 | 1.71 1.21 2.50 | 1.13 2.50 | 112 2.45
26B | 226 1.05 2.56 | 247 107 3.23 | 1.05 3.09 | 1.00 2.92

(55) or have significant overheads when searching for and applying their structured sparse masks
2751605 152).

Low-rank adapters. Low-rank adapters have emerged as a promising method to reduce the fine-
tuning costs associated with pre-trained LLMs and enable more efficient task switching (25). Different
quantization and initialization schemes have been proposed to reduce their overheads in LLM fine-
tuning (12;|19). Adding low-rank factors to sparse matrices is a low-weight mechanism widely used
to improve the accuracy of approximations of dense matrices (2)). In machine learning, the sparse
plus low-rank approximations are limited to attention heads (37; 3) and pruning after pretraining
(38;131), and the sparse plus low-rank pretraining has not been investigated. Additionally, the sparse
plus low-rank fine-tuning work does not provide acceleration in both forward and backward pass of
the fine-tuning process. Furthermore, the low-rank adapters in these works are added at the beginning
of the fine-tuning process, adding extra overheads to the fine-tuning process.

O EXPERIMENT SETUP, HYPERPARAMETERS, COMPUTE RESOURCES

Our experiments were conducted on the Narval and Mist clusters at Compute Canada (7)) and the
Lonestar 6 cluster at the Texas Advanced Computing Center (54). Each Narval node is equipped with
four Nvidia A100 GPUs, each with 40GB of memory. Mist nodes feature four Nvidia V100 GPUs,
each with 32GB of memory, while Lonestar 6 nodes have three Nvidia A100 GPUs, each with 40GB
of memory. For our accuracy experiments, we emulated 2:4 and N:M sparsity using custom-designed,
low-overhead CUDA kernels to prune weights in both the forward and backward passes. We utilized
a mixture of available resources across the clusters, as model accuracy is not hardware-dependent.

Our speedup and memory saving experiments were conducted on a single A100 GPU in the Narval
cluster. We ran 1000 iterations of training or inference to gather the necessary statistics. For speedup
experiments, we reported the median of the 1000 samples to mitigate the effects of outliers. Each
memory reduction experiment was run five times, and the median value was reported. We employed
the default hyperparameters found in the NVIDIA BERT codebase (42) and the FlashAttention GPT
codebase (105 8)). Further tuning of hyperparameters for sparse pretraining is left as a future direction.
Training BERT-Large-Uncased required approximately 32 hours on 64 A100-64GB GPUs. The
pretraining of GPT2-Small/Large took 32 and 111 hours, respectively, on 64 V100-32GB GPUs.

P COMPARISON WITH DENSE MODELS

To compare the performance of sparse models with dense models of the same size, we have conducted
an experiment with GPT2-Small, in which we have reduced the number of transformer blocks in
the model to half of GPT2-Small. We call this new configuration GPT2-Half. Tables [I2]and 13
summarize the accuracy results for GPT2-Half on different zero-shot downstream tasks.

It can be observed that SLOPE outperforms GPT2-Half on average, while dynamic sparse training
methods, such as SR-STE perform worse than it. Additionally, it is clear that adding low-rank
adapters to the model improves the accuracy of all sparse pretraining methods.

24

Published as a conference paper at ICLR 2025

Table 12: Performance comparison across different GPT models, sparsity methods, and LoRA ranks
on various tasks. E-SR-STE stands for Extended SR-STE.

Model Method LoRA (r) MMLU Arc Challenge Open Book QA Average
GPT2-Small Dense r=0 22.9 20.7 16.2 19.94
GPT2-Small SLoPE r=0 23.0 19.3 16.0 19.43
GPT2-Small SLoPE r=0.05% 23.0 19.4 16.2 19.53
GPT2-Small SLOPE r=21% 23.0 19.3 16.4 19.57
GPT2-Small E-SR-STE r=0 24.1 18.3 12.6 18.33
GPT2-Small E-SR-STE r=0.05% 24.1 18.4 14.2 18.90
GPT2-Small E-SR-STE r=2.1% 24.2 18.3 14.2 18.90
GPT2-Half Dense r=0 22.9 19.5 16.0 19.47

Q ZERO-SHOT GLUE RESULTS FOR GPT

We have tested the accuracy of the models on the zero-shot GLUE tasks in Language Model Evaluation
Harness (18). Table|13|summarizes the achieved GLUE results by different models. It can be seen
that SLOPE outperforms other SR-STE and GPT2-Half on average. Additionally, SR-STE performs
better than GPT2-Half in GLUE task.

Table 13: Performance comparison of GPT models using different sparsity methods and LoRA ranks
on GLUE tasks. E-SR-STE stands for Extended SR-STE.

Model Method LoRA(r) CoLA MNLI MNLI MRPC QNLI QQP RTE SST2 Avg
(m) (mm)

324 33.2 66.9 503 51.8 498 593 432
343 34.0 72.5 50.0 485 50.0 523 428
343 34.1 72.6 49.8 488 509 523 429
343 34.0 71.6 50.0 49.0 520 52,6 43.1
33.6 339 57.1 50.7 504 552 547 425

GPT2-Small Dense r=
GPT2-Small SLOPE r=
GPT2-Small SLOPE r=0.05%
GPT2-Small SLOPE r=2.1%
GPT2-Small E-SR-STE r=0

[=lelolololole)

GPT2-Small E-SR-STE r=0.05% 33.1 33.6 57.9 51.0 505 554 550 426
GPT2-Small E-SR-STE r=2.1% 333 335 58.2 51.0 505 552 552 426
GPT2-Half Dense r=0 0.0 339 33.8 53.6 51.1 477 56.7 506 41.1

R EXTENDED SR-STE AND FST IMPLEMENTATION DETAILS

Before we proceed with the details of Extended SR-STE and FST, we clarify the notations used in
our manuscript and the FST paper (26) in table[T4]

Table 14: Description of Key Terms

Term Description
Sparse Pretraining Common notation used in SLoPe and FST, indicating the use
of sparse weights during pretraining.
Dense Finetuning Notation used in the FST paper, indicating an extended pre-

training phase.
Downstream Finetuning | Performance after pretraining concludes, used to finetune the
model for specific downstream tasks.

FST Extended pretraining technique focused on dense finetuning.
Extended SRT Variation of sparse pretraining extended with additional fine-
tuning.

We compare SLOPE with FST exclusively for training speedups and memory savings (Table-1-Page-
7 and Table-2-Page-8). Comparing pretraining quality between SLOPE and FST is less meaningful
because the final models produced by these methods differ significantly in the number of parameters.
Specifically, FST produces a dense model after sparse pretraining and dense finetuning (99% sparse
pretraining + 1% sparse + low-rank adaptation), while SLOPE produces a sparse model augmented

25

Published as a conference paper at ICLR 2025

with lightweight low-rank adapters. The number of parameters in the FST model is approximately
2x larger than in SLOPE, which makes a direct quality comparison imbalance.

We compare SLoPe with Extended SR-STE in terms of model quality, focusing on understanding the
dynamics between static and dynamic masking under an equal number of parameters. This allows for
a fair, "apple-to-apple" comparison between the methods (iso-params). We refer to this method as
"Extended SR-STE" because, while the original SR-STE approach was designed for use with SGD,

the FST paper extended it to support other optimizers.
The FSTand Extended SR-STE code are available in Listing[I]and Listing [2] respectively.

I|def forward(ctx, x, weight, weight_sparse, weight_sparse_T, bias):
2 ctx.save_for_backward (input, weight_sparse_T, bias)

3 ctx.shape = x.shape

4 X = x.view(-1, x.shape[-1])

5 output = torch.mm(x, weight_sparse.t())

6 if bias is None:

7 return output.view (xctx.shape[:-1], -1)

8 else:

9 return output.view (*ctx.shape[:-1], -1) + bias

I|def backward(ctx, grad_output) :
2 grad_output = grad_output.half ()

3 x, weight_T, bias = ctx.saved_tensors

4 grad_input = grad_weight = grad_bias = None
5 if ctx.needs_input_grad[0]:

6 if grad_output.stride() == (0, 0, 0):

.device, dtype=grad_output.dtype)

18 grad_output = grad_output.view (-1, grad_output.shape[-1])
19 grad_input = torch.mm(grad_output, weight_T.t ()) .view(

20 ctx.shape)

21 if ctx.needs_input_grad[l]:

22 x = x.view (-1, input.shape[-1])

23 grad_output = grad_output.view (-1, grad_output.shape[-11])

24 grad_weight = torch.mm(to_sparse_semi_structured(grad_output.t (),
MVUE24=True), X)

25 if ctx.needs_input_gradl[2]:

26 grad_bias = grad_output.sum(0)

27 return grad_input, grad_weight, None, None, grad_bias

7 grad_output = torch.ones_like (grad_output, device=grad_output

Listing 1: FST Algorithm

1|def forward(ctx, input, weight, mask, weight_factor):

2 sparse_weight = weight.clone () .detach()

3 sparse_weight [mask] = 0.

4 ctx.save_for_backward (input, sparse_weight, weight_factor x mask =*
weight)

5 output = torch.matmul (input, sparse_weight.t())

7 output = output.clone ()
8 return output

0| @staticmethod
I|def backward(ctx, grad_output) :
2 input, weight, weight_addition_term = ctx.saved_tensors
input_shape = input.shape
if input.dim() == 3:
new_batch_size = input_shape[0] * input_shape[l]
input = input.reshape (new_batch_size, -1)
grad_output = grad_output.reshape (new_batch_size, -1)
grad_output, grad_output_mask = prune_column_wise (grad_output)
grad_weight = torch.matmul (grad_output.t (), input)
0 grad_weight += weight_addition_term

= W

W

=

©

R I i i < T

26

24

Published as a conference paper at ICLR 2025

grad_input = torch.matmul (grad_output, weight)
grad_input = grad_input.reshape (input_shape)
return grad_input, grad_weight, None

Listing 2: Extended SR-STE Algorithm. The weights are stored as dense and are pruned on-the-fly.

S COMPARISON OF DEPTH AND WIDTH PRUNING

Depth pruning refers to reducing the number of layers in a model, while width pruning means
reducing the size of the weights inside each layer in the model. We have conducted an experiment
with depth and width pruning on LLaMA-2-7B (56) and Gemma-2-2B and Gemma-2-9B (53) to
compare the effects of depth and width pruning on the performance of the models. The configurations
used for the models are summarized in Tables [I3] [I6] Similar to (26), we reduced the aspect
ratio of the Up-Sample and Down-Sample modules to half. Please note that this mechanism gives
an advantage to width pruning methods, as the number of parameters in the Self-Attention modules
remain intact. Our experiments show that

Table 15: Model Configurations for LLaMA-2 7B
Pruning Method | Attributes
base_emb_dim: 4096
base_num_query_heads: 32
base_num_kv_heads: 32
base_mlp_dim: 11008
base_num_decoder_layers: 32
head_dim: 128
base_emb_dim: 4096
base_num_query_heads: 32
base_num_kv_heads: 32
base_mlp_dim: 11008
base_num_decoder_layers: 16 # half the number of layers
head_dim: 128
base_emb_dim: 4096
base_num_query_heads: 32
base_num_kv_heads: 32
base_mlp_dim: 5504 # half the number of dimensions
base_num_decoder_layers: 32
head_dim: 128

Baseline

Depth Pruning

Width Pruning

Preliminary retraining loss curves, as shown in Figure [T0]suggest no significance difference between
depth-pruning and width-pruning during pretraining. Interestingly, in some cases, depth-pruning
appears to outperform width-pruning.

T PROOFS

T.1 LEMMA[Z]]
Proof. Considering a matrix with N : M column-wise pruned sparsity pattern, we want to prune the
matrix using IV : M sparsity pattern row-wise as well. Let’s define random variable X as the number

of added non-zeros to M row-wise consecutive elements and Y as the number of non-zeros in M
row-wise consecutive elements.

M—-N
E[X]= Y Pr[X =il (12)
=1

Replacing Pr(X =i] = Pr[Y = N + 4] in Equation [12] we will get Equation [13] where we used a
change in dummy variable j = N + i.

27

Published as a conference paper at ICLR 2025

Table 16: Model Configurations for Gemma-9B

Pruning Method | Attributes
base_emb_dim: 3584
base_num_query_heads: 16
base_num_kv_heads: 8
base_mlp_dim: 14336
base_num_decoder_layers: 20 # merged local and global attention
head_dim: 256
base_emb_dim: 3584
base_num_query_heads: 16
Depth Prunin base_num_kv_heads: 8

P & base_mlp_dim: 14336
base_num_decoder_layers: 10 # half the merged layers
head_dim: 256
base_emb_dim: 3584
base_num_query_heads: 16
base_num_kv_heads: 8
base_mlp_dim: 7168 # half the number of dimensions
base_num_decoder_layers: 20 # merged local and global attention
head_dim: 256

Baseline

Width Pruning

Table 17: Model Configurations for Gemma-2B
Pruning Method | Attributes
base_emb_dim: 2304
base_num_query_heads: 8
base_num_kv_heads: 4
base_mlp_dim: 9216
base_num_decoder_layers: 12 # merged local and global attention
head_dim: 256
base_emb_dim: 2304
base_num_query_heads: 8
base_num_kv_heads: 4
base_mlp_dim: 9216
base_num_decoder_layers: 6 # half the merged layers
head_dim: 256
base_emb_dim: 2304
base_num_query_heads: 8
base num_kv_heads: 4
base_mlp_dim: 4608 # half the number of dimensions
base_num_decoder_layers: 12 # merged local and global attention
head_dim: 256

Baseline

Depth Pruning

Width Pruning

M—-N M
EX]= > Pr[Y =N+ili= Y Pr[Y =j)(j - N) (13)
i=1 j=N+1

Considering the definition of Y, it can be inferred that random variable Y has binomial distribution
with a success probability of % As a result Equation 14| shows the probability mass distribution of
Y.

M . .
,)Sj(l—S)M_J;Sé

J

(14)

<=

PrlY =j] = (
By replacing Equation[T4]in Equation[T3] we will get Equation

28

Published as a conference paper at ICLR 2025

Gemma-2-2B Loss Gemma-2-9B Loss
—— Dense —— Dense

Depth Pruning

—— Width Pruning

Depth Pruning
—— Width Pruning

Loss
Loss

6 -
L I I

T A L I R 1 1
0 5000 10000 15000 20000 25000 30000 35000 0 1000 20

v b b b
00 3000 4000 5000 60

|
00 7000

Step Step
LLaMA-2-7B Loss
+ —— Dense
10 Depth Pruning
—— Width Pruning
T T S T [S [A [S
0 5000 10000 15000 20000
Step
Figure 10: Comparison of the loss of depth and width pruning methods.
(M
exi= Y (e 9o m (15)

j=N+1

Let’s define random variable Z as the added sparsity ratio to the matrix by the extra pruning. Since
X was the number of added non-zeros in M consecutive elements, E[Z] = 7 E[X], and hence
Equation

M .
E[Z] = D(A") - D(A™C) = Y (J‘ﬁ s7(1 — S)M—j% (16)
Jj=N+1

T.2 THEOREM

Proof. In an optimization problem, we are aiming to find the optimal solution to Equation [T7]

I%}l[}_n Ex[L(X, W;)] (17

i

When using backpropagation, which is based on the chain rule in derivation, we compute the gradient
in Equation[I8]

Ex[Vx,L(X,W;)] = Ex[Vy,LW)] (18)

Let’s define random variable M as a uniformly random mask of 0’s and 1’s. The mask will be 1 at
each point with a probability of % Let’s define O £ E[M]. O is a matrix of all %’s. As a result
O ® W = & A for an arbitrary matrix A.

29

Published as a conference paper at ICLR 2025

M M
Ex[Vy,LW] = Ex [Vyiﬁ(ﬁ() OW)] =Ex [VYJ.Z(NEMM o W) (19)

By using the linearity of derivation and expectation operators, we can get the result in Equation 20}
which proves the theorem.

Ex [V, L(X,W;)] = %EM (Ex[Vy. £(M © W] 20)

30

	Introduction
	Sparse plus low-rank pretraining of LLMs
	Double-pruned backward pass
	Lazy low-rank adapters
	Sparse kernels
	SLoPe runtime optimization

	Experimental results
	End-to-end speedup and memory saving: pretraining and inference
	Pretraining accuracy results

	Conclusion
	Appendix
	 Appendix
	Comparison with Dynamic Sparsity: SR-STE
	cuSPARSELt Initialization Overhead: Static vs. Dynamic Sparsity
	Low-Rank Adapter Performance: Scaling and Arithmetic Intensity
	Efficient low-rank adapter implementation
	Efficient weight tiling implementation
	SLoPe sensitivity to pruning different module in transformer
	BERT-Large-Uncased: Pretraining and Downstream Evaluation
	Performance overhead of bidirectional mask
	Sparsity ratio analysis of double-pruned backward pass
	Sensitivity to the choice of pruning matrix
	Implementation details
	Task-specific GLUE results
	Integration with Flash Attention
	Additional related work
	Experiment setup, hyperparameters, compute resources
	Comparison with dense models
	Zero-shot GLUE results for GPT
	Extended SR-STE and FST implementation details
	Comparison of Depth and Width Pruning
	Proofs
	Lemma 2.1
	Theorem 2.2

