
Under review as a conference paper at ICLR 2021

A FURTHER DETAILS OF ALGORITHMIC IMPROVEMENTS

A.1 FUSED MULTIPLY-EXPONENTIATE

The conventional way to compute a signature is to iterate through the computation described by
equation (3): for each new increment, take its exponential, and � it on to what has already been
computed; repeat.

Our proposed alternate way is to fuse the exponential and � into a single operation, and then itera-
tively perform this fused operation.

We now count the number of multiplications required to compute
(

N∏

k=1

(
Rd
)⊗k
)
× Rd →

N∏

k=1

(
Rd
)⊗k

,

A, z 7→ A� exp(z)

for each approach.

We will establish that the fused operation uses fewer multiplications for all possible d ≥ 1 and
N ≥ 1. We will then demonstrate that it is in fact of a lower asymptotic complexity.

A.1.1 THE CONVENTIONAL WAY

The exponential is defined as

exp: Rd →
N∏

k=1

(
Rd
)⊗k

,

exp: x 7→
(
x,
x⊗2

2!
,
x⊗3

3!
, . . . ,

x⊗N

N !

)
,

see Bonnier et al. (2019, Proposition 15).

Note that every tensor in the exponential is symmetric, and so in principle requires less work to
compute than its number of elements would suggest. For the purposes of this analysis, to give the
benefit of the doubt to a competing method, we shall assume that this is done (although taking
advantage of this in practice is actually quite hard (Reizenstein & Graham, 2018, Section 2)). This
takes

N∑

k=2

(
d+

(
d+ k − 1

k

))

scalar multiplications, using the formula for unordered sampling with replacement (Reizenstein &
Graham, 2018, Section 2), under the assumption that each division by a scalar costs the same as a
multiplication (which can be accomplished by precomputing their reciprocals and then multiplying
by them).

Next, we need to count the number of multiplications to perform a single �.

Let

A,B ∈
N∏

k=1

(
Rd
)⊗k

.

Let A = (A1, . . . , AN), with
Ai = (Aj1,...,ji

i)1≤j1,...,ji≤d,

and every Aj1,...,ji
i ∈ R. Additionally let A0 = 1. Similarly for B. Then � is defined by

� :

(
N∏

k=1

(
Rd
)⊗k
)
×
(

N∏

k=1

(
Rd
)⊗k
)
→

N∏

k=1

(
Rd
)⊗k

,

� : A,B 7→
(

k∑

i=0

Ai ⊗Bk−i

)

1≤k≤N
, (8)

11

Under review as a conference paper at ICLR 2021

where each
Ai ⊗Bk−i =

(
Aj1,...,ji

i B
ĵ1,...,ĵk−i

k−i

)
1≤j1,...,ji,ĵ1,...,ĵk−i≤d

is the usual tensor product, the result is thought of as a tensor in (Rd)⊗k, and the summation is taken
in this space. See Bonnier et al. (2019, Definition A.13).

To the authors’ knowledge there has been no formal analysis of a lower bound on the computational
complexity of �, and there is no better way to compute it than naiïvely following this definition.

This, then, requires

N∑

k=1

k−1∑

i=1

d∑

j1,...,ji=1

d∑

ĵ1,...,ĵk−i=1

1 =

N∑

k=1

k−1∑

i=1

dk

=
N∑

k=1

(k − 1)dk

scalar multiplications.

Thus the overall cost of the conventional way involves

C(d,N) =
N∑

k=2

(
d+

(
d+ k − 1

k

))
+

N∑

k=1

(k − 1)dk (9)

scalar multiplications.

A.1.2 THE FUSED OPERATION

Let A ∈∏N
k=1

(
Rd
)⊗k

and z ∈ Rd. Then

A� exp(z) =

(
k∑

i=0

Ai ⊗
z⊗(k−i)

(k − i)!

)

1≤k≤N
,

where the k-th term may be computed by a scheme in the style of Horner’s method:

k∑

i=0

Ai ⊗
z⊗(k−i)

(k − i)! =

((
· · ·
((z

k
+A1

)
⊗ z

k − 1
+A2

)
⊗ z

k − 2
+ · · ·

)
⊗ z

2
+Ak−1

)
⊗ z +Ak. (10)

As before, we assume that the reciprocals 1
2 , . . . ,

1
N have been precomputed, so that each division

costs the same as a multiplication.

Then we begin by computing z/2, . . . , z/N , which takes d(N − 1) multiplications.

Computing the k-th term as in equation (10) then involves d2 + d3 + · · ·+ dk multiplications. This
is because, working from innermost bracket to outermost, the first ⊗ produces a d× d matrix as the
outer product of two size d vectors, and may thus be computed with d2 multiplications; the second
⊗ produces a d× d× d tensor from a d× d matrix and a size d vector, and may thus be computed
with d3 multiplications; and so on.

Thus the overall cost of a fused multiply-exponentiate is

F(d,N) = d(N − 1) +
N∑

k=1

k∑

i=2

di (11)

scalar multiplications.

12

Under review as a conference paper at ICLR 2021

A.1.3 COMPARISON

We begin by establishing the uniform bound F(d,N) ≤ C(d,N) for all d ≥ 1 and N ≥ 1.

First suppose d = 1. Then

F(1, N) = (N − 1) +
N∑

k=1

(k − 1)

≤ 2(N − 1) +

N∑

k=1

(k − 1)

= C(1, N).

Now suppose N = 1. Then
F(d, 1) = 0 = C(d, 1).

Now suppose N = 2. Then

F(d, 2) = d+ d2

≤ d+

(
d+ 1

2

)
+ d2

= C(d, 2)

Now suppose d ≥ 2 and N ≥ 3. Then

F(d,N) = d(N − 1) +

N∑

k=1

k∑

i=2

di

=
dN+2 − d3 − (N − 1)d2 + (N − 1)d

(d− 1)2
. (12)

And

C(d,N) =
N∑

k=2

(
d+

(
d+ k − 1

k

))
+

N∑

k=1

(k − 1)dk

≥
N∑

k=1

(k − 1)dk

=
(N − 1)dN+2 −NdN+1 + d2

(d− 1)2
. (13)

Thus we see that it suffices to show that

dN+2 − d3 − (N − 1)d2 + (N − 1)d ≤ (N − 1)dN+2 −NdN+1 + d2,

for d ≥ 2 and N ≥ 3. That is,

0 ≤ dN+1(d(N − 2)−N) + d(d2 +N(d2 − 1) + 1). (14)

At this point d = 2, N = 3 must be handled as a special case, and may be verified by direct
evaluation of equation (14). So now assume d ≥ 2, N ≥ 3, and that d = 2, N = 3 does not occur
jointly. Then we see that equation (14) is implied by

0 ≤ d(N − 2)−N and 0 ≤ d2 +N(d2 − 1) + 1.

The second condition is trivially true. The first condition rearranges to N/(N − 2) ≤ d, which is
now true for d ≥ 2, N ≥ 3 with d = 2, N = 3 not jointly true.

This establishes the uniform bound F(d,N) ≤ C(d,N).

Checking the asymptotic complexity is much more straightforward. Consulting equations (12) and
(13) shows that F(d, n) = O(dN) whilst C(d,N) = Ω(NdN). And in fact as

(
d+k−1

k

)
≤ dk then

equation (9) demonstrates that C(d,N) = O(NdN).

13

Under review as a conference paper at ICLR 2021

A.2 LOGSIGNATURE BASES

We move on to describing our new more efficient basis for the logsignature.

A.2.1 WORDS, LYNDON WORDS, AND LYNDON BRACKETS

LetA = {a1, . . . , ad} be a set of d letters. LetA+N be the set of all words in these letters, of length
between 1 and N inclusive. For example a1a4 ∈ A+N is a word of length two.

Impose the order a1 < a2 < · · · < ad on A, and extend it to the lexicographic order on words in
A+N of the same length as each other, so that for example a1a2 < a1a3 < a2a1. Then a Lyndon
word (Lalonde & Ram, 1995) is a word which comes earlier in lexicographic order than any of its
rotations, where rotation corresponds to moving some number of letters from the start of the word
to the end of the word. For example a2a2a3a4 is a Lyndon word, as it is lexicographically earlier
than a2a3a4a2, a3a4a2a2 and a4a2a2a3. Denote by L

(
A+N

)
the set of all Lyndon words of length

between 1 and N .

Given any Lyndon word w1 · · ·wn with n ≥ 2 and wi ∈ A, we may consider its longest Lyndon
suffix; that is, the smallest j for which wj · · ·wn is a Lyndon word. (It is guaranteed to exist as
wn alone is a Lyndon word.) It is a fact (Lalonde & Ram, 1995) that w1 · · ·wj−1 is then also a
Lyndon word. Given a Lyndon word w, we denote by wb its longest Lyndon suffix, and by wa the
corresponding prefix.

Considering spans with respect to R, let

[· , ·] : span(A+N)× span(A+N)→ span(A+N)

be the commutator given by
[w, z] = wz − zw,

where wz denotes concatenation of words, distributed over the addition, as w and z belong to a span
and thus may be linear combinations of words. For example w = 2a1a2 +a1 and z = a1 +a3 gives
wz = 2a1a2a1 + 2a1a2a3 + a1a1 + a1a3.

Then define
φ : L

(
A+N

)
→ span(A+N)

by φ(w) = w if w is a word of only a single letter, and by

φ(w) = [φ(wa), φ(wb)]

otherwise. For example,

φ(a1a2a2) = [[a1, a2], a2]

= [a1a2 − a2a1, a2]

= a1a2a2 − 2a2a1a2 + a2a2a1.

Now extend φ by linearity from L
(
A+N

)
to span(L

(
A+N

)
), so that

φ : span(L
(
A+N

)
)→ span(A+N)

is a linear map between finite dimensional real vector spaces, from a lower dimensional space to a
higher dimensional space.

Next, let
ψ : A+N → span(L

(
A+N

)
)

be such that ψ(w) = w if w ∈ L
(
A+N

)
, and ψ(w) = 0 otherwise. Extend ψ by linearity to

span(A+N), so that
ψ : span(A+N)→ span(L

(
A+N

)
)

is a linear map between finite dimensional real vector spaces, from a higher dimensional space to a
lower dimensional space.

14

Under review as a conference paper at ICLR 2021

A.2.2 A BASIS FOR SIGNATURES

Recall that the signature transform maps between spaces as follows.

SigN : S
(
Rd
)
→

N∏

k=1

(
Rd
)⊗k

.

Let {ei | 1 ≤ i ≤ d} be the usual basis for Rd. Then

{ei1 ⊗ · · · ⊗ eik | i ≤ i1, . . . ik ≤ d}

is a basis for (Rd)⊗k. An arbitrary element of
∏N

k=1

(
Rd
)⊗k

may be written as

d∑

i1,...ik=1

αi1,...,ikei1 ⊗ · · · ⊗ eik

1≤k≤N

(15)

for some αi1,...,ik .

Then A+N may be used to represent a basis for
∏N

k=1

(
Rd
)⊗k

. Identify ei1 ⊗ · · · ⊗ eik with
ai1 · · · aik . Extend linearly, so as to identify expression (15) with the formal sum of words

N∑

k=1

d∑

i1,...ik=1

αi1,...,ikai1 · · · aik .

With this identification,

span(A+N) ∼=
N∏

k=1

(
Rd
)⊗k

(16)

A.2.3 BASES FOR LOGSIGNATURES

Suppose we have some x ∈ S
(
Rd
)
. Using the identification in equation (16), then we may attempt

to seek some x ∈ span(L
(
A+N

)
) such that

φ(x) = log
(
SigN (x)

)
. (17)

This is an overdetermined linear system. As a matrix φ is tall and thin. However it turns out that
image (log) = image (φ) and moreover there exists a unique solution (Reizenstein & Graham,
2018). (That it is an overdetermined system is typically the point of the logsignature transform over
the signature transform, as it then represents the same information in less space.)

If x =
∑

`∈L(A+N) α``, with α` ∈ R, then by linearity
∑

`∈L(A+N)

α`φ(`) = log
(
SigN (x)

)
,

so that φ(L
(
A+N

)
) is a basis, called the Lyndon basis, of image (log). When calculating the

logsignature transform in a computer, then the collection of α` are a sensible choice for representing
the result, and indeed, this is what is done by iisignature. See Reizenstein & Graham (2018)
for details of this procedure.

However, it turns out that this is unnecessarily expensive. In deep learning, it is typical to apply a
learnt linear transformation after a nonlinearity - in which case we largely do not care in what basis
we represent the logsignature, and it turns out that we can find a more efficient one.

The Lyndon basis exhibits a particular triangularity property (Reutenauer, 1993, Theorem 5.1),
(Reizenstein, 2019, Theorem 32), meaning that for all ` ∈ L

(
A+N

)
, then φ(`) has coefficient

zero for any Lyndon word lexicographically earlier than `. This property has already been exploited
by iisignature to solve (17) efficiently, but we can do better: it means that

ψ ◦ φ : span
(
L
(
A+N

))
→ span

(
L
(
A+N

))

15

Under review as a conference paper at ICLR 2021

is a triangular linear map, and so in particular it is invertible, and defines a change of basis; it is
this alternate basis that we shall use instead. Instead of seeking x as in equation (17), we may now
instead seek z ∈ span

(
L
(
A+N

))
such that

(φ ◦ (ψ ◦ φ)−1)(z) = log
(
SigN (x)

)
.

But now by simply applying ψ to both sides:

z = ψ
(
log
(
SigN (x)

))
.

This is now incredibly easy to compute. Once log
(
SigN (x)

)
has been computed, and interpreted

as in equation (16), then the operation of ψ is simply to extract the coefficients of all the Lyndon
words, and we are done.

B LIBTORCH VS CUDA

LibTorch is the C++ equivalent to the PyTorch library. GPU support in Signatory was provided by
using the operations provided by LibTorch.

It was a deliberate choice not to write custom CUDA kernels. The reason for this is as follows. We
have to make a choice between distributing source code and distributing precompiled binaries. If
we distribute source code, then we rely on users being able to compile CUDA, which is far from a
guarantee.

Meanwhile, distributing precompiled binaries is unfortunately not feasible on Linux. C/C++ exten-
sions for Python are typically compiled for Linux using the ‘manylinux’ specification, and indeed
PyPI will only host binaries claiming to be compiled according to this specification. Unfortunately,
based on our inspection of its build scripts, PyTorch appears not to conform to this specification. It
instead compiles against a later version of Centos than is supported by manylinux, and then subse-
quently modifies things so as to seem compatible with the manylinux specification.

Unpicking precisely how PyTorch does this so that we might duplicate the necessary functionality
(as we must necessarily remain compatible with PyTorch as well) was judged a finickity task full of
hard-to-test edge cases, that is an implementation detail of PyTorch that should not be relied upon,
and that may not remain stable across future versions.

C FURTHER BENCHMARKS

C.1 CODE FOR REPRODUCABILITY

The benchmarks may be reproduced with the following code on a Linux system. First we install the
necessary packages.

pip install numpy==1.18.0 matplotlib==3.0.3 torch==1.5.0
pip install iisignature==0.24 esig==0.6.31 signatory==1.2.1.1.5.0
git clone https://github.com/[redacted].git
cd signatory

Note that numpy must be installed before iisignature, and PyTorch must be installed before
Signatory. The unusually long version number for Signatory is necessary to specify both the ver-
sion of Signatory, and the version of PyTorch that it is for. The git clone is necessary as the
benchmarking code is not distributed via pip.

For this anonymised version: the complete source code, including benchmarking code, is instead
attached as supplementary material.

Now run

python command.py benchmark -help

16

Under review as a conference paper at ICLR 2021

for further details on how to run any particular benchmark. For example,

python command.py benchmark -m time -f sigf -t channels -o graph

will reproduce Figure 1a.

C.2 MEMORY BENCHMARKS

Our benchmark scripts offer some limited ability to benchmark memory consumption, via the -m
memory flag to the benchmark scripts.

The usual approach to such benchmarking, using valgrind’s massif, necessarily includes mea-
suring the set-up code. As this includes loading both the Python interpreter and PyTorch, measuring
the memory usage of our code becomes tricky.

As such we use an alternate method, in which the memory usage is sampled at intervals,
using the Python package memory_profiler, which may be installed via pip install
memory_profiler. This in turn has the limitation that it may miss a peak in memory usage;
for small calculations it may miss the entire calculation. Furthermore, the values reported are incon-
sistent with those reported in Reizenstein & Graham (2018).

Nonetheless, when compared against iisignature using memory_profiler, on larger com-
putations where peaks are less likely to go unobserved, then Signatory typically uses at an order of
magnitude less memory. However due to the limitations above, we have chosen not report quantita-
tive memory benchmarks here.

C.3 SIGNATURE TRANSFORM BENCHMARKS

The precise values of the points of figures 1 and 2 are shown in Tables 1–4.

For convenience, the ratio between the speed of Signatory and the speed of iisignature is also
shown.

C.4 LOGSIGNATURE TRANSFORM BENCHMARKS

See Figure 3 for the graphs of the benchmarks for the logsignature transform.

The computer and runtime environment used was as described in Section 5.

We observe similar behaviour to the benchmarks for the signature transform. iisignature is
slightly faster for some very small computations, but that as problem size increases, Signatory
swiftly overtakes iisignature, and is orders of magnitude faster for larger computations.

The precise values of the points on these graphs are shown in Tables 5–8. Times are given in
seconds. Also shown is the ratio between the speed of Signatory and the speed of iisignature.
A dash indicates that esig does not support that operation.

17

Under review as a conference paper at ICLR 2021

Table 1: Signature forward, varying channels. Times are given in seconds. A dash indicates that
esig does not support that operation.

Channels 2 3 4 5 6 7

esig 0.531 9.34 - - - -
iisignature 0.00775 0.0632 0.375 1.97 7.19 20.9

Signatory CPU
(no parallel)

0.00327 0.0198 0.101 0.402 1.45 3.8

Signatory CPU
(parallel)

0.00286 0.00504 0.00975 0.0577 0.21 1.22

Signatory GPU 0.0129 0.0135 0.0182 0.0222 0.0599 0.158

Ratio CPU
(no parallel)

2.37 3.19 3.71 4.89 4.95 5.49

Ratio CPU
(parallel)

2.71 12.5 38.5 34.1 34.2 17.0

Ratio GPU 0.602 4.68 20.6 88.7 120 132

Table 2: Signature backward, varying channels. Times are given in seconds. A dash indicates that
esig does not support that operation.

Channels 2 3 4 5 6 7

esig - - - - - -
iisignature 0.026 0.248 1.59 7.78 27.6 128

Signatory CPU
(no parallel)

0.0222 0.106 0.428 1.54 4.97 13.7

Signatory CPU
(parallel)

0.00922 0.0623 0.265 1.01 3.49 9.0

Signatory GPU 0.0472 0.0413 0.0534 0.119 0.314 0.772

Ratio CPU
(no parallel)

1.17 2.34 3.7 5.07 5.56 9.38

Ratio CPU
(parallel)

2.82 3.97 6.0 7.69 7.92 14.2

Ratio GPU 0.551 6.0 29.7 65.2 87.9 166

Table 3: Signature forward, varying depths. Times are given in seconds. A dash indicates that esig
does not support that operation.

Depth 2 3 4 5 6 7 8 9

esig 0.019 0.0954 0.527 2.73 15.5 - - -
iisignature 0.000468 0.00145 0.00485 0.0199 0.0859 0.376 1.83 8.16

Signatory CPU
(no parallel)

0.000708 0.00129 0.0022 0.00765 0.027 0.104 0.402 1.68

Signatory CPU
(parallel)

0.000722 0.00242 0.00279 0.00321 0.00546 0.0161 0.0408 0.381

Signatory GPU 0.00172 0.00326 0.00484 0.00735 0.0104 0.0132 0.0232 0.0773

Ratio CPU
(no parallel)

0.661 1.12 2.2 2.61 3.18 3.6 4.55 4.86

Ratio CPU
(parallel)

0.649 0.597 1.74 6.21 15.7 23.3 44.8 21.4

Ratio GPU 0.273 0.443 1.0 2.71 8.24 28.3 79.0 106

18

Under review as a conference paper at ICLR 2021

Table 4: Signature backward, varying depths. Times are given in seconds. A dash indicates that
esig does not support that operation.

Depth 2 3 4 5 6 7 8 9

esig - - - - - - - -
iisignature 0.00149 0.00438 0.0179 0.0954 0.366 1.59 7.72 34.7

Signatory CPU
(no parallel)

0.00322 0.00518 0.0123 0.0347 0.109 0.437 1.8 6.31

Signatory CPU
(parallel)

0.00354 0.00409 0.0089 0.0152 0.0563 0.175 0.839 4.06

Signatory GPU 0.00525 0.00916 0.015 0.0216 0.0324 0.05 0.144 0.495

Ratio CPU
(no parallel)

0.464 0.845 1.45 2.75 3.37 3.63 4.28 5.49

Ratio CPU
(parallel)

0.422 1.07 2.02 6.28 6.51 9.07 9.21 8.54

Ratio GPU 0.284 0.478 1.19 4.42 11.3 31.7 53.8 70.1

(a) Logsignature forward, varying channels (b) Logsignature backward, varying channels

(c) Logsignature forward, varying depths (d) Logsignature backward, varying depths

Figure 3: Time taken on benchmark computations to compute the specified operation. In all cases
the input was a batch of 32 sequences of data, each of length 128. For varying channels, the depth
was fixed at 7. For varying depths, the channels was fixed at 4. Every test case was repeated 50 times
and the fastest time taken. Note that esig is only shown for certain operations as it is incapable of
computing large operations or of computing backward operations. Note the logarithmic scale.

19

Under review as a conference paper at ICLR 2021

Table 5: Logsignature forward, varying channels. Times are given in seconds. A dash indicates that
esig does not support that operation.

Channels 2 3 4 5 6 7

esig 0.539 8.61 - - - -
iisignature 0.0037 0.0591 0.412 2.0 7.26 27.9

Signatory CPU
(no parallel)

0.00454 0.0258 0.125 0.536 1.65 4.4

Signatory CPU
(parallel)

0.00388 0.00665 0.0256 0.108 0.36 1.87

Signatory GPU 0.0176 0.0164 0.0149 0.0243 0.0638 0.165

Ratio CPU
(no parallel)

0.815 2.29 3.28 3.73 4.4 6.36

Ratio CPU
(parallel)

0.952 8.89 16.1 18.4 20.1 14.9

Ratio GPU 0.21 3.6 27.5 82.2 114 169

Table 6: Logsignature backward, varying channels. Times are given in seconds. A dash indicates
that esig does not support that operation.

Channels 2 3 4 5 6 7

esig - - - - - -
iisignature 0.0346 0.322 2.02 9.66 34.1 111

Signatory CPU
(no parallel)

0.0243 0.114 0.421 1.87 5.34 17.9

Signatory CPU
(parallel)

0.0152 0.0503 0.302 1.03 3.47 9.34

Signatory GPU 0.0478 0.05 0.058 0.127 0.323 0.79

Ratio CPU
(no parallel)

1.42 2.83 4.81 5.17 6.4 6.24

Ratio CPU
(parallel)

2.27 6.4 6.69 9.34 9.85 11.9

Ratio GPU 0.723 6.44 34.9 76.2 106 141

Table 7: Logsignature forward, varying depths. Times are given in seconds. A dash indicates that
esig does not support that operation.

Depth 2 3 4 5 6 7 8 9

esig 0.0185 0.0815 0.517 2.67 14.6 - - -
iisignature 0.00011 0.000502 0.00188 0.0197 0.107 0.423 2.07 9.98

Signatory CPU
(no parallel)

0.000888 0.00152 0.00272 0.00849 0.0315 0.124 0.534 2.28

Signatory CPU
(parallel)

0.000886 0.00285 0.00355 0.00466 0.00891 0.0251 0.0801 0.536

Signatory GPU 0.00196 0.00453 0.00558 0.00815 0.0161 0.0149 0.0262 0.0834

Ratio CPU
(no parallel)

0.124 0.33 0.693 2.33 3.41 3.42 3.88 4.37

Ratio CPU
(parallel)

0.124 0.176 0.531 4.23 12.0 16.9 25.9 18.6

Ratio GPU 0.0561 0.111 0.337 2.42 6.67 28.4 79.0 120

20

Under review as a conference paper at ICLR 2021

Table 8: Logsignature backward, varying depths. Times are given in seconds. A dash indicates that
esig does not support that operation.

Depth 2 3 4 5 6 7 8 9

esig - - - - - - - -
iisignature 0.000189 0.00572 0.0225 0.0968 0.432 1.98 9.36 42.3

Signatory CPU
(no parallel)

0.0033 0.00555 0.0127 0.0351 0.133 0.408 1.69 6.84

Signatory CPU
(parallel)

0.00363 0.0051 0.0103 0.0197 0.0562 0.287 1.02 4.13

Signatory GPU 0.00559 0.00979 0.0193 0.0253 0.0373 0.0621 0.151 0.511

Ratio CPU
(no parallel)

0.0573 1.03 1.78 2.76 3.25 4.86 5.54 6.19

Ratio CPU
(parallel)

0.0521 1.12 2.18 4.91 7.69 6.89 9.13 10.2

Ratio GPU 0.0338 0.584 1.17 3.83 11.6 31.9 61.8 82.8

21

