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A. DETAILED EXPLANATION
A.1. STANDARD DEVIATION OF THE INCREMENTAL PERFORMANCE (ERROR BARS)
All results of the average incremental accuracy and average forgetting are evaluated on three differ-

ent runs. To show the stability of our method, we report its standard deviation on three runs. As
shown in Table[I]and 2} random factors have little impact on our scheme.

Average Accuracy (1) Average Forgetting ()

Methods P=5 P=10 P=20 P=5 P=10 P=20

s iCaRL-CNN* 51.07 48.66 44.43 42.13 45.69 43.54

& iCaRL-NCM* 58.56 54.19 50.51 24.90 28.32 35.53

wy | EEIL* 60.37 56.05 52.34 23.36 26.65 32.40

= UCIR"Hou et al.| (2019) 63.78 62.39 59.07 21.00 25.12 28.65

PODNet* 64.88 63.05 61.62 19.12 22.55 25.64

LwF_MC 45.93 27.43 20.07 44.23 50.47 55.46

MUC |Yu et al.| (2020a) 49.42 30.19 21.27 40.28 47.56 52.65

s SDC* |Yu et al.| (2020b) 56.77 57.00 58.90 6.96 7.50 10.77

hl.ll PASS [Zhu et al.|(2021b) 63.47 61.84 58.09 25.20 30.25 30.61

S IL2A*|Zhu et al.| (2021al) 65.72 62.69 59.90 27.25 37.35 39.27

~ | ABD*|Yin et al.|(2020) 63.85 62.46 57.40 23.12 27.34 33.42
Ours 66.64+0.01 65.84+0.07 61.83+0.12 | 6.50+0.13 3.30+0.39 9.14+1.42

Table 1: Comparisons with other methods on CIFAR-100 dataset. P represents the number of phases
and E represents the number of exemplars. Models with an asterisk * represent the reproduced results
in Zhu et al. (2021b). Models with a marker ¥ represent the reproduced results of ours. The blue
footnotes in the last row represent the values of error bars.

TinyImageNet ImageNet-Subset

Methods P=5 P=10 P=20 P=10

S | iCaRL-CNN* 34.64 31.15 27.90 50.53
LE] iCaRL-NCM* 45.86 43.29 38.04 60.79
= EEIL* [Castro et al.[(2018) 47.12 45.01 40.50 63.34
~ | UCIR*|Hou et al.[(2019) 49.15 48.52 42.83 66.16
~ | LwF_MC|Rebuffi et al.[(2017) 29.12 23.10 17.43 31.18
< | MUC|Yu et al.[(2020a)) 32.58 26.61 21.95 35.07
LL'] MAS |Aljundi et al.[(2018) 18.97 11.82 7.17 19.11
< | EWC Kirkpatrick et al.[(2017) 19.64 16.18 17.09 27.32
| PASS |Zhu et al.|(2021D) 49.55 47.29 42.07 61.80

Ours 53.69+0.14 52.88+0.05 51.94+0.28 69.22+0.05

Table 2: Comparisons of the average incremental accuracy (%) with other methods on TinyImageNet
and ImageNet-Subset. P represents the number of phases and E represents the number of exemplars.
Models with an asterisk * represent the reproduced results in|/Zhu et al.[(2021b)). The blue footnotes
in the last row represent the values of error bars.
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A.2. DETAILED SETTING

We use an Adam optimizer, in which the initial learning rate is set to 0.001 and the attenuation rate is
set to 0.0002. The batch size is set to 128. The model stops training after 160 epochs and 60 epochs
during the initial phase and incremental phases, respectively. We adopt ResNet18 and 3 standard
convolution blocks as the backbone of feature extractor fp, and pathway planner fq,, respectively.

In the main text, the maximum value of sparse rate in Equation 10 is set to 0.4. The values of e;
and e; in Equation 10 are set to 0.08 and 0.75, respectively. The values of L and K in Section
3.3 are set to 4 and 16, respectively. One NVIDIA GTX2080Ti gpu is utilized for CIFAR-100 and
TinyImageNet datasets. Two NVIDIA GTX3090 and eight NVIDIA Tesla A100 gpu are utilized for
ImageNet-Sub and ImageNet-Full datasets, respectively. All datasets adopted in this paper are open
to the public.

A.3. OPTIMIZATION EXPLANATION IN OUR SCHEME

The optimization of feature representation @, is mainly guided by the classification loss function
L5 and feature distillation loss function L;4. Assuming that the optimal solution at the incremental
phase t — 1 is taken when 0;_; = 0;_;. As 0, is initialized by the value of 8;_,, it can be assumed
that 8; is close to 8;_;. Then the Taylor expansion on 6, can be written as follows,

of(0
700 = 507+ (P20 oy 10— 071 .
0%f(0
200 )" (L o Y000+ 0t0r ).

The first order component is constrained to zero by the gradient descent, and the ones higher than
second order can be ignored. The subscript ¢ can be omitted for brevity, and Equation |I| can be
approximated as follows:

F(6) = F(6%) + 5(0— 6°2"(8°) = [(6%) + 100~ 6%)? =

f(0°) + %(chs + Qpa) (0 — 6%)7,
where Qs and Q4 represents the importance of parameter space on the classification and distilla-
tion tasks, which is commonly estimated in different incremental methods |[Kirkpatrick et al.|(2017);
Aljundi et al.| (2018). To mitigate the interference between the two objectives, we can improve
their respective weight sparsity (i.e., the sparsity of 2.5 and 14), and reduce the shared space of
important parameters.

2

A.4. DETAILED VALUES OF THE CURVES

To facilitate the fair comparison of subsequent work, we report the detailed values of incremental
accuracy for each phase in Table[3| @and[5] The average accuracy is consistent with the one in Table
3 and 4 of the main text.

A.5. MORE RESULTS ON VISUALIZATION.

To better demonstrate the role of CPO and PFU during optimization, we show more corresponding
visualization results. In Fig. [I](a), the center of the circle represents the novel class, and the sur-
rounding represents the five different base classes. The middle values represent the intersection of
union (IoU) of pathways between the new and old classes. It can be seen the pathways are class-
specific, and the similarity is also positively related to the class relationship. As shown in Fig. [1|(b),
the features of shared and unshared pathways are visualized by Grad-CAM |Selvaraju et al.| (2017).
To further distinguish between the old and novel class, the novel one expands new pathways to learn
representative features.

A.6. CONFUSION MATRIX.

To evaluate performance of both old and new classes during training, we compare their accuracy on
two setting (i.e. 5 and 10 incremental phases). As shown in Fig. |2} our method achieves similar
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Figure 1: Effect of our scheme on the pathway learning. (a) CPO realizes the organization of
distinguishable pathways, thus mitigating the overlap between the incremental classes and the old
ones. NC represents the novel classes. (b) PFU promotes the pathway expansion of similar classes.
The first two columns represent the shared pathways, and the last represents the unshared ones.

Phase
Dataset 0 T 2 3 i 5 6 7 g 9
A 8240 7823 7487 7234 6862 6796 6552 6484 6257 6083
B 6270  59.92 5855 5701 5525 5442 5318 5274 5227  51.70

Phase
Dataset 10 11 ip) 3 2 5 16 7 13 9
A 5976 5885 5739 5572 5466 5354 5321 5255 5224 5154
B 5125 5076  50.19 4925 4871 4795 4766 47.09 46.66  45.57

Phase

Dataset —50 —

A 50.82

B 45.03

Table 3: Detailed values of classification accuracy under the setting of 20 incremental phases. A and
B represent the CIFAR-100 and TinyImageNet datasets, respectively.

performance between the old and new classes without favoring one side due to overfitting, which is
a prerequisite for a good incremental learning system.
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Figure 2: Confusion matrices of different methods on CIFAR-100. 5 phases and 10 phases settings
are considered to evaluate the stability of our method on the old and novel classes.
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Phase

Dataset 0 I 7 3 7} 5 6 7 g 9 10

CIFAR-100 80.90 76.15 73.13 69.58 66.73 64.59 63.01 60.81 58.68 56.16 54.50
TinyImageNet 62.70 59.05 56.00 5425 53.03 5237 5121 50.13 48.73 47.81 46.41
ImageNet-Subset || 83.40 77.29 7393 71.75 69.64 6856 67.61 6507 6301 6122 59091
ImageNet-Full 7646 67.59 6492 62.89 60.61 5872 57.12 5575 54.17 5230 51.65

Table 4: Detailed values of classification accuracy under the setting of 10 incremental phases.

Phase
Dataset 0 i 5 3 i 3
CIFAR-100 80.90 72.63 65.87 62.94 60.76 56.76
TinylmageNet 62.70 57.35 54.30 52.04 48.96 46.79

Table 5: Detailed values of classification accuracy under the setting of 5 incremental phases.

A.7. RELATED WORK ON FILTER PRUNING METHODS.

Network pruning Liebenwein et al.|(2019);|Sui et al.|(2021)); |Gao et al.| (2018)) is an important tech-
nology to reduce memory size and bandwidth. Recently, various network pruning techniques have
been proposed, which can be classified from the structural aspect, i.e., the structured and unstruc-
tured pruning. Specifically, structured methods remove parameters in groups by pruning neurons,
filters, or channels. Classical filter pruning methods |Sui et al.| (2021);|Gao et al.|(2018) make up the
prominent family of structured methods for CNNs. Different from the pruning methods designed
for the network efficiency, our scheme aims at the mitigation of update interference. The concept
of group in this paper is slightly different as only the output channels of features are divided for the
organization of pathway.

A.8. LIMITATION AND SOCIETAL IMPACT

The division way of the standard classification model in our method is too simple, which constrains
the adjustment of some factors. As shown in Fig. 4] the maximum sparsity can only be kept below
0.5, which deserves the further improvement. Our non-exemplar method avoids the issue of privacy
but an old model needs to be maintained during the training, which poses a risk of information leak.
This calls for future research that addresses this aspect.

B. ADDITIONAL RESULTS
B.1. PATHWAY VISUALIZATION

To better demonstrate the role of self-organizing pathway expansion scheme during optimization,
we show more visualization results on the pathways of different classes. For the simplicity of view-
ing, we plot the most important group (i.e., vertical coordinate) in each module (i.e., horizontal
coordinate). As shown in Fig. [3](a), at the initial phase, two different classes (i.e., the classes in the
first and second columns) tend to utilize different pathways to extract the corresponding features. At
the incremental phase, the novel class (i.e., the class in the third column) tends to utilize the novel
pathway to optimize the incremental features, and the whole pathway is similar to the semantically
close class (i.e., the class in the second column). The observation is consistent with the one from
Fig. 5 in the main text.

B.2. THE IMPACT OF THE SET EPOCHS.

To explore the effect of the set epochs on the incremental performance, we conduct multiple exper-
iments with different start epochs (i.e. e;) and end epochs (i.e. e3) in Equation 10 of the main text
on CIFAR-100. As shown in Fig. [ (b), the performance with larger start epoch is obviously worse
than those with other values. In this case, due to the increase of initial classification accuracy with
full pathways, it is more difficult to separate the class-specific pathway, which influences the overall
performance. At the same time, the values of the end epoch have almost no effect on the incremental
performance, which is more robust to the optimization process.
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Figure 3: More visualization results on the pathway. The first and second columns represent the
pathways of two old classes, which differ significantly in semantics. The third column represents
the pathway of the incremental class, which is semantically closer to the one in the second column.
For the simplicity of viewing, we plot the most important group (i.e., L) in each module (i.e., K).
Pathway IoU represents the overlap rate of corresponding class-specific pathways.
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Figure 4: The impact of the values of the set epochs (i.e., e; and e in Equation 10 of the main text)
on the incremental performance in the three-step strategy.

B.3. FURTHER ANALYSIS OF MORE CIL METHODS.

In the comparative experiments of the main text, we compare with some classical CIL methods at
two different settings, demonstrating that our method reduces the gap between the two settings. At
the same time, most of the classical methods are not applicable to the NECIL settings, let alone the
latest CIL methods. For example, we adapt the latest CIL method dynamic expandable network |Yan
et al| (2021)) to the NECIL setting (i.e. NDER), and its performance is poor as shown in Table[6] Due
to the lack of old samples, it is difficult to perform effective optimization with such large expanding
parameters.
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CIFAR-100
Method 5 phases 10 phases 20 phases
NDER 29.08 21.13 13.10
Ours 66.64 65.84 61.83

Table 6: Further analysis on the CIL method.

B.4. GENERALIZATION TO THE CIL SETTING

To further prove the effectiveness and generalization of our method, we introduce it into the CIL
setting. As [Douillard et al| (2020) is one of the SOTA methods in CIL setting, we modify its
implementation with our self-organized pathway expansion scheme directly. As shown in Table[7}
our method achieves average improvement of 2 points. Even if the effect of incremental samples on
the overall performance is weakened by exemplars in CIL setting, our scheme still brings a boost to
the existing method [Douillard et al.| (2020). It can be seen that our method has great potential for
the CIL setting, which will serve as our future work.

B.5. COMPARISON WITH SOTA ON IMAGENET-FULL DATASET.

To better assess the overall performance of our scheme on larger dataset, we compare it to the SOTA
of NECIL (PASS) and some classical methods of exemplar-based CIL (iCARL, UCIR and PODNet)
on ImageNet-Full.

As shown in Table @ compared to the SOTA of non-exemplar methods (i.e., E=0), our method
achieves average improvement of 2 points on the average accuracy. The performance of our method
is comparable to the classical exemplar-based methods (i.e., E=20), which shows that our method
further mitigate the gap between the two settings on larger dataset.

CIFAR-100 (B50)

Method 5 phases 10 phases

Podnet 64.88 63.05
Ours 66.64 65.84

Table 7: Comparisons of the average incremental accuracy (%) under the CIL setting.

ImageNet-Full
Methods =10
S iCaRL Rebuffi et al[(2017) 46.72
I | UCIR [Hou et al.|(2019) 63.27
% | PODNetDouillard et al. (2020) 64.17
| iCaRL¥[Rebuffi et al. (2017) 32.43
UCIR¥ Hou et al.[(2019) 53.27
s PODNet* Douillard et al.| (2020) 50.67
LILI] PASS¥ Douillard et al.| (2020) 55.90
SSRE* [Zhu et al.| (2022) 58.12
Ours 60.20

Table 8: Comparisons of the average incremental accuracy (%) with other methods on ImageNet-
Full. P represents the number of phases and E represents the number of exemplars. Models with an
asterisk ¥ represent the reproduced results by this paper.
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