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1 ADDITIONAL ABLATION STUDIES

We further conduct ablation studies of DMPT on PASCAL VOC 2012, Fig. 1 and Table. 1.

Top-ranked tokens. In part token allocation and token-classifier matching procedures, we replace
each part token (i.e. the top-1 confident patch token) with Z top-ranked confident patch tokens.
In Fig. 1(a), our method achieves the best performance 53.9% by selecting 30 top-ranked patch
tokens (Z = 30). More patch tokens (Z = 40/50) would introduce background noise, leading to a
1.0∼1.5% performance drop.

Number of tokens for segmentation supervision. Instead of using the point within of top-1 confident
patch token (matched part token), we utilize more top-ranked points for each object part to supervise
instance segmenter. As shown in the Fig.1(b), selecting 3 top-ranked patch tokens (points) of each
part as supervision achieves best performance 55.1% mAP50. However, using more part points or
part region does not bring significant performance gain but drop.

Model size of SAM. In Fig. 1(c), we use different model sizes for segment anything model when
carrying out DMPT-SAM. With ViT-H as backbone, DMPT-SAM achieves 59.8% mAP50, 1.4%
higher than that with ViT-B (58.4%).

Binarization threshold. In Fig. 1(d), we conduct experiments on the threshold when binarizing
attention map to obtain foreground patch tokens M+ (in Section 3.2 of main paper). The threshold
value (0.3) reports the best performance. Higher value (0.5) causes serious part missing, and lower
value (0.1) introduces background noise, both of which contribute to performance drop.

Clustering Method. The part token allocation in DMPT is related to mean-shift algorithm. Other
clustering methods can also be used to perform this procedure. We conduct ablation studies to replace
the clustering method in part token allocation with the K-Means algorithm and PST (Yang et al.,
2022) to obtain the clusters and part tokens. In Fig. 1(e), it can be seen that mean-shift achieves
almost comparable performance with PST and K-Means, indicating that the parameterized part-based
modeling mechanism is robust to fine-grained semantics and background noise.

Efficiency. We report comprehensive index on computing overhead in Table. 1.
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Figure 1: Ablation results. (a) Number of top-ranked tokens. (b) Number of matched tokens within
each part for segmentation supervision (“R” denotes all tokens within the part cluster). (c) Model size
of DMPT-SAM. (d) Experimental threshold for binarizing attention maps. (e) Clustering methods.
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Method GPU memory Training Time FPS FLOPs Backbone/Params. mAP25 mAP50 mAP75

BESTIE 12293M 34.2h 16.4 126.7G HRNet-W48/63.6M 58.6 46.7 26.3
DMPT(ours) 15305M 9.7h 14.3 154.8G ViT-S / 22.1M 69.8 55.5 27.8

Table 1: Comparison of GPU memory, computational complexity and training efficiency.

2 ADDITIONAL VISUALIZATION ANALYSIS

We provide additional visualization results of Fig.3 and Fig.4 in the main document. The results are
shown in Fig. 2 and Fig. 3, respectively. We also visualize the instance segmentation results of the
proposed DMPT, as shown in Fig. 4.

3 DETAILS OF ATTENTION MAP GENERATION AND PSEUDO BOUNDING-BOX
GENERATION.

We implement a simple-yet-efficient method to generate pseudo bounding-boxes, which are used to
supervise our detection head to output final detection results.

Attention Map Generation. In Sec.3.1 of the main document, a self-attention map A for each
assigned query token is produced by a selection procedure. Firstly, we generate a set of self-attention
maps A = {Al, l = 1, 2, ..., L}, where Al denotes the attention map produced by l-th block in vision
transformer and L = 12 the number of all blocks in vision transformers(Dosovitskiy et al., 2021).
Additionally, Al

i,j is the attention value between patch token ϕi,j and the assigned query token in the
l-th block. Following (Abnar & Zuidema, 2020), we update Al ∈ RW×H as

Al = AL ⊗AL−1 ⊗ ...⊗Al, (1)

where ⊗ is the cross product.

Pseudo bounding-box generation. For each updated attention map Al, we binarize it to a mask using
empirically thresholds and generate a tight bounding-box Bl to enclose the maximum connected
area on the foreground region. The pseudo bounding-boxes B = {Bl, l = 1, 2, ..., L} for each
assigned query token (supervision point) are then used to extract object features using a 7 × 7
RoI-Align module (He et al., 2017). With object features as input, the dual-flow network, proposed
by WSDDN (Bilen & Vedaldi, 2016), outputs two sets of classification scores for each supervision
point. For one set of the classification scores, we use the softmax function over the dimension of
category and obtain the classification probability Scls ∈ RL×C , where L is the number of instances
(pseudo bounding-boxes) of a bag (Chen et al., 2022) and C is the number of categories. Likewise,
we do the same operation on the other set of classification scores over instance dimension and get
the instance probability Sins ∈ RL×C . Finally, we compute Hadamard product of classification
probability and instance probability to get the object probability S ∈ RL×C = Scls ⊙ Sins. We
select the bounding-box B with the highest object probability by B = argmaxB∈B S as the pseudo
bounding-box for its corresponding supervision point. To optimize the dual-stream network, we use
binary cross-entropy loss (Bilen & Vedaldi, 2016) defined on the bag score, which is computed by
summarizing the object probability over the instance dimension, as

LBB = BCE(

L∑
l=1

S, Y ), (2)

where Y is the binary label of the supervision point.

Performance. In Table. 2 and 3, we conduct experiments on PASCAL VOC 2007, PASCAL VOC
2012, MS-COCO 2014 and MS-COCO 2017 to evaluate the quality of object localization of generated
pseudo bounding-boxes. Whether train detectors in an end-to-end fashion or a re-training fashion, our
approach outperforms all the state-of-the-art weakly/pointly object detection methods by a significant
margin, which sets a novel baseline for pointly supervised object detection using vision transformer.
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Method Backbone AP AP50 AP75 APs APm APl

Box-supervised detectors
RetinaNet (Lin et al., 2017) ResNet-50 36.5 55.4 39.1 20.4 40.3 48.1
Faster R-CNN (Ren et al., 2015) ResNet-50 37.4 58.1 40.4 21.2 41.0 48.1
Cascade R-CNN (Cai & Vasconcelos, 2018) ResNet-50 40.3 58.6 44.0 22.5 43.8 52.9
RetinaNet (Lin et al., 2017) ResNet-101 38.5 57.6 41.0 21.7 42.8 50.4
Faster R-CNN (Ren et al., 2015) ResNet-101 39.4 60.1 43.1 22.4 43.7 51.1
Cascade R-CNN (Cai & Vasconcelos, 2018) ResNet-101 42.0 60.4 45.7 23.4 45.8 55.7
Faster R-CNN (Ren et al., 2015) ViT-Small 41.1 62.4 44.6 24.7 44.2 55.1
imTED (Zhang et al., 2022) ViT-Small 43.1 64.1 46.9 25.0 46.5 58.6
Cascade R-CNN ViT-Small 44.7 64.0 48.6 26.7 47.6 59.9
Cascade R-CNN (Cai & Vasconcelos, 2018) ViT-Base 52.0 71.3 56.5 35.1 55.7 68.3
imTED (Zhang et al., 2022) ViT-Base 52.2 72.8 57.1 36.0 55.0 67.5
Point-supervised detectors (retrained)
UFO (Ren et al., 2020b) VGG-16 13.5 27.9 - - - -
UFO (Ren et al., 2020b) ResNet-50 13.2 28.9 - - - -
†P2BNet (Chen et al., 2022) + Faster R-CNN ResNet-50 22.1 47.3 18.3 11.5 24.8 30.4
P2BNet (Chen et al., 2022) + Faster R-CNN ResNet-50 24.0 49.9 20.3 11.5 26.4 34.1
P2BNet (Chen et al., 2022) + Faster R-CNN ViT-Small 19.1 43.5 13.6 7.6 19.1 31.3
Ours + Faster R-CNN ViT-Small 29.4 54.3 28.4 11.4 32.2 47.8
Ours + imTED (Zhang et al., 2022) ViT-Small 29.6 54.4 28.5 11.3 32.3 48.5
Ours + imTED (Zhang et al., 2022) ViT-Base 32.7 57.4 32.4 13.2 36.4 52.5
End-to-end point-supervised detectors
‡P2BNet (Chen et al., 2022) + Faster R-CNN ResNet-50 21.1 46.2 17.6 10.7 23.5 29.6
Ours + Faster R-CNN (Ren et al., 2015) ViT-Small 24.6 47.0 23.2 8.0 27.5 38.9
Ours + imTED (Zhang et al., 2022) ViT-Small 25.0 47.8 23.3 8.2 25.5 42.3
Ours + imTED (Zhang et al., 2022) ViT-Base 28.9 54.9 27.5 9.4 34.1 47.1

Table 2: Performance of our pseudo bounding-box generation method evaluated on MS-COCO 2017
val set. † denotes using the pseudo center point (Chen et al., 2022) as supervision, and ‡ represents
implementation with the official code.
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Method Backbone VOC2007 VOC2012 COCO2014
mAP50 mAP50 AP AP50

Box-supervised detectors
Fast R-CNN (Girshick, 2015) VGG-16 66.9 65.7 - -
Faster R-CNN (Ren et al., 2015) VGG-16 69.9 67.0 - -
Faster R-CNN (Ren et al., 2015) ResNet-50 80.4 75.3 35.5 56.7
Faster R-CNN (Ren et al., 2015) ViT-Small 82.3 77.4 38.3 60.3
imTED (Zhang et al., 2022) ViT-Small 82.5 78.0 40.6 61.7
imTED (Zhang et al., 2022) ViT-Base 87.0 85.3 48.0 69.4
Image-supervised detectors
OICR (Tang et al., 2017) + Fast R-CNN VGG-16 47.0 42.5 7.7 17.4
PCL (Tang et al., 2020) + Fast R-CNN VGG-16 - - 9.2 19.6
C-MIL (Wan et al., 2019) VGG-16 50.5 46.7 - -
WSOD2 (Zeng et al., 2019) VGG-16 56.0 52.7 10.8 22.7
UFO (Ren et al., 2020b) VGG-16 - - 10.8 23.1
GradingNet-C-MIL (Jia et al., 2021) VGG-16 54.3 50.5 11.6 25.0
ICMWSD (Ren et al., 2020a) VGG-16 54.9 52.1 11.4 24.3
ICMWSD (Ren et al., 2020a) ResNet-50 - - 12.6 26.1
CASD (Huang et al., 2020) VGG-16 56.8 53.6 12.8 26.4
CASD (Huang et al., 2020) ResNet-50 - - 13.9 27.8
Point-supervised detectors (retrained)
Click (Papadopoulos et al., 2017) AlexNet 49.1 - - 18.4
UFO (Ren et al., 2020b) VGG-16 - - 12.4 27.0
UFO (Ren et al., 2020b) ResNet-50 - - 12.6 27.6
P2BNet (Chen et al., 2022) + Faster R-CNN ResNet-50 63.4‡ 60.0‡ 19.4 43.5
Ours + imTED (Zhang et al., 2022) ViT-Small 77.0 72.5 26.2 49.3
Ours + imTED (Zhang et al., 2022) ViT-Base 80.1 78.8 29.3 54.7
End-to-end point-supervised detectors
Ours + imTED (Zhang et al., 2022) ViT-Small 75.8 71.4 23.0 44.5
Ours + imTED (Zhang et al., 2022) ViT-Base 79.2 77.1 27.1 51.2

Table 3: Performance of our pseudo bounding-box generation method evaluated on PASCAL VOC
2007 test set, PASCAL VOC 2012 test set and MS-COCO 2014 val set. ‡ denotes performance
provided by authors.
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Figure 2: Visualization of part token allocation (heat-maps in 1-3 and 5-7 columns) and token-
classifier matching results (4 and 8 columns). (Best viewed in color)
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Figure 3: Visualization of the self-attention map (column 2), activation map of part classifier trained
without token-classifier matching (columns 3-5), and activation map of part classifier trained with
token-classifier matching (columns 6-8). (Best viewed in color)
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Figure 4: Visualization of instance segmentation results on PASCAL VOC 2012 val set (upper) and
MS-COCO 2017 tets-dev set (lower).
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