
A Technical Proofs and

We gather in this section the proofs omitted in the core text.

A.1 Recovering stationary linear bandits, rotting and rising rested bandits, and contextual

bandits

Example 1 (Stationary linear bandits) Consider a linear bandit model, defined by an action set
A ⇢ Bd and ✓⇤ 2 Bd. This is equivalent to a LBM with the same A and ✓⇤, and memory matrix A
such that A(a1, . . . , am) = Id for any a1, . . . , am 2 A

m, i.e., when m = 0 or � = 0.

Example 2 (Rotting and rising rested bandits) In rotting [Levine et al., 2017, Seznec et al., 2019]
or rising [Metelli et al., 2022] rested bandits, the expected reward of an arm k at time step t is fully
determined by the number nk(t) of times arm k has been played before time t. Formally, each arm
is equipped with a function µk such that the expected reward at time t is given by µk(nk(t)). In
particular, requiring all the µk to be nonincreasing corresponds to the rotting bandits model, and
requiring all the µk to be nondecreasing corresponds to the rested rising bandits model. Now, let
d = K, A = (ek)1kK , ✓⇤ = (1/

p
K, . . . , 1/

p
K), and m!12. By the definition of A, see (2),

and the orthogonality of the actions, it is easy to check that the expected reward of playing action ek
at time step t is given by (1 + nk(t))�/

p
K. When �  0, this is a nonincreasing function of nk(t),

and we recover rotting rested bandits. Conversely, when � � 0, we recover rising rested bandits.
We note however that the class of decreasing (respectively increasing) functions we can consider is
restricted to the set of monomials of the form n 7! (1 + n)�/

p
K, for �  0 (respectively � � 0).

Extending it to generic polynomials is clearly possible, although it requires more computations in the
model selection phase, see Remark 4 and Section 3.3.

After presenting Example 2, we explain the motivation for considering a finite memory m. Although
rotting and rising bandits require infinite memory, we argue on both practical and theoretical grounds
that in our setting a finite value of m is preferable. First, in many applications it is reasonable to
assume that the effect of past actions will vanish at some point. For example, listening to a song now
does not affect how much we will enjoy the same song in a distant enough future. Second, permanent
effects may trivialize the problem on the theoretical side: consider m!1 and �  �1/2, then for
any sequence of actions (at)t�1 we have

PT
t=1hat, At�1✓⇤i 

PT
t=1

��At�1at
��
2


q
T
PT

t=1

��At�1at
��2
2

p

2dT log(1 + T/d) := BT ,

where we have used the elliptical potential lemma [Lattimore and Szepesvári, 2020, Lemma 19.4].
Hence, as soon as �  �1/2, we have OPT  BT , and the trivial strategy consistently playing
0 enjoys a small regret BT . Conversely, consider � � 0. The strategy consistently playing ✓⇤
achieves, after t rounds, an instantaneous reward of (1 + t)� , which is diverging for � � 1. This is
not realistic in most application and, incidentally, violates the concave payoffs assumption [Metelli
et al., 2022, Assumption 3.2]. Therefore, although considering m = +1 may look attractive at first
sight, it actually fails to adequately model song satiation, and restricts the range of relevant � from
R to (�1/2, 1). Instead, focusing on finite memory m yields more interesting problems, although
it prevents a full generalization of rotting bandits with finitely many arms. We note however that
when m <1, the spirit of rotting (resp., rising) bandits is still preserved, as playing an action does
decrease (resp., increase) its efficiency for the next pulls (within the time window).

We conclude this exposition by highlighting that LBMs may also be generalized to contextual bandits
[Lattimore and Szepesvári, 2020].

Remark 3 (Contextual bandits) In contextual bandits, at each time step t the learner is provided
a context ct (e.g., data about a user). The learner then picks an action at 2 A (based on ct), and
receives a reward whose expectation depends linearly on the vector (ct, at) 2 Rd, where is a
known feature map. Note that it is equivalent to have the learner playing actions at 2 Rd that belong
to a subset At = { (ct, a) 2 Rd

: a 2 A}. The analysis developed in Section 3 still holds true when
At depends on t, and can thus be generalized to contextual bandits with memory.

2In the next paragraph, however, we explain why a bounded memory m is preferable within our model.

14

A.2 Proof of Proposition 1

Proposition 1 The oracle greedy strategy, which plays agreedyt = argmaxa2Aha,At�1✓⇤i at time
step t, can suffer linear regret, both in rotting or rising scenarios.

Proof We build two instances of LBM, one rotting, one rising, in which the oracle greedy strategy
suffers linear regret. We highlight that the other strategy exhibited, which performs better than oracle
greedy, may not be optimal.

Rotting instance. Let A = Bd, ✓⇤ = e1, m = d� 1, and A such that

A(a1, . . . , am) =

Id +

mX

s=1

asa
>
s

!��

,

for some � > 0 to be specified later. Oracle greedy, which plays at each time step agreedyt =

argmaxa2Aha,At�1✓⇤i, constantly plays e1. After the first m pulls, it collects a reward of 1/d�
at every time step. On the other side, the strategy that plays cyclically the block e1 . . . ed collects a
reward of 1 every d = m+ 1 time steps, i.e., an average reward of 1/d per step. Hence, up to the
transitive first m pulls, the cumulative reward of oracle greedy after T rounds is T/d� , and that of
the cyclic policy is T/d. The regret of oracle greedy is thus at least

T

✓
1

d
�

1

d�

◆
,

which is linear for � > 1.

Rising instance. Let m � 1, d = 2, A = B2, ✓⇤ = (", 1) where " > 0 is to be specified later, and A
such that

A(a1, . . . , am) =

✓
1 0

0 0

◆
+

mX

s=1

asa
>
s .

Oracle greedy constantly plays e1 collecting a reward of (m+1)✓⇤1 from round m+1 onward. On the
other side, the strategy that plays constantly e2 collects a reward of m✓⇤2 from round m+ 1 onward.
Hence, the regret of oracle greedy from round m + 1 onward is at least (T �m)[m � (m + 1)"],
which is linear for " < m/(m+ 1). ⇤

A.3 Proof of Proposition 2

Proposition 2 For any m,L � 1, let ea be the block of m+ L actions defined in (5) and (ert)Tt=1 be
the expected rewards collected when playing cyclically ea. We have

OPT�

TX

t=1

ert 
2mR

m+ L
T . (6)

Proof Recall that the optimal sequence is denoted (a⇤t)
T
t=1 and collects rewards (r⇤t)Tt=1. Let L > 0;

by definition, there exists a block of actions of length L in (a⇤t)
T
t=1 with average expected reward

higher that OPT/T . Let t⇤ be the first index of this block, we thus have (1/L)
Pt⇤+L�1

t=t⇤ r⇤t �
OPT/T . However, this average expected reward is realized only using the initial matrix At⇤�1,
generated from a⇤t⇤�1, . . . , a

⇤
t⇤�m. Let a⇤

= a⇤t⇤�m, . . . , a⇤t⇤+L�1 of length m + L. Note that, by
definition, we have that er(ea) � er(a⇤

) =
Pt⇤+L�1

t=t⇤ r⇤t � L OPT/T . Furthermore, by (8), when
playing cyclically ea one obtains at least a reward of �R in each one of the first m pulls of the block.
Collecting all the pieces, we obtain

TX

t=1

ert �
T

m+ L

⇣
�mR+ er(ea)

⌘

�
T

m+ L

⇣
�mR+ er(a⇤

)

⌘

�
T

m+ L

✓
�mR+ L

OPT

T

◆

15

=
L

m+ L
OPT�

mR

m+ L
T

�
L

m+ L
OPT+

m

m+ L
OPT�

mR

m+ L
T �

mR

m+ L
T (13)

= OPT�
2mR

m+ L
T ,

where (13) derives from OPT  RT . ⇤

A.4 Proof of Proposition 4

We prove the (stronger) high probability version of Proposition 4.

Proposition 5 Let � � 1, � 2 (0, 1), and a⌧ be the blocks of actions in Rd(m+L) associated to the
b⌧ defined in (9). Then, with probability at least 1� � we have

T/(m+L)X

⌧=1

er(ea)� er(a⌧)  4L(m+ 1)
�+

s

Td ln

✓
1 +

T (m+ 1)2�
+

d(m+ L)�

◆

·

p

�L+

s

ln

✓
1

�

◆
+ d(m+ L) ln

✓
1 +

T (m+ 1)2�
+

d(m+ L)�

◆!
.

Proof The proof essentially follows that of [Abbasi-Yadkori et al., 2011, Theorem 3]. The main
difference is that our version of OFUL operates at the block level. This implies a smaller time horizon,
but also and increased dimension and an instantaneous regret heb,✓⇤

i � hb⌧ ,✓⇤
i upper bounded by

2L(m + 1)
�+

instead of 1. We detail the main steps of the proof for completeness. Recall that
running OFUL in our case amounts to compute at every block time step ⌧

b✓⌧ = V �1
⌧

⌧X

⌧ 0=1

y⌧ 0 b⌧ 0

!
,

where

V⌧ =

⌧X

⌧ 0=1

b⌧ 0b>⌧ 0 + �Id(m+L) , and y⌧ =

m+LX

i=m+1

y⌧,i ,

since we associate with a block of actions the sum of rewards obtained after time step m. Note that
by the determinant-trace inequality, see e.g., [Abbasi-Yadkori et al., 2011, Lemma 10], with actions
b⌧ that satisfy kb⌧k22  m+ L(m+ 1)

2�+

we have

|V⌧ |

|�Id(m+L)|


1 +

⌧(m+ L(m+ 1)
2�+

)

d(m+ L)�

!d(m+L)



1 +

⌧(m+ 1)
2�+

d�

!d(m+L)

. (14)

The action played at block time step ⌧ is the block a⌧ 2 B
m+L
d associated with

b⌧ = argmax
b2B

sup
✓2C⌧�1

hb,✓i , (15)

where
C⌧ =

n
✓ 2 Rd(m+L)

:
��b✓⌧ � ✓

��
V⌧
 �⌧ (�)

o
,

with

�⌧ (�) =

s

2 ln

✓
1

�

◆
+ d(m+ L) ln

✓
1 +

⌧(m+ 1)2�
+

d�

◆
+

p

�L . (16)

Applying [Abbasi-Yadkori et al., 2011, Theorem 2] to ✓⇤
2 Rd(m+L) which satisfies k✓⇤

k2 
p
L

we have that ✓⇤
2 C⌧ for every ⌧ with probability at least 1 � �. Denoting by e✓⌧ the model that

16

maximizes (15), we thus have that with probability at least 1� �, the inequality heb,✓⇤
i  hb⌧ , e✓⌧ i

holds for every ⌧ , and consequently

T/(m+L)X

⌧=1

heb,✓⇤
i � hb⌧ ,✓

⇤
i



T/(m+L)X

⌧=1

min

n
2L(m+ 1)

�+

, hb⌧ , e✓⌧ � ✓⇤
i

o



T/(m+L)X

⌧=1

min

n
2L(m+ 1)

�+

,
��e✓⌧ � ✓⇤��

V⌧�1
kb⌧kV �1

⌧�1

o



T/(m+L)X

⌧=1

min

n
2L(m+ 1)

�+

, 2�⌧ (�) kb⌧kV �1
⌧�1

o

 2L(m+ 1)
�+

�T/(m+L)(�)

T/(m+L)X

⌧=1

min

n
1 , kb⌧kV �1

⌧�1

o

 2L(m+ 1)
�+

�T/(m+L)(�)

vuut T

m+ L

T/(m+L)X

⌧=1

min

⇢
1 , kb⌧k2V �1

⌧�1

�

 2
p
2L(m+ 1)

�+

�T/(m+L)(�)

s
T

m+ L
ln

|VT/(m+L)|

|�Id(m+L)|

 4L(m+ 1)
�+

s

Td ln

✓
1 +

T (m+ 1)2�
+

d(m+ L)�

◆

·

p

�L+

s

ln

✓
1

�

◆
+ d(m+ L) ln

✓
1 +

T (m+ 1)2�
+

d(m+ L)�

◆ !
,

where we have used [Abbasi-Yadkori et al., 2011, Lemma 11], as well as (14) and (16). Note that in
the stationary case, i.e., when m = 0 and L = 1, we exactly recover [Abbasi-Yadkori et al., 2011,
Theorem 3]. Proposition 4 is obtained by setting � 2 [1, d], L � m, and � = 1/T . ⇤

A.5 Proof of Proposition 3

Proof Let d = m+ 1, A = {0d} [(ek)kd, ✓⇤ = (1/
p
d, . . . , 1/

p
d), and �  0. For simplicity,

we note the basis modulo d, i.e., ek+d = ek for any k 2 N. Note that for any a1, . . . , am+1 2 A we
have

��ham+1, Am✓⇤i
��  kam+1k1 kAm✓⇤k1  1/

p
d, such that one can take R = 1/

p
d. Observe

now that the strategy which plays cyclically e1, . . . , ed collects a reward of 1/
p
d at each time step,

which is optimal, such that OPT = T/
p
d. Further, it is easy to check that block ea, composed of

m pulls of 0d followed by e1, . . . , eL satisfies er(ea) = L/
p
d, which is optimal for similar reasons.

Playing cyclically ea, one gets a reward of L/
p
d every m+ L pulls. In other terms, we have

OPT�

TX

t=1

ert =
T
p
d
�

L

m+ L

T
p
d
=

m

m+ L

T
p
d
=

mR

m+ L
T .

⇤

A.6 Proof of Theorem 1

We prove the high probability version of Theorem 1, obtained by setting � 2 [1, d], and � = 1/T .

17

Theorem 2 Let � � 1, � 2 (0, 1), and a⌧ be the blocks of actions in Rd(m+L) defined in (11). Then,
with probability at least 1� � we have
T/(m+L)X

⌧=1

er(ea)� er(a⌧)  4L(m+ 1)
�+

s

Td ln

✓
1 +

T (m+ 1)2�
+

d�

◆

·

p

�+

s

ln

✓
1

�

◆
+ d ln

✓
1 +

T (m+ 1)2�
+

d(m+ L)�

◆ !
.

Let m � 1, T � m2d2 + 1, and set L =
⌃p

m/d T 1/4
⌥
�m. Let rt be the rewards collected when

playing a⌧ as defined in (11). Then, with probability at least 1� � we have

OPT�

TX

t=1

rt  4

p

d (m+ 1)
1
2+�+

T 3/4

"
1 + 2

s

ln

✓
1 +

T (m+ 1)2�
+

d�

◆

·

 r
�

d
+

s
ln(1/�)

d
+ ln

✓
1 +

T (m+ 1)2�
+

d�

◆ !#
.

Proof The proof is along the lines of OFUL’s analysis. The main difficulty is that we cannot use
the elliptical potential lemma, see e.g., [Lattimore and Szepesvári, 2020, Lemma 19.4] due to the
delay accumulated by V⌧ , which is computed every m+ L round only. Let

�⌧ (�) =

s

2 ln

✓
1

�

◆
+ d ln

✓
1 +

⌧(m+ 1)2�
+

d�

◆
+

p

� . (17)

By [Abbasi-Yadkori et al., 2011, Theorem 2], we have with probability at least 1� � that ✓⇤ 2 C⌧

for every ⌧ . It follows directly that ✓⇤
2 D⌧ for any ⌧ , such that heb,✓⇤

i  hb⌧ , e✓⌧ i, where
e✓⌧ = (0d, . . . , 0d, e✓⌧ , . . . , e✓⌧) with e✓⌧ 2 Rd that maximizes (11) over C⌧�1. It can be shown that the
regret is upper bounded by

P
⌧

Pm+L
i=m+1hb⌧,i,

e✓⌧ � ✓⇤i. Following the standard analysis, one could
then use ⌦

b⌧,i, e✓⌧ � ✓⇤
↵
 kb⌧,ikV �1

⌧�1

��e✓t � ✓⇤
��
V⌧�1

.

While the confidence set gives
��e✓t�✓⇤

��
V⌧�1

 2�⌧�1(�), the quantity
Pm+L

i=m+1 kb⌧,ikV �1
⌧�1

is much
more complex to bound. Indeed, the elliptical potential lemma allows to bound

P
t katk

2
V �1
t�1

when

Vt =
P

st asa
>
s +�Id. However, recall that in our case we have V⌧ =

P⌧
⌧ 0=1

Pm+L
i=m+1 b⌧ 0,ib>⌧ 0,i+

�Id, which is only computed every m+ L rounds. As a consequence, there exists a “delay” between
V⌧�1 and the action b⌧,i for i � m+ 2, preventing from using the lemma. Therefore, we propose to
use instead

⌦
b⌧,i, e✓⌧ � ✓⇤

↵
 kb⌧,ikV �1

⌧,i�1

��e✓t � ✓⇤
��
V⌧,i�1

, where V⌧,i = V⌧�1 +

iX

j=m+1

b⌧,jb
>
⌧,j . (18)

By doing so, the elliptical potential lemma applies. On the other hand, one has to control
��e✓t �

✓⇤
��
V⌧,i�1

, which is not anymore bounded by 2�⌧�1(�) since the subscript matrix is V⌧,i�1 instead of
V⌧�1. Still, one can show that for any i  m+ L we have
��e✓t � ✓⇤

��2
V⌧,i�1

= Tr

⇣
V⌧,i�1

�e✓t � ✓⇤
��e✓t � ✓⇤

�>⌘

= Tr

0

@
✓
V⌧�1 +

i�1X

j=m+1

b⌧,jb
>
⌧,j

◆ �e✓t � ✓⇤
��e✓t � ✓⇤

�>
1

A

= Tr

0

@
✓
Id +

i�1X

j=m+1

�
V �1/2
⌧�1 b⌧,j

��
V �1/2
⌧�1 b⌧,j

�>
◆
V 1/2
⌧�1

�e✓t � ✓⇤
��e✓t � ✓⇤

�>
V 1/2
⌧�1

1

A

18



����Id +
i�1X

j=m+1

�
V �1/2
⌧�1 b⌧,j

��
V �1/2
⌧�1 b⌧,j

�>
����
⇤
Tr

⇣
V 1/2
⌧�1

�e✓t � ✓⇤
��e✓t � ✓⇤

�>
V 1/2
⌧�1

⌘



✓
1 +

i�1X

j=m+1

��V �1/2
⌧�1 b⌧,j

��2
2

◆��e✓t � ✓⇤
��2
V⌧�1



⇣
1 + (L� 1)(m+ 1)

2�+
⌘ ��e✓t � ✓⇤

��2
V⌧�1

 L(m+ 1)
2�+ ��e✓t � ✓⇤

��2
V⌧�1

. (19)

Recalling also that heb,✓⇤
i � hb⌧ ,✓⇤

i  2L(m+ 1)
�+

, we have with probability at least 1� �

T/(m+L)X

⌧=1

heb,✓⇤
i � hb⌧ ,✓

⇤
i



T/(m+L)X

⌧=1

min

n
2L(m+ 1)

�+

, hb⌧ , e✓⌧ � ✓⇤
i

o

=

T/(m+L)X

⌧=1

min

(
2L(m+ 1)

�+

,
m+LX

i=m+1

hb⌧,i, e✓⌧ � ✓⇤i
)



T/(m+L)X

⌧=1

min

(
2L(m+ 1)

�+

,
m+LX

i=m+1

kb⌧,ikV �1
⌧,i�1

��e✓t � ✓⇤
��
V⌧,i�1

)



T/(m+L)X

⌧=1

min

(
2L(m+ 1)

�+

, 2
p

L(m+ 1)
�+

�⌧�1(�)
m+LX

i=m+1

kb⌧,ikV �1
⌧,i�1

)

 2L(m+ 1)
�+

�T/(m+L)(�)

T/(m+L)X

⌧=1

m+LX

i=m+1

min

n
1 , kb⌧,ikV �1

⌧,i�1

o

 2L(m+ 1)
�+

�T/(m+L)(�)

vuut T L

m+ L

T/(m+L)X

⌧=1

m+LX

i=m+1

min

⇢
1 , kb⌧,ik2V �1

⌧,i�1

�

 2
p
2L(m+ 1)

�+

�T/(m+L)(�)

s

T ln
|VT/(m+L)|

|�Id|

 4L(m+ 1)
�+

s

Td ln

✓
1 +

T (m+ 1)2�
+

d�

◆

·

p

�+

s

ln

✓
1

�

◆
+ d ln

✓
1 +

T (m+ 1)2�
+

d(m+ L)�

◆ !
, (20)

where we have used (17), (18), and (19). Similarly to Proposition 5, note that in the stationary case,
i.e., when m = 0 and L = 1, we exactly recover [Abbasi-Yadkori et al., 2011, Theorem 3]. The first
claim of Theorem 1 is obtained by setting � 2 [1, d], and � = 1/T .

Let RT denote the right-hand side of (20). Combining this bound with the arguments of Proposition 2,
we have with probability 1� �

TX

t=1

rt �

T/(m+L)X

⌧=1

er(a⌧)�
m(m+ 1)

�+

m+ L
T (21)

=

T/(m+L)X

⌧=1

hb⌧ ,✓
⇤
i �

m(m+ 1)
�+

m+ L
T

19

�

T/(m+L)X

⌧=1

heb,✓⇤
i �RT �

m(m+ 1)
�+

m+ L
T (22)

=

T/(m+L)X

⌧=1

er(ea)�RT �
m(m+ 1)

�+

m+ L
T

�

TX

t=1

ert �RT �
2m(m+ 1)

�+

m+ L
T (23)

� OPT�RT �
4m(m+ 1)

�+

m+ L
T (24)

� OPT� 4(m+ 1)
�+

"
mT

m+ L
+ (m+ L)

s

Td ln

✓
1 +

T (m+ 1)2�
+

d�

◆

·

p

�+

s

ln

✓
1

�

◆
+ d ln

✓
1 +

T (m+ 1)2�
+

d(m+ L)�

◆ !#
,

where (21) and (23) come from the fact that any instantaneous reward is bounded by (m+ 1)
�+

, see
(8), (22) from (20), and (24) from Proposition 2.

Now, assume that m � 1, T � d2m2
+ 1, and let L =

⌃p
m/d T 1/4

⌥
�m. By the condition on T ,

we have
p
m/d T 1/4 > m � 1, such that L � 1 and
r

m

d
T 1/4



⇠r
m

d
T 1/4

⇡
= L+m 

r
m

d
T 1/4

+ 1  2

r
m

d
T 1/4 .

Substituting in the above bound, we have with probability 1� �

OPT�

TX

t=1

rt  4

p

d (m+ 1)
1
2+�+

T 3/4

"
1 + 2

s

ln

✓
1 +

T (m+ 1)2�
+

d�

◆

·

 r
�

d
+

s
ln(1/�)

d
+ ln

✓
1 +

T (m+ 1)2�
+

d�

◆ !#
.

The second claim of Theorem 1 is obtained by setting � 2 [1, d], and � = 1/T . ⇤

Remark 4 (Generic matrix mapping A) Note that our analysis naturally extends to any matrix
mapping A, as long as it is known. The term (m + 1)

�+

in Theorem 1 is then replaced with
supa1...am

kA(a1, . . . , am)k⇤. We highlight however that having access to such knowledge is unlikely
in practice. This is why we focus on the simpler parametric family (2), which encompasses many
rotting and rising scenarios while allowing us to learn simultaneously m and �, as shown in the next
section. It is of course possible to extend the family of monomials (2) to a family of polynomials, but
this requires tracking more parameters (namely, the different coefficients of the polynomial), thus
degrading the final regret bound.

Remark 5 (Solving LBM with a general Reinforcement Learning (RL) approach) Our setting
may be seen as an MDP with a d-dimensional continuous space of actions, a (md)-dimensional
continuous state space (for the past m actions), a deterministic transition function parameterized by
an unknown scalar �, and a stochastic reward function with a linear dependence on an additional
d-dimensional latent parameter ✓⇤. The optimal policy in this MDP is generally nonstationary, and
we are not aware of RL algorithms whose regret can be bounded without relying on more specific
assumptions on the MDP. By exploiting the structure of the MDP, and restricting to cyclic policies,
we show instead that the original problem can be solved using stationary bandit techniques.

A.7 Computational complexity of LBM

As described in Algorithm 1, our approach consists of two steps: updating the confidence region C⌧ ,
i.e., b✓⌧ and �⌧ according to (10) and (17), and computing the block a⌧ that maximizes the UCB index.

20

The first step is performed by online Ridge regression, and has a computational cost of O(Ld2). We
note here the advantage of our refined algorithm over the naive concatenated approach, whose Ridge
regression update has cost O(L2d2). The maximization of the UCB indices, performed through
gradient ascent has time complexity per iteration of O

�
(m+ L)d2

�
. Hence, the overall complexity

of an epoch of Algorithm 1 is O
�
(m+ L)d2 · nit

�
, where nit is the number of iterations performed

by gradient ascent. Recall that the epochs of Algorithm 1 correspond to blocks of m + L actions,
such that the actual per-round complexity is O(d2 · nit).

A.8 Proof of Corollary 1

Lemma 1 Suppose that a block-based bandit algorithm (in our case the bandit combiner) produces
a sequence of Tbc blocks a⌧ , with possibly different cardinalities |a⌧ |, such that

TbcX

⌧=1

er(ea)
|ea| �

TbcX

⌧=1

er(a⌧)

|a⌧ |
 F (Tbc) ,

for some sublinear function F . Then, we have

min⌧ |a⌧ |

max⌧ |a⌧ |

✓
er(ea)

P
⌧ |a⌧ |

|ea|

◆
�

TbcX

⌧=1

er(a⌧)  min
⌧

|a⌧ |F (Tbc) .

In particular, if all blocks have the same cardinality the last bound is just the block regret bound
scaled by |a⌧ |.

Proof We have
TbcX

⌧=1

er(a⌧) � min
⌧

|a⌧ |

TbcX

⌧=1

er(a⌧)

|a⌧ |

� min
⌧

|a⌧ |

TbcX

⌧=1

er(ea)
|ea| � F (Tbc)

!

=
min⌧ |a⌧ |

max⌧ |a⌧ |

er(ea)
|ea| max

⌧
|a⌧ | Tbc �min

⌧
|a⌧ |F (Tbc)

�
min⌧ |a⌧ |

max⌧ |a⌧ |

✓
er(ea)

P
⌧ |a⌧ |

|ea|

◆
�min

⌧
|a⌧ |F (Tbc) .

⇤

Corollary 1 Consider an instance of LBM with unknown parameters (m?, �?). Assume a bandit
combiner is run on N  d

p
m? instances of OFUL-memory (Algorithm 2), each using a different

pair of parameters (mi, �i) from a set S =
�
(m1, �1), . . . , (mN , �N)

such that (m?, �?) 2 S . Let

M = (maxj mj)/(minj mj). Then, for all T � (m?+1)
2�+

? /m?d4, the expected rewards
�
rbc
t

�T
t=1

of the bandit combiner satisfy

OPT
p
M
� E

"
TX

t=1

rbc
t

#
= eO

⇣
M d (m? + 1)

1+ 3
2�

+
? T 3/4

⌘
.

Proof Let m? be the true memory size, and L? = L(m?) the corresponding (partial) block length.
Throughout the proof, ea denotes the block defined in (5) with length m?+L?. First observe that only
one of the OFUL-memory instances we test is well-specified, i.e., has the true parameters (m?, �?).
We can thus rewrite the regret bound for the Bandit Combiner [Cutkosky et al., 2020, Corollary 2],
generalized to rewards bounded in [�R,R] as follows

Regretbc =
eO

0

@C?T
↵?
bc + C

1
↵?
? Tbc⌘

1�↵?
↵?

? +R2Tbc⌘? +
X

j 6=?

1

⌘j

1

A , (25)

21

where Tbc = T/(m? + L?) is the bandit combiner horizon, C? and ↵? are the constants in the
regret bound of the well-specified instance (see below how we determine them), and the ⌘j are free
parameters to be tuned. We now derive C? and ↵?. To that end, we must establish the regret bound of
the well-specified instance, and identify C? and ↵? such that this bound is equal to C?T

↵?
bc , where C?

may contain logarithmic factors. For the well-specified instance, the first claim of Theorem 2 gives
that, with probability at least 1� �, we have

T/(m?+L?)X

⌧=1

er(ea)� er(a⌧)  4(m? + L?)(m? + 1)
�+
?

vuutTd ln

1 +

T (m? + 1)2�
+
?

d�

!

0

@
p

�+

vuutln

✓
1

�

◆
+ d ln

1 +

T (m? + 1)2�
+
?

d(m? + L?)�

! 1

A

T/(m?+L?)X

⌧=1

er(ea)
|ea| �

er(a⌧)

|a⌧ |
 T 1/2

4(m? + 1)
�+
?

vuutd ln

1 +

T (m? + 1)2�
+
?

d�

!
(26)

0

@
p

�+

vuutln

✓
1

�

◆
+ d ln

1 +

T (m? + 1)2�
+
?

d(m? + L?)�

! 1

A ,

where we have used that |a⌧ | = |ea| = m? + L? for every ⌧ . Note that the right-hand side of (26) is
expressed in terms of T , which is not the correct horizon, T/(m? + L?). However, recall that we
have

m? + L?  2

r
m?

d
T 1/4

(m? + L?)
4


✓
4m?

d

◆2

T

T 3


✓
4m?

d

◆2✓ T

m? + L?

◆4

T 1/2


✓
4m?

d

◆1/3✓ T

m? + L?

◆2/3

,

such that by substituting in (26) and identifying we have ↵? = 2/3, and

C? = 4

✓
4m?

d

◆1/3

(m? + 1)
�+
?

vuutd ln

1 +

Tbc(m? + L?)(m? + 1)2�
+
?

d�

!

0

@
p

�+

vuutln

✓
1

�

◆
+ d ln

1 +

Tbc(m? + 1)2�
+
?

d�

! 1

A .

Setting ⌘j = T�2/3
bc , and substituting in (25) with R = (m?+1)

�+
? , we have that with high probability

TbcX

⌧=1

er(ea)
|ea| �

er(abc
⌧)

|abc
⌧ |

= eO
⇣�

C3/2
? +N

�
T 2/3

bc + (m? + 1)
2�+

? T 1/3
bc

⌘
.

Now, recall that Tbc = O
�p

d/m? T 3/4
�
, and that C? = eO

�
(m? + 1)

1
3+�+

? d2/3
�
. Hence,

N  d
p
m? implies N = O

�
C3/2

j

�
, and (m? + 1)

�+
?  d2

p
m?T implies (m? + 1)

�+
? T 1/3

bc =

O
�
C3/2

? T 2/3
bc

�
. Setting � 2 [1, d], � = 1/T , we obtain

E
"

TbcX

⌧=1

er(ea)
|ea| �

er(abc
⌧)

|abc
⌧ |

#
= eO

⇣
d
p
m? (m? + 1)

3
2�

+
? T 2/3

bc

⌘
. (27)

22

Let m⌧ be the memory size associated to the bandit played at block time step ⌧ by Algorithm 2.
Let mmin = minj mj and mmax = maxj mj . Finally, let Lmin and Lmax the (partial) block length
associated with mmin and mmax. We have

TX

t=1

rbc
t �

TbcX

⌧=1

⇣
er(abc

⌧)�m⌧ (m? + 1)
�+
?

⌘
�

TbcX

⌧=1

er(abc
⌧)�mmax (m? + 1)

�+
? Tbc ,

such that by Lemma 1 and (27) we obtain

E
"
min⌧ |a⌧ |

max⌧ |a⌧ |

✓
er(ea)

P
⌧ |a⌧ |

|ea|

◆
�

TX

t=1

rbc
t

#

 mmax (m? + 1)
�+
? Tbc +min

⌧
|a⌧ |

eO
⇣
d
p
m? (m? + 1)

3
2�

+
? T 2/3

bc

⌘
,

E
"
mmin + Lmin

mmax + Lmax

✓
L? OPT

T

T

m? + L?

◆
�

TX

t=1

rbc
t

#


mmax (m? + 1)

�+
? T

mmin + Lmin
+ (mmin + Lmin)

1/3 eO
⇣
d
p
m? (m? + 1)

3
2�

+
? T 2/3

⌘
,

E
"r

mmin

mmax
OPT�

TX

t=1

rbc
t

#


mmax

mmin

p
dm? (m? + 1)

�+
? T 3/4

+ eO
⇣
dm? (m? + 1)

3
2�

+
? T 3/4

⌘

=
mmax

mmin
eO
⇣
dm? (m? + 1)

3
2�

+
? T 3/4

⌘
,

where we have used the fact that mmin+Lmin =
p

mmin/d T 1/4, and mmax+Lmax =
p
mmax/d T 1/4.

Corollary 1 is obtained by setting M = mmax/mmin. ⇤

B Bandit Combiner

In this section we provide more details on the algorithmic implementation of Bandit Combiner.

As mentioned in the main body of the paper,Our bandit combiner, see Algorithm 2 in Appendix B,
builds upon the approach developed by Cutkosky et al. [2020] and works as follows. The meta-
algorithm is fed with different bandit algorithms (in our case, instances of O3M with different choices
of parameters mj and �j) and at each round plays a block according to one of the algorithms. We
relegate the explanation and details of this algorithmic solution to Appendix B. Each O3M instance
comes with a putative regret bound CjT↵j , which is the regret bound satisfied by the algorithm
should it be well-specified, i.e., if the rewards are indeed generated through a memory matrix with
memory mj and exponent �j . Note that in order to be comparable across the different instances,
the putative regrets apply to the average rewards. The values of Cj and ↵j can be computed using
Theorem 1, see the proof of Corollary 1 for details. The putative regrets are then used to successively
discard the instances that are not well specified, and eventually identify the instance using parameters
(m?, �?). Knowing Cj and ↵j , we can compute for any j the target regret

Rj = Cj T
2/3
bc +

5
p
30

18
C3/2

j T 2/3
bc + 1152(mj + 1)

2�+
j T 1/3

log(T 3
bcN/�) + (N � 1)T 2/3 , (28)

where Tbc is the number of blocks the Bandit Combiner is called on, see Appendix B for details. Here,
we note how the presence of (mj + 1)

2�+
j is impacting differently the rising and rotting scenarios.

Using [Cutkosky et al., 2020, Corollary 2], the regret of Algorithm 2 is finally given by 3Rj? , where
j? is the index such that (mj? , �j?) = (m?, �?).

In this section we show our adaptation of the numbers Cj and target regrets Rj for the Bandit
Combiner algorithm Algorithm 2 which builds on Cutkosky et al. [2020]. For O3M(mj , �j), j =

1, . . . , N , the numbers Cj and target regrets Rj are defined as

Cj = 4

✓
4mj

d

◆1/3

(mj + 1)
�+
j

vuutd ln

1 +

Tbc(mj + Lj)(mj + 1)
2�+

j

d�

!
(29)

23

Algorithm 2 Bandit Combiner on O3M

input :Instances O3M(m1, �1), . . . , O3M(mN , �N), horizon Tbc
numbers C1, . . . , CN > 0, target regrets R1, . . . , RN .
Set T (i) = 0,Si = 0,�i = 0 for i = 1, . . . , N , and set I0 = {1, . . . , N}

for t = 1, . . . , Tbc do

if there is some i 2 It with T (i) = 0 then

it = i
else

For each i 2 It, compute the UCB index:

UCB(i) = min

(
(mi + 1)

2�+
i ,

Cip
T (i)

+ 4(mi + 1)
2�+

i

s
2 log(T 3N/�)

T (i)

)
�

Ri

Tbc

Set it = argmaxi2It
Si
T (i) +UCB(i)

Obtain from instance O3M(mit , �it) a block of size mit + Lit and play it
Return the total reward rit collected in the last Lit time steps of the block to O3M(mit , �it)

Compute the average reward brit =
rit
Lit

Update �it �it + Sit/T (it)� brit (where we set 0/0 = 0) and Sit Sit + brit
Update the number of plays T (it) T (it) + 1

if �it � CitT (it)
�it + 12 (mit + 1)

2�+
it

p
2 log(T 3N/�)T (it) then

It = It�1 \ {it}
else

It = It�1

0

@
p

�+

vuut
ln

✓
1

�

◆
+ d ln

1 +

Tbc(mj + 1)
2�+

j

d�

! 1

A ,

Rj = CjT
↵j

bc +
(1� ↵j)

1�↵j
↵j (1 + ↵j)

1
↵j

↵

1�↵j
↵j

j

C
1
↵j

j Tbc⌘

1�↵j
↵j

j

+ 1152(mj + 1)
2�+

j log(T 3
bcN/�)Tbc⌘j +

X

k 6=j

1

⌘k
.

Note that the form of the target regret Rj slightly differs from the one presented in [Cutkosky et al.,
2020, Corollary 2] due to the different range of the rewards. The algorithm, which is an adaptation of
Bandit Combiner in Cutkosky et al. [2020], is summarized in Algorithm 2.

C Additional Experiments

We provide an additional experiment comparing the regrets of O3M and OM-Block. In order to
be able to plot the regret, we must know OPT which is hard to compute in general. Since in the
rising scenario with an isotropic initialization OPT is oracle greedy, which is easy to compute, we
present this experiment in a rising setting with m = 1 and � = 2. We plot the regret of O3M and
OM-Block against the number of time steps, measuring the performance at different time horizons
and for different sizes of L (where L depends on T , see at the end of Section 3.2). Specifically,
we instantiated O3M and OM-Block for increasing values of L, setting the horizon of each instance
based on the equations in Theorem 1 and Proposition 4. Figure 3 shows how the dimension of b✓,
which is d for O3M and d ⇥ L for OM-Block, has an actual impact on the performance since O3M

outperforms OM-Block. The code is written in Python and it is publicly available at the following
GitHub repository: Linear Bandits with Memory.

24

https://github.com/GiuliaClerici/Linear-Bandits-with-Memory

��� ��� ��� ��� ��� ��� ��� ��� ���

7LPH �H�

����

����

����

����

����

����

����

����

����

5
HJ
UH
W

�H�

P �� ͇ �
2�0
20�%ORFN

Figure 3: The regret of O3M and OM-Block. Each dot is a separate run where the value of L is tuned
to the corresponding horizon.

25

	Introduction
	Model
	Regret Analysis
	Approximation
	Estimation
	Model Selection

	Algorithms
	Experiments
	Conclusions
	Technical Proofs and
	Recovering stationary linear bandits, rotting and rising rested bandits, and contextual bandits
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 4
	Proof of Proposition 3
	Proof of Theorem 1
	Computational complexity of LBM
	Proof of Corollary 1

	Bandit Combiner
	Additional Experiments

