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ABSTRACT

We present VideoDiT, a streamlined video generation framework adapted from
pre-trained image generation models. Unlike previous methods that simply add
temporal layers to image diffusion models, we enhance both the tokenizer, imple-
mented with the variational autoencoder (VAE), and the diffusion model. We em-
phasize the importance of combining 3D VAE compression with knowledge from
pre-trained image diffusion models to achieve efficient video generation, though
the tight coupling between image diffusion models and 2D VAEs poses significant
challenges. To address this, we introduce the Distribution-Preserving VAE (DP-
VAE), which encodes key frames in a video clip using the original 2D VAE while
compressing non-key frames with a 3D VAE for spatiotemporal modeling. A reg-
ularization term ensures alignment between the 3D video latent space and the 2D
image latent space, facilitating seamless transfer of pre-trained diffusion models.
Leveraging the Diffusion Image Transformers (DiT) architecture and incorporat-
ing 3D positional embeddings, we extend 2D attention into 3D with negligible
increased parameters. Furthermore, leveraging our proposed DP-VAE, VideoDiT
supports joint image-video training, preserving the spatial modeling capabilities
of the base model while excelling in both image and video generation. Extensive
experiments validate the effectiveness of our approach.

1 INTRODUCTION

In recent years, generative models for images and videos have achieved significant milestones.
While image generation models like Stable Diffusion 3 (SD3) (Esser et al., 2024), DALL·E 3 (Betker
et al., 2023), and the Flux series (Flux) have reached maturity and are poised for real-world ap-
plications, the progress in video generation has been less remarkable. Since the release of the
SORA (Brooks et al., 2024) model, advancements in this space have been limited, and there remains
a lack of open-source models capable of producing high-quality video clips. The key challenge in
video generation lies in efficiently modeling spatiotemporal dynamics intrinsic to video data.

Modern image generation relies on two foundational components to model spatial dynamics: a varia-
tional autoencoder (VAE) (Kingma, 2013) for compressing visual signals into compact latent repre-
sentations, and denoising diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021), which offer
a robust framework for modeling arbitrary distributions in this latent space. This VAE+Diffusion
framework has proven highly effective, particularly for text-to-image (T2I) generation tasks (Rom-
bach et al., 2022), and it has been widely adopted for video generation as well. However, two distinct
approaches have emerged in adapting this framework for videos.

The first approach extends pre-trained T2I models into text-to-video (T2V) models by introducing
temporal layers to the diffusion model while keeping the image VAE unchanged (Blattmann et al.,
2023b; Guo et al., 2024; Wang et al., 2024; Girdhar et al., 2023; Blattmann et al., 2023a). These
methods leverage the strong spatial modeling abilities of T2I models, which are derived from train-
ing on billions of images. However, since pre-trained T2I models are tightly coupled with their
corresponding VAEs, these approaches require the video diffusion model to operate within a 2D
latent space. This setup places the entire burden of temporal dynamics modeling on the diffusion
process, leading to an imbalance in the representation of spatial and temporal information, ultimately
resulting in suboptimal performance and efficiency.
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The second approach, as proposed in recent works (Gupta et al., 2023; Brooks et al., 2024), advo-
cates for designing T2V models based on 3D spatiotemporal VAEs paired with diffusion models that
operate in 3D latent spaces. While this method is more efficient in compressing video data, the in-
trinsic link between diffusion models and their corresponding latent spaces poses a challenge. Since
diffusion models are trained to capture specific latent distributions, transitioning from a 2D to a 3D
latent space necessitates training video diffusion models from scratch. This leads to a significant loss
of prior knowledge embedded in pre-trained T2I models and demands substantial computational and
data resources.

In this work, we present VideoDiT, a novel framework that aims to streamline video generation
by leveraging a well-trained T2I model. The primary challenge is maximizing the benefits of these
pre-trained models without compromising the efficiency of the video generation process. Our key
innovation is the Distribution-Preserving VAE (DP-VAE), which combines the compression effi-
ciency of 3D VAEs with the latent space alignment of 2D VAEs. DP-VAE processes video sequences
as a series of Groups of Pictures (GoPs), where key frames are encoded using the original 2D VAE,
and non-key frames undergo spatiotemporal compression via a 3D VAE. This method ensures that
the resulting residual representations maintain the same dimensionality as those of the key frames,
allowing seamless integration into the pre-trained diffusion framework. By further incorporating
a regularization term, we align the 3D and 2D latent distributions, enabling the pre-trained image
diffusion model to be efficiently transferred to the video generation task.

Regarding the diffusion model, our architecture is built on diffusion image transformers (DiT),
which have emerged as a promising alternative to previous U-Net-based designs (Ronneberger et al.,
2015; Ho et al., 2020; Dhariwal & Nichol, 2021), due to their simpler structure and enhanced scala-
bility (Peebles & Xie, 2023; Esser et al., 2024). Notably, we find that directly applying the original
2D spatial attention weights to 3D global attention produces consistent and stable video output
without introducing additional parameters. By incorporating 3D positional embeddings during the
patchifying process, we initialize the video diffusion model from a strong base. To preserve the spa-
tial modeling capabilities of the text-to-image (T2I) model, we further utilize DP-VAE to introduce
joint image-video training. This enables VideoDiT to excel in both image and video generation
tasks. Extensive experiments validate the effectiveness of our method in generating high-quality
images and videos. Notably, our method achieves comparable or even superior performance while
utilizing only approximately 10% of the data employed by existing methods.

2 RELATED WORK

2.1 VARIATIONAL AUTOENCODER

Variational Autoencoders (VAEs) (Kingma, 2013) is originally proposed as generative models, op-
timized by maximizing the Evidence Lower Bound (ELBO). Previously, VQ-VAEs (Van Den Oord
et al., 2017; Razavi et al., 2019; Esser et al., 2021) compress videos into discrete tokens for categor-
ical generative modeling. Recently, VAEs have been commonly utilized as codecs to bridge orig-
inal visual signals with continuous latent variables in text-to-image latent diffusion models (Rom-
bach et al., 2022; Pernias et al.; Esser et al., 2024). Specifically, VAE is used to compress high-
dimensional visual data, thereby reducing spatial dimensions to decrease computational complexity.
More importantly, by constraining the latent space size and balancing signal fidelity with perceptual
realism in the loss function, the VAE encoder effectively discards high-frequency, textural informa-
tion while retaining predominantly semantic information. This reduction in data distribution com-
plexity facilitates the modeling tasks of diffusion models. Text-to-video generation models (Gupta
et al., 2023; Kondratyuk et al., 2024; Brooks et al., 2024) usually utilize 3D VAE that compresses
videos in both spatial and temporal dimensions. Temporally causal 3D VAE (Yu et al., 2024) is
proposed to support both image and video generation. However, retraining a 3D VAE often results
in an entirely new latent distribution, making it challenging to leverage the original well-trained T2I
model’s conceptual understanding and generation capabilities. Consequently, these methods typi-
cally require substantial computational resources to train the video diffusion models entirely from
scratch. In contrast, our proposed DP-VAE effectively compresses the video data along both tem-
poral and spatial dimensions while maintaining the original distribution. This enables a seamless
transition of the T2I model into a T2V model.
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2.2 TEXT-TO-VIDEO DIFFUSION MODELS

Diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021) have proven effective in modeling
high-dimensional perceptual data (Ramesh et al., 2021; 2022; Saharia et al., 2022). Building on
the success of text-to-image generation, text-to-video generation has garnered increasing attention,
given the significant role of video multimedia in daily life. Previous video diffusion models (Singer
et al., 2022; Ho et al., 2022; Blattmann et al., 2023b; Wang et al., 2024) often extend pre-trained T2I
models and build up hierarchical cascaded pipelines that include keyframe generation, temporal up-
sampling, and spatial upsampling. This approach results in substantial costs for training, inference,
and deployment. Worsely, during the keyframe training phase, the direct downsampling of video
data along both temporal and spatial dimensions results in significant information loss, which sub-
stantially impairs the modeling of realistic natural distributions and physical phenomena. Recently,
advanced techniques (Gupta et al., 2023; Kondratyuk et al., 2024; Brooks et al., 2024) have pro-
posed using 3D VAEs to compress videos into latent variables, reducing dimensions in both spatial
and temporal domains. This enables more efficient diffusion model training and improves model ca-
pabilities. On the other side, traditionally, U-Net-based (Ronneberger et al., 2015) architectures have
dominated diffusion models due to their multi-scale modeling capabilities and skip connections that
preserve fine-grained information. However, transformer-based image diffusion models (Peebles &
Xie, 2023; Esser et al., 2024; Brooks et al., 2024) have recently emerged as promising alternatives,
demonstrating robust performance and scalability. This shift is attributed to their simpler architec-
ture and enhanced scalability compared to U-Net structures. In this paper, we develop a framework
for efficiently bridging a well-trained T2I diffusion transformer towards a video generator.

3 METHOD

Our proposed VideoDiT contains two core contributions in terms of the fundamental components
of latent diffusion models (Rombach et al., 2022; Esser et al., 2024), namely, the VAE and the
generation model. In Section 3.1, we introduce our proposed Distribution-Preserving VAE (DP-
VAE), which can compress both image and video data while maintaining the original distribution.
This preservation facilitates the seamless adaptation of subsequent diffusion model training. In
Section 3.2, we propose an efficient method to convert an image diffusion transformer into a video
version, requiring negligible additional parameters.

3.1 DISTRIBUTION-PRESERVING VAE

In latent diffusion models, VAEs play a pivotal role in dimensionality reduction and the elimina-
tion of irrelevant information. We introduce the Distribution-Preserving VAE (DP-VAE), which
integrates compressed residual temporal information into the original 2D latent space and applies
regularization to the latent variables. This approach effectively transforms a 2D VAE into a 3D
VAE while maintaining the original distribution, thereby facilitating the seamless adaptation of pre-
trained T2I models for video generation.

Inspired by video compression techniques (Lu et al., 2019; Hu et al., 2021), we partition the original
video signal into multiple Groups of Pictures (GoPs), each comprising one key frame and several
non-key frames sampled every tg frames. For each GoP, the key frame, xk, is encoded using the
pre-trained 2D VAE encoder, Ek, producing a latent representation, zk. Concurrently, the entire
video segment x is processed by a 3D VAE encoder Er, which performs spatiotemporal redundancy
removal and compresses the left information of non-key frames into the residual latent representation
zr, consistent in dimensionality with zk. This compression includes downsampling in both spatial
and temporal dimensions, with temporal downsampling applied after each of the first two spatial
downsampling operations, resulting a temporal downsampling factor of tg = 4. The combined
latent variable, z, is obtained by adding zk and zr. The detailed architectures of Er and the decoder
D are described in the supplementary material. This process is formalized as follows:

z = Ek(xk) + Er(x). (1)

On the decoder side, the 3D latent variable z, is decoded via 3D decoder D and gets x̂. Then we
can calculate the reconstruction loss between original video x and reconstructed video x̂ with
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Figure 1: Illustration of the proposed DP-VAE. The video is compressed by separately encoding
key frames and residuals, which are then added to obtain the 3D latent variable z. The latent variable
z is decoded using the 3D decoder D to get the reconstruction x̂. Additionally, z is decoded through
Dk for regularization.

Lrecon = ∥x− x̂∥2. (2)

Furthermore, to align the distribution of the 3D latent variable, z, with the features extracted by
the original VAE encoder and thereby enable seamless adaptation for subsequent diffusion model
training, we introduce a distribution-preserving loss as a regularization term. Specifically, this is
achieved by combining the L2 loss between the key frames, xk, and their reconstructions, x̂k,
decoded via the decoder of the pre-trained 2D VAE, Dk, with the L2 loss between the statistical
parameters of the 2D latent variables, zk, and the 3D latent variables, z. The process is expressed as

Lreg = ∥xk − x̂k∥2 + ∥µz − µzk
∥2 + ∥σz − σzk

∥2, (3)

where µz and µzk
denote the means of z and zk, respectively, and σz and σzk

denote their corre-
sponding standard deviations.

Besides, to enhance the perceptual quality, we incorporate a 3D adversarial loss (Isola et al., 2017)
and the LPIPS loss (Zhang et al., 2018). The overall training objective is written as

L = λreconLrecon + λregLreg + λdiscLdisc + λLPIPSLLPIPS, (4)

where λrecon, λreg, λdisc, and λLPIPS denote the weighting parameters for reconstruction, regulariza-
tion, discrimination, and perceptual quality, respectively. We set λrecon, λreg, λdisc, and λLPIPS to 1,
1, 0.01, and 0.1 by default.

During training, the encoder Ek and decoder Dk of key frames are frozen since they are well-trained,
while the 3D encoder Er and parameters of the 3D decoder D remain learnable.

3.2 UNIFYING IMAGE DIFFUSION TRANSFORMER TO VIDEO GENERATOR

Spatial to Global Attention. Adapting a U-Net-based T2I model (Rombach et al., 2022) with
convolutions to generating videos (Blattmann et al., 2023b) necessitates the incorporation of addi-
tional temporal layers. This adaptation introduces a substantial number of extra parameters, and
training the temporal layers from scratch can undermine the knowledge embedded in the original
spatial weights. In contrast, Transformers (Vaswani et al., 2017), which are composed of stacked
attention blocks which operate on any number of tokens, while the feed-forward layers process each
token individually. This architecture facilitates a seamless transition from image to video process-
ing, efficiently modeling both spatial and temporal dependencies without increasing the number of
parameters or compromising the integrity of pre-trained spatial features.

As illustrated in Figure 2, for image inputs zi ∈ Rh×w×d, the original spatial attention mechanism
first reshapes the input to (h × w) × d before passing it through the attention modules. Due to the
absence of temporal correlation and interaction between individual images, each generated image

4
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Samples of Original 2D Attention

Samples of Global 3D Attention
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Original 2D Attention 

Global 3D Attention 

Figure 2: Illustration of 2D and 3D attention mechanisms (left) and their corresponding generated
results (right) using a pre-trained image diffusion transformer.

remains entirely distinct. In contrast, for video inputs zv ∈ Rt×h×w×d, reshaping to (t×h×w)×d
and directly applying the attention mechanism of the pre-trained T2I transformer model leads to the
generation of “videos” where the main subjects remain static, while block artifacts emerge in the
details. This approach achieves partial temporal consistency and serves as an effective initialization
strategy without introducing additional parameters.

3D Patchify. Although attention operations are applied to all visual tokens, each token incorpo-
rates only the original spatial positional information and does not encode its temporal position.
Therefore, we incorporate global 3D positional embeddings into the patchify process. Specifically,
we introduce an additional branch to conduct patchify operation and add 3D positional embed-
dings to the flatten input embeddings. The input embeddings are then projected through a zero-
convolution (Singer et al., 2022; Zhang et al., 2023b) for smooth updating. Implementation details
can be found in the supplemental material.

Joint Image-Video Training. Joint training of images and videos not only preserves image gen-
eration capabilities but also enhances the learning of comprehensive concepts, leading to superior
video generation performance (Gupta et al., 2023). Our proposed DP-VAE inherently supports joint
image-video training by ensuring that latent variables for both modalities adhere to the same dis-
tribution. During training, a probability parameter, p, determines whether each iteration focuses
on video generation or image generation. Detailed implementation procedures are provided in the
supplementary material.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

DP-VAE. We employ the open-source Stable Diffusion 3 medium (Esser et al., 2024) as our base
model. The training dataset for DP-VAE comprises a self-collected, high-quality video dataset. We
train the DP-VAE using the AdamW optimizer (Loshchilov, 2017) for 600K iterations with a batch
size of 8 and a learning rate of 5×10−5. During training, input videos are first resized to ensure that
their longer edge does not exceed 1080 pixels. Subsequently, the videos are cropped into clips with
a resolution of 256 × 256 pixels and sampled to 32 frames. We maintain the original frame rate of
approximately 25 frames per second (fps) throughout the training process.

Video Diffusion Transformer. The video training dataset comprises 1 million videos randomly
sampled from WebVid-10M (Bain et al., 2021) and 300K self-collected videos from Pexels (Pexels,
2024). The training dataset for image generation is JourneyDB (Sun et al., 2024). We first pre-train
the diffusion model on the 1 million low-resolution dataset for 200K iterations, with resolution of
320 × 320. Then we fine-tune the model on the 300K high-resolution dataset for 200K iterations,
with resolution of 512×512. The frame number is 96 and we keep the original fps as approximately
25. During training, we maintain an exponential moving average (EMA) of model weights over
training with a decay of 0.9999. The learning rate is 5 × 10−5 and the batch size is 64. Training
is conducted with an 80% probability on video generation tasks and a 20% probability on image
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Ground Truth

Open-Sora-Plan

Open-Sora

CV-VAE

Ours

Figure 3: Qualitative comparison of our proposed DP-VAE and other methods. While other
approaches suffer from varying levels of blur artifacts and texture deterioration, our method excels
in both signal fidelity and perceptual quality. Best viewed with a zoomed-in view.

Method Parameters PSNR (↑) SSIM (↑) LPIPS (↓)

Open-Sora-Plan (Chen et al., 2024b) 239M 27.63 0.931 0.1249
Open-Sora (Zheng et al., 2024) 393M 36.19 0.962 0.1013
CV-VAE (Zhao et al., 2024) 256M 33.31 0.947 0.1031
DP-VAE (Ours) 195M 37.53 0.980 0.0444

Table 1: Quantitative results of 3D VAE’s reconstruction performances.

generation tasks. The resolutions for both image and video generation training are maintained con-
sistently. Furthermore, we apply a 10% probability of dropping the text prompt for classifier-free
guidance (Ho & Salimans, 2021). All experiments are conducted on 8 NVIDIA H100 GPU (80G).

Evaluation Metrics. We evaluate the reconstruction performance of our model using three
widely adopted metrics: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure
(SSIM) (Wang et al., 2004), and Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al.,
2018). These metrics are assessed on 50 videos randomly sampled from Pexels (Pexels, 2024), each
comprising 64 frames at a resolution of 512 × 512 pixels. To evaluate the quality of the generated
videos, we employ zero-shot Frechet Video Distance (FVD) (Unterthiner et al., 2018) and Inception
Scores (IS) (Salimans et al., 2016) on the UCF101 (Soomro, 2012) dataset.

4.2 COMPARISON OF RECONSTRUCTION AND GENERATION

We compare our method against three open-source video VAEs, each employing 8× spatial down-
sampling and 4× temporal downsampling factors: Open-Sora-Plan VAE (Chen et al., 2024b), Open-
Sora VAE (Zheng et al., 2024), and CV-VAE (Zhao et al., 2024). Figure 3 presents a qualitative
comparison of reconstruction results among these methods. Unlike other approaches that produce
blurred artifacts and inaccurate textures, our method achieves superior signal fidelity and perceptual
quality. Furthermore, as shown in Table 1, our method outperforms all others significantly in all
quantitative evaluation metrics.
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“Close up of grapes on a rotating table.”

“A fat rabbit wearing a purple robe walking through a fantasy landscape.”

“A traveler walks alone in the misty forest at sunset.

Generated VideosGenerated Images

Figure 4: Illustration of images and videos generated by our proposed VideoDiT.

Method Video Training Data FVD (↓) IS (↑)

Make-A-Video (Singer et al., 2022) 20M 367.20 33.00
VideoFactory (Wang et al., 2023a) 130M 410.00 -
PYoCo (Ge et al., 2023) 22.5M 355.20 47.46
Lavie (Wang et al., 2023b) 20M 526.30 -
Factorized-Dreamer (Yang et al., 2024) 19.3M 503.93 33.27
I2V-XL (Zhang et al., 2023c) 35M 424.87 28.78
CogVideo (Hong et al., 2023) 10M 701.60 25.27
MagicVideo (Hong et al., 2023) 10M 655.00 -
Video LDM (Blattmann et al., 2023b) 10M 550.60 33.45
AnimateDiff (Guo et al., 2024) 10M 598.83 35.18
VideoCrafter2 (Chen et al., 2024a) 10M 674.09 40.28
VideoFusion (Luo et al., 2023) 10M 639.90 17.49
Show-1 (Zhang et al., 2023a) 10M 394.46 35.42
VideoDiT (Ours) (1+0.3) M 428.52 33.04

Table 2: Zero-shot results of text-to-video models on UCF101.

Figure 4 presents the results generated by our proposed VideoDiT, which is capable of producing
both images and videos. We also assess the zero-shot text-to-video generation performance of our
method by comparing it with other methods on the UCF101 video dataset, as illustrated in Table 2.
Our proposed method achieves a competitive Frechet Video Distance (FVD) score of 428.52 and an
Inception Score (IS) of 33.04. Notably, our method is trained on a video dataset of only 1.3 million
videos, comprising 1 million low-resolution videos and 300K high-quality videos.

4.3 ABLATION STUDY

For the ablation study experiments, we utilized a resolution of 256 × 256 pixels and processed
video sequences comprising 32 frames each. During training, we employed a batch size of 64 and
trained the models for 60K iterations. The training dataset consisted of 1 million videos sampled
from WebVid-10M. The probability p of training on video generation tasks was set to 100%, except
for the ablation of joint image-video training, where it is set to 80%. All other parameter settings
remained consistent with the default configuration outlined in Section 4.1.

Distribution Preserving 3D VAE (DP-VAE). As Figure 5 illustrates, before training the diffusion
model, employing a 3D VAE without incorporating a 2D VAE to compress key frames and with-

7
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Before Training After Training

w/o 𝓔𝒌
w/o Reg.

w/ 𝓔𝒌
w/o Reg.

w/ 𝓔𝒌
w/ Reg.

Figure 5: Qualitative ablation study on our proposed DP-VAE.

2D VAE Regularization PSNR (↑) SSIM (↑) LPIPS (↓) FVD (↓) IS (↑)

× × 35.57 0.9706 0.0963 683.76 23.18
× ✓ 33.85 0.9643 0.1183 654.73 22.37
✓ × 38.18 0.9849 0.0380 645.28 27.56
✓ ✓ 37.53 0.9806 0.0444 556.42 29.61

Table 3: Quantitative ablation study on our proposed DP-VAE.

out introducing regularization results in entirely erroneous decodings. Introducing a 2D VAE to
establish a keyframe-residual mechanism significantly mitigates this issue; however, the outputs
still exhibit noticeable blurring. Reliable decodings, indicative of proper initialization, are achieved
exclusively by combining key frames and residuals with the conduction of regularization.

Upon further training of the diffusion model, employing a 3D VAE without both 2D VAE and regu-
larization leads to significant inconsistencies in the latent distribution at the onset of training. This
largely disrupts the pre-trained diffusion model’s initial weights, resulting in poor convergence and
subpar performance. Although incorporating a 2D VAE to compress key frames partially mitigates
this issue, it still only yields suboptimal results. It is solely by utilizing our proposed DP-VAE that
the diffusion transformer training can effectively integrate dynamic mechanisms into the pretrained
model’s image generation capabilities, thereby achieving optimal performance.

The quantitative results presented in Table 3 demonstrate that omitting a 2D VAE for key frame
compression leads to significantly poor reconstruction and final generation performance. While
introducing regularization partially mitigates this issue, the suboptimal reconstruction performance
continues to limit the quality of the generated results. Incorporating a 2D VAE without regularization
yields the best reconstruction performance. However, due to inconsistencies in the initial distribu-
tion, training the diffusion model still partially disrupts the original weights, resulting in suboptimal
performance. In contrast, our proposed DP-VAE strikes an optimal balance between reconstruction
performance and distribution preservation, resulting in superior generation performance.

2D→3D vs. 2D+3D Attention Mechanism. Previous methods (Blattmann et al., 2023b; Guo
et al., 2024) propose to incorporate additional temporal layers and freeze original pre-trained spa-
tial weights to preserve spatial features and enhance performance. Similarly, we can also intro-
duce a trainable copy of the original spatial weights dedicated to global attention, while retaining
the existing spatial attention layers. During training, the original spatial attention weights remain
frozen and only the newly added global attention weights are updated. We refer to this integrated
method as “2D+3D” attention. However, as shown in Table 4, the performance of “2D+3D” does
not significantly differ from that of “2D→3D” (our default setting introduced in Section 3.2) and
results in a considerably higher parameter count (4.15B vs. 2.03B). This demonstrates that our pro-
posed “2D→3D” conversion is both simple and efficient, offering a promising approach to adapting
pre-trained image Diffusion Transformers for video generation. Detailed implementations of the
“2D+3D” conversion are provided in the supplementary material.
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w/o 3D Patchify

w/ 3D Patchify

Figure 6: Generated videos without and with
3D patchify. The prompt is “A cat sleeping on
a windowsill.”

w/o joint training

w/ joint training

Figure 7: Generated images without and with
joint image-video training.

Param. FVD (↓) IS (↑)

2Dand3D 4.15B 563.24 29.00
2Dto3D 2.03B 556.42 29.61

Table 4: Ablation of “2Dand3D”
and “2Dto3D” variants.

FVD (↓) IS (↑)

2D patchify 756.25 27.85
3D patchify 556.42 29.61

Table 5: Ablation study of
3D patchify.

FVD (↓) IS (↑)

w/o 556.42 29.61
w/ 543.18 32.47

Table 6: Ablation of joint
image-video training.

3D Patchify. Figure 6 illustrates that generated results without 3D patchify exhibit pronounced
block artifacts. This issue arises because each token lacks awareness of its temporal position, hin-
dering the accurate modeling of temporal causality. Quantitatively, as presented in Table 5, models
without 3D patchify achieve significantly higher Frechet Video Distance (FVD) scores, indicating
inferior performance.

Joint Image-Video Training. We adhere to the default settings outlined in Section 4.1, setting
the probability of video generation training at 80%. Figure 7 illustrates that under the joint image-
video training strategy, our model preserves the original text-to-image (T2I) capabilities. In contrast,
without joint image-video training, the model’s ability to generate images is entirely compromised.
Table 6 demonstrates that joint image-video training not only maintains the T2I generation capability
but also enhances video generation performance.

5 LIMITATION

We utilized the open-source SD3 medium (Esser et al., 2024) as the base model to build our
VideoDiT model, which comprises approximately 2 billion parameters. Then the VideoDiT model is
trained on a video dataset consisting of 1.3 million samples using 8 NVIDIA H100 GPUs (80GB).
Due to limitations in computational and data resources, we are unable to fully explore the upper
performance bounds of VideoDiT, despite its commendable performance under these constrained
conditions. In future work, our aim is to investigate the performance limits of this approach using
larger-scale models, increased computational capacity, and expanded data resources.

6 CONCLUSION

In this study, we introduce VideoDiT, a framework designed to extend the capabilities of large-
scale pre-trained text-to-image (T2I) diffusion models to video generation by seamlessly integrating
motion cues with minimal modifications. Specifically, our approach addresses adaptations in both
the tokenizer and the diffusion model components. For the tokenizer, we propose the Distribution-
Preserving VAE (DP-VAE), which compresses videos in both spatial and temporal dimensions while
maintaining the original distribution. Regarding the diffusion model, we propose to directly convert
existing spatial attention mechanisms to global attention, thereby incorporating a comprehensive
receptive field without introducing additional parameters, thus providing an effective initialization
strategy. Extensive experiments validate the effectiveness of our proposed DP-VAE and the adapted
video diffusion transformer, demonstrating significant improvements in video reconstruction fidelity
and generation quality.
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A DETAILED IMPLEMENTATIONS

We strongly recommend downloading the supplementary materials provided. After extracting the
contents, navigate to the designated folder and click on “index.html” to view the dynamic video
results.

A.1 DISTRIBUTION-PRESERVING VAE

For the key frame encoder Ek and decoder Dk, we directly utilize the pre-trained models from Sta-
ble Diffusion 3 (Esser et al., 2024). The implementation of the 3D VAE encoder Er and the decoder
D adheres to the factorized pseudo-3D mechanism (Singer et al., 2022; Blattmann et al., 2023b).
Specifically, we initialize a trainable copy of the pre-trained 2D VAE and incorporate corresponding
1D components working on temporal dimension after each 2D ResBlock and Attention Block, en-
abling the model to effectively process both spatial and temporal dimensions. Additionally, temporal
downsampling and upsampling operations are performed following the first two spatial downsam-
pling layers and the last two upsampling layers, respectively, resulting in a 4× downsampling factor
along the temporal dimension.

A.2 UNIFYING IMAGE DIFFUSION TRANSFORMER TO VIDEO GENERATOR

3D Patchify. Figure 8 illustrates the detailed 3D patchify process designed to incorporate temporal
positional information. We introduce an additional branch dedicated to integrating 3D positional
embeddings and implement a zero-initialized convolutional projection layer to facilitate progressive
updating.
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Figure 8: Our proposed 3D patchify process to incorporate temporal positional information.

2D+3D Attention Mechanism. Figure 9 illustrates the “2D+3D” attention variants described in
Section 4.3. Specifically, we attach an additional global attention block after each of the original
spatial attention blocks. The weights of these global attention blocks are initialized by copying the
weights from their previous 2D spatial attention blocks. Furthermore, we incorporate zero-initialized
convolution layers (Singer et al., 2022; Zhang et al., 2023b) and skip-connection to facilitate progres-
sive updating. This initialization strategy ensures that the additional global attention blocks begin
with weights equivalent to the original 2D attention blocks, thereby promoting seamless integration
and effective adaptation within the model architecture.
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𝑯

𝑾

𝑯

𝑾

𝑻 𝑻

Zero-Conv +

2D Attention 3D Attention

Figure 9: Illustration of the “2D+3D” attention variant in the Ablation Study.

Joint Image-Video Training. During training, we employ a probability parameter, p, to determine
whether the current iteration is dedicated to video generation or image generation. If the iteration
is designated for image generation, the input image is encoded using the original 2D VAE encoder,
Ek, to obtain the latent variable. Conversely, if the iteration is designated for video generation,
the input video is encoded using the encoder of our proposed DP-VAE. In the forward propagation
process, global attention mechanisms are applied no matter the input is an image or a video. During
inference, images or videos are generated by first denoising sampled noise from a standard Gaussian
distribution and then decoding using the corresponding decoder. Notably, no additional conditions
are required to specify the type of the current iteration, since positional embeddings function as
conditional inputs for both image and video data in each training stage.

Rectified Flow. We utilize the pre-trained Stable Diffusion 3 (SD3) (Esser et al., 2024) as the foun-
dational text-to-image (T2I) diffusion model in our framework. The SD3 models employ Rectified
Flows (Liu et al., 2023; Albergo & Vanden-Eijnden, 2023) to construct a transport mapping T be-
tween a standard Gaussian distribution π0 and the data distribution π1, formulated as

Xt = (1− t)X0 + tX1, (5)

where Xt represents the noisy input at time step t, X0 is the sampled noise from π0, and X1 denotes
the clean data from π1. The neural network is trained to directly predict the velocity vΘ = X1−X0.

B ADDITIONAL RESULTS

We present additional results of generated images of our proposed VideoDiT in Figure 10.

We present additional results of generated videos of our proposed VideoDiT in Figure 11.

We present additional reconstruction comparisons between our proposed DP-VAE and other meth-
ods in Figures 12 to 14.

We recommend downloading and extracting the provided files, then opening index.html to view
the dynamic videos.
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A panda is taking a selfie. A dog wearing a bandana. A walking teddy bear, in front 
of beautiful sunset.

The rocket launches into space.

Close up of grapes on a 
rotating table.

Turtle swimming in ocean. Traveler walking along in the 
misty forest.

A panda standing on a 
surfboard.

An animated painting of fluffy 
white clouds moving in sky.

A dog wearing virtual reality 
goggles in sunset.

A beautiful woman and a cat. Fireworks.

A polar bear is playing bass 
guitar in snow.

A fat rabbit wearing a purple 
robe is walking.

Wood on fire. A corgi dog is swimming.

Snow covers mountain. A vintage train puffing out 
smoke.

A majestic lion with a crown. A cute penguin is skating on 
the frozen lake.

Figure 10: Generated images of VideoDiT.
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A storm trooper vacuuming the beach.

Close up of grapes on a rotating table.

Red Porsche running on the road.

A bigfoot walking in the snowstorm.

An oil painting of a couple in formal evening wear going home get caught in a heavy downpour with umbrella.

A polar bear is playing bass.

A dog wearing a scarf.

Traveler walking alone in the misty forest at sunset.

Figure 11: Generated videos of VideoDiT.
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Under review as a conference paper at ICLR 2025
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Figure 12: Additional qualitative comparison of our proposed DP-VAE and other methods. Best
viewed with a zoomed-in view.
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Figure 13: Additional qualitative comparison of our proposed DP-VAE and other methods. Best
viewed with a zoomed-in view.
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Figure 14: Additional qualitative comparison of our proposed DP-VAE and other methods. Best
viewed with a zoomed-in view.
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