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Abstract

Generative replay (GR) has been extensively val-
idated in continual learning as a mechanism to
synthesize data and replay past knowledge to mit-
igate forgetting. By leveraging synthetic rather
than real data for the replay, GR has been adopted
in some federated continual learning (FCL) ap-
proaches to ensure the privacy of client-side data.
While existing GR-based FCL approaches have
introduced improvements, none of their enhance-
ments specifically take into account the unique
characteristics of federated learning settings. Be-
yond privacy constraints, what other fundamental
aspects of federated learning should be explored
in the context of FCL? In this work, we explore the
potential benefits that come from emphasizing the
role of clients throughout the process. We begin
by highlighting two key observations: (a) Client
Expertise Superiority, where clients, rather than
the server, act as domain experts, and (b) Client
Forgetting Variance, where heterogeneous data
distributions across clients lead to varying levels
of forgetting. Building on these insights, we pro-
pose CAN (Clients As Navigators), highlighting
the pivotal role of clients in both data synthesis
and data replay. Extensive evaluations demon-
strate that this client-centric approach achieves
state-of-the-art performance. Notably, it requires
a smaller buffer size, reducing storage overhead
and enhancing computational efficiency.
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Figure 1. a) Client Expertise Superiority (Sec. 3.1): Clients may
possess more accurate knowledge of specific classes compared to
the server, highlighting the need to utilize client expertise during
synthetic data generation. b) Client Forgetting Variance (Sec. 3.2):
The non-IID nature of client data leads to diverse forgetting pat-
terns across clients, emphasizing the need for adaptive replay
strategies tailored to each client.

1. Introduction
Federated Learning (FL) (Konečnỳ, 2016; McMahan et al.,
2017; Yang et al., 2019; Li et al., 2020a; Huang et al., 2024;
2023a) is a learning paradigm that utilizes distributed data
across clients rather than relying on centralized datasets.
Clients train models locally on their own data, which are
then aggregated into a global model on the server (Li et al.,
2020b; Karimireddy et al., 2020; Fallah et al., 2020; Pi
et al., 2023; Xie et al., 2022). However, one key challenge
in this paradigm is that data distributions can change over
time (Liu et al., 2024; Fang et al., 2023; Huang et al., 2023b;
Gao et al., 2022a; Jiang et al., 2022). For example, user
preferences in mobile apps might change (Ma et al., 2022),
sensor data collected by IoT devices could vary with envi-
ronmental conditions (Nguyen et al., 2021), or healthcare
records may evolve as new medical trends emerge (Xu et al.,
2021; Wang et al., 2023). These evolving distributions can
lead to catastrophic forgetting, a challenge that is particu-
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larly pronounced in the distributed nature of FL.

To address forgetting, recent studies (Dong et al., 2022; Ma
et al., 2022; Dai et al., 2024; Yang et al., 2024; Usmanova
et al., 2021) have introduced Federated Continual Learning
(FCL), adapting traditional Continual Learning (CL) meth-
ods to the FL setting (Huszár, 2018; Aljundi et al., 2019;
Zhao et al., 2020; Zhou et al., 2023). To address privacy
concerns in FL, most approaches naturally adopt generative
replay (Zhang et al., 2023; Tran et al., 2024; Mei et al.,
2024; Liang et al., 2025), which leverages a generator to
synthesize data for replay, effectively mitigating forgetting.
However, we observed that current approaches often make
compromises to meet strict privacy constraints. This raises
an important question: Beyond privacy constraints, what
other fundamental aspects of federated learning should be
explored in the context of FCL?

To fill this gap in the current FCL field, we shift our focus
to a crucial feature of FL: Clients (Yang et al., 2023; Shan-
mugarasa et al., 2023; Fu et al., 2023; Fang & Ye, 2022; Yu
et al., 2024b; Ma et al., 2025). By exploring the unique char-
acteristics that clients can contribute, we aim to help FCL
better leverage the distinctive features of the FL scenario.
As illustrated in Fig. 1, we explore two key observations
that have been largely overlooked in FCL approaches: ❶
Client Expertise Superiority: Due to the non-IID nature of
client data in FL settings (Zhao et al., 2018; Konečnỳ et al.,
2016; Huang et al., 2022; Ye et al., 2023), some clients
naturally become domain experts in specific categories, es-
pecially as the degree of non-IID increases (as visualized
in Fig. 2). Although these clients may not perform as well as
the server in a general sense, they often possess more precise
and specialized knowledge in particular areas. This makes
them especially valuable for guiding the generation of high-
quality synthetic data in those domains. However, current
approaches focus solely on the server model’s knowledge,
missing the opportunity to leverage this client-specific exper-
tise. ❷ Client Forgetting Variance: Due to clients’ unique
local data distributions (Mendieta et al., 2022; Singhal et al.,
2021; Yu et al., 2024a), they exhibit varying forgetting pat-
terns. Despite this, existing methods use a uniform replay
buffer, where each client receives an identical buffer with
an even distribution of synthetic data samples across classes.
This uniform allocation fails to meet the unique needs of
each client, who may benefit more from a tailored data
replay strategy to mitigate forgetting.

Based on the two observations above, we propose CAN
(Clients As Navigators), a more native FCL approach that
leverages the unique role of clients. Our method follows
the basic generative replay framework by first utilizing the
teacher model’s knowledge to train a generator for synthe-
sizing data (Zhang et al., 2023; Tran et al., 2024; Shin et al.,
2017; Wang et al., 2024b). The synthetic data is then com-

bined with newly received data for clients’ local training.
However, unlike previous methods, CAN takes a client-
centric approach, where clients navigate the generation of
synthetic data and guide targeted replay.

Specifically, our approach can be divided into two stages.
The first stage, Expert-Driven Data Synthesis, focuses on
generating high-quality synthetic data. For the first time,
we position clients as experts, leveraging their specialized
knowledge to guide the generator in producing accurate
synthetic data. Additionally, to prevent synthetic data from
overemphasizing only the most prominent features, we en-
courage the generator to capture more subtle characteris-
tics—those discernible to domain experts but often over-
looked by less specialized models. This allows the synthetic
data to be both finely detailed and comprehensive. The
second stage is Adaptive Replay. It starts with measuring
the unique forgetting patterns of each client, influenced by
the varying degrees of interference between newly acquired
knowledge and prior knowledge. This process enables us
to create a distinct forgetting profile for each client. Next,
we adjust the buffer’s data composition according to each
client’s forgetting profile, tailoring the allocation of data
within the buffer. By differentiating the buffer across clients,
we enable a more targeted and effective replay process. Our
contributions can be summarized as follows:

• We identify that existing FCL methods fall short in
fully leveraging the unique characteristics of FL. For
the first time, we introduce a client-centric perspective
and propose two key observations that highlight the
necessity of positioning clients as navigators in FCL.

• We propose CAN that leverages the unique role of
clients in FL. By positioning clients as navigators to
guide the generation of synthetic data and adaptive
replay tailored to each client’s needs, CAN enables
more efficient and targeted knowledge retention.

• Through extensive experiments on CIFAR100, TinyIm-
agenet, and Imagenet100, we achieve state-of-the-art
(SOTA) performance, with ablation studies validating
the effectiveness of our client-centric approach.

2. Related Work
Continual Learning. Methods in continual learning can
be broadly categorized into three approaches (De Lange
et al., 2021; Wang et al., 2024a). Parameter isolation meth-
ods (Yoon et al., 2017), such as Progressive Neural Net-
works (PNN (Rusu et al., 2016)) and context-dependent
gating (XdG (Masse et al., 2018)), segregate parameters
to minimize task interference but face scalability issues as
knowledge expands. Regularization approaches, including
Elastic Weight Consolidation (EWC (Huszár, 2018)) and
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Figure 2. This visualization shows accuracy across different classes under IID and Non-IID (0.1, 0.5, 1.0) settings. The server (S) and
clients (C1 to C5) are compared, with the highest accuracy for each class highlighted in bold. Certain clients outperform the server on
specific classes, demonstrating their potential as class-specific experts. This observation supports the strategy of leveraging client expertise
to improve performance on data synthesis. Refer to Sec. 3.1 for details.

Learning Without Forgetting (LwF (Li & Hoiem, 2017)),
protect previously acquired knowledge by limiting parame-
ter updates. However, their effectiveness depends heavily
on accurately identifying important parameters. Data replay
methods (Shin et al., 2017; Zhai et al., 2019; Masarczyk
& Tautkute, 2020), like Cognitive Replay (CORE (Zhang
et al., 2024)), Experience Replay (ER (Rolnick et al., 2019))
and Incremental Classifier and Representation Learning
(iCaRL (Rebuffi et al., 2017)), use a replay buffer to re-
view historical data.

Federated Continual Learning. Federated Continual
Learning (FCL) (Bui et al., 2018; Dong et al., 2022; Ma
et al., 2022; Yoon et al., 2021; Gao et al., 2024; Yu et al.,
2024c) extends Continual Learning (CL) by integrating Fed-
erated Learning (FL) principles (Grammenos et al., 2020;
Benmalek et al., 2022; Li et al., 2021), allowing global mod-
els to adapt to evolving local data while preserving prior
knowledge and ensuring privacy. Existing approaches can
be grouped into several categories: 1) regularization-based
methods like FedCurv (Shoham et al., 2019), which use
penalty terms to preserve critical parameters; 2) knowledge
distillation methods such as CFeD (Ma et al., 2022) and
GLFC (Dong et al., 2022), which transfer essential knowl-
edge between tasks to mitigate forgetting; 3) exemplar-based
methods like FedWeIT (Yoon et al., 2021), which retain key
samples for rehearsal during new task training; 4) generative
replay-based methods, including TARGET (Zhang et al.,
2023), LANDER (Tran et al., 2024), and DDDR (Liang
et al., 2025; Mei et al., 2024), primarily build upon stan-
dard generative replay, with most improvements focusing on
integrating pretrained models, such as CLIP and diffusion
models, to enhance performance. In contrast, we re-examine
the advantages that clients can offer in FL scenarios and
propose a more FL-native approach.

3. Observations
Clients play a crucial role in FL scenarios, which brings
two defining characteristics: 1) the privacy of client-side
data, and 2) the non-IID (uneven) distribution of data across
clients. In transitioning from CL to FCL, existing methods
have mainly focused on ensuring data privacy by keeping
local data within clients. However, they often overlook
the non-IID distribution of client data. In this section, we
shift our focus to this underutilized feature, discussing the
potential benefits it can bring to FCL.

3.1. Client Expertise Superiority.

As illustrated in Fig. 2, under an IID data distribution, both
clients and the server achieve comparable performance, with
each class exhibiting relatively high accuracy. However, in
practical FL scenarios, client data distributions often vary
significantly, leading to inherently non-IID settings. We
observe that as the level of non-IID increases, clients en-
counter an increasing number of low-accuracy instances. At
the same time, certain clients also achieve notably higher
accuracy on specific classes. This trend is more pronounced
in the non-IID (0.1) setting, where a strong polarization
effect emerges—individual clients demonstrate widely vary-
ing performance across different classes, with some signifi-
cantly outperforming the server on specific categories.

Leveraging these high-performing clients as domain ex-
perts for certain classes offers a more effective strategy
than relying solely on server knowledge. By incorporating
their superior knowledge, we can enhance the generation of
synthetic data, ensuring a better alignment with real-world
FL scenarios. Furthermore, during server-side aggregation,
these expert client models can be integrated without ex-
posing local data, thereby maintaining privacy. Notably,
this approach incurs minimal storage overhead, as it only
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Figure 3. Overview of CAN, consisting of two main stages: Expert-Driven Data Synthesis (Sec. 4.2) and Adaptive Replay (Sec. 4.3). A),
we start with initializing synthetic data. Then we identify the most suitable client experts to navigate the data generation. The process is
further refined using a joint loss that ensures both accurate and detailed data. B), the replay process begins with analyzing how new data
affects each client’s retention of old knowledge. This profiling informs Adaptive Buffer Training, where we personalize the internal data
distribution of replay buffers based on the unique forgetting patterns of each client, enabling more tailored and effective replay.

introduces an additional inference step into the existing
aggregation process.

3.2. Client Forgetting Variance.

In FCL scenarios, the degree of interference with previously
learned knowledge varies significantly across clients due
to their diverse data distributions. Each client’s unique lo-
cal data introduces different challenges in balancing new
and old knowledge, leading to varying degrees of conflict.
For instance, some clients may encounter frequent overlaps
between new and previously seen data, causing a higher
risk of interference, while others, with less overlap, might
experience distinct but subtle shifts that still lead to forget-
ting. This variability naturally results in different levels of
interference and forgetting among clients.

Consequently, a one-size-fits-all replay strategy is insuffi-
cient to address these differences. Instead, replay buffers
should be adaptive, tailored to each client’s specific for-
getting patterns. Recognizing and adapting to this client-
specific variability is essential for effective FCL.

4. CAN: Clients As Navigators
4.1. Overview

In this section, we introduce CAN, a native FCL approach
that leverages clients’ roles in FL to guide replay. We treat
clients as experts to train a generator that synthesizes fine-
grained data, effectively preserving prior knowledge. Ad-

ditionally, we personalize each client’s replay buffer based
on their forgetting patterns, enhancing replay effectiveness.
The framework of CAN is illustrated in Fig. 3.

4.2. Expert-Driven Data Synthesis

4.2.1. SYNTHETIC DATA INITIALIZATION

Due to privacy concerns, the real data owned by clients is
inaccessible on the server side. To overcome this limita-
tion, we introduce a generator, denoted as G, to produce
synthetic data Xsyn that aims to approximate the real data X
in distribution. This enables data replay using synthetic data,
preserving knowledge from previous tasks while addressing
privacy concerns. Here, we first adopt a sampling function
ϕ(y) that applies a noise transformation to obtain zy . Then,
the generator G takes noise zy as input to generate synthetic
data xsyn corresponding to that class. The process can be
formulated as:

Xsyn ∼ PX = {xsyn = G(zy) | zy ←− ϕ(y), y ∈ Y} , (1)

where PX represents the distribution of the real data X , and
ϕ(y) is a sampling function that generates the input noise zy
for each label y. Additionally, we discuss later in Sec. 5.5,
the synthetic data does not visually resemble the real data,
but remains unrecognizable and serves as meta data.

4.2.2. EXPERTISE KNOWLEDGE MAPPING

To improve the quality of Xsyn, it is essential to have an
effective guide for optimizing G. In light of our observa-
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tion of Client Expertise Superiority in Sec. 3.1, we stress
the importance of leveraging the expertise of the clients.
Specifically, for each class y ∈ Y , we utilize an expertise
map to identify the most suitable expert from clients C. The
expertise mapM(·) is defined as follows:

M(y) : y ∈ Y 7→ ey = argmax
c∈C

Acc(c, y), (2)

here,M(·) selects the expert ey with the highest accuracy
for class y. Once the generator G produces the synthetic
data (xsyn, y), the selected expert ey is then used to guide
the subsequent data refinement process.

4.2.3. EXPERTISE-GUIDED REFINEMENT

In this part, our goal is to refine synthetic data to not only
capture the core characteristics of the original data but also
encompass diverse and nuanced features. To achieve this,
we implement a cooperative refinement process with two
key components: Expertise Navigation, which ensures ac-
curate and class-specific representation, and Gap-Driven
Enhancement, which promotes richer details.

Expertise Navigation. To ensure that the synthetic data
accurately represents the characteristics of its corresponding
class, we adopt a strategy that treats a well-trained model
as an expert. This expert facilitates knowledge transfer
and guides the generation of representative synthetic data.
However, unlike previous approaches that rely solely on the
server as the expert, our method takes full advantage of the
FL setting by positioning clients as experts. This allows us
to harness the unique strengths of different clients, who may
have a deeper understanding of particular data distributions
compared to the server.

We first use the expertise map M(·) to select the most
suitable expert for each class, ensuring more accurate and
targeted refinement. The selected expert ey then generates
a predicted label for the synthetic data xsyn, corresponding
to class y. Given that this expert is highly proficient in
recognizing its associated class, the predicted label serves
as a reliable proxy for the ground truth, denoted as ygt.

When the synthetic data accurately captures the characteris-
tics of class y, the expert model ey should be able to classify
it correctly. Therefore, we compute a cross-entropy loss be-
tween the predicted class ygt from the expert and the target
class y, formulated as follows:

Lnav = − log p(ygt = y|xsyn), (3)

through Lnav, the generator G can be optimized to generate
synthetic data that effectively represents the target class.

Feature Gap Amplification. It is important to note that
the loss function Lnav in Eq. (3) only requires the synthetic

data to be identifiable by the expert, but it does not guaran-
tee that all relevant features are captured. Specifically, the
generator tends to focus on the most prominent and easily
recognizable features to satisfy the expert, while ignoring
the more nuanced and detailed characteristics that the expert
is also capable of recognizing. Consequently, the generated
data often lack subtle but important features, resulting in re-
duced diversity and limiting their representational richness.

To address this, we introduce a reference model Π, trained
only on synthetic data that can be understood as a knowl-
edge representation under the guidance of expert knowledge.
Therefore, Π captures not only the prominent features but
also includes some of the more subtle and nuanced charac-
teristics that are often overlooked by less specialized models.
In contrast, the server model S , while proficient at identify-
ing prominent features, lacks the expert’s capacity to capture
these finer ones. By encouraging discrepancies between the
predictions of the server model S and the reference model
Π on Xsyn, we guide the generator G to produce synthetic
data that not only captures the prominent features but also
the fine-grained details. The features recognized by the
reference model Π can be represented as a set FΠ(x), and
those recognized by the server model S as a set FS(x).

Our objective is to let synthetic data capture the features
recognized by Π but missed by S , which can be understood
as the set difference FΠ(x) \ FS(x) in discrete mathemat-
ics theory. To achieve this, we aim to minimize the KL
divergence (Van Erven & Harremos, 2014) between the
predictions of Π and S on the test set, focusing only on
cases where Π makes correct predictions. The process is
formalized as:

Lgap = −E(x,y)∼Xsyn [IΠ · KL(fΠ(x) ∥ fS(x))] , (4)

where E(x,y)∼Xsyn denotes the expectation over Xsyn. Here,
fΠ(x) and fS(x) represent the predicted label by Π and S,
respectively. The indicator function IΠ equals 1 if Π’s pre-
diction matches the true label y, and 0 otherwise, ensuring
that discrepancies are encouraged only when Π correctly
identifies the features.

Joint Loss Function. To comprehensively optimize the
generator G, we define a joint loss function that combines
both Lnav and Lgap. The navigation loss Lnav aligns the syn-
thetic data with the expert’s guidance to accurately represent
the target class, while the gap-driven loss Lgap promotes di-
versity by encouraging the capture of more nuanced details.
The overall objective for optimizing G:

LG = (1− λ) · Lnav + λ · Lgap, (5)

here, λ is a hyperparameter balances between the two loss
terms, ensuring that the synthetic data is both representative
and diverse. Further discussion of different λ can be found
in Appendix A.3.2.
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4.3. Adaptive Replay

A common approach to mitigate catastrophic forgetting in
continual learning is to mix previously data, representing
old knowledge, with newly incoming data during training.
However, in FL settings, distributed clients have highly het-
erogeneous local data, contributing the Client Forgetting
Variance phenomenon discussed in Sec. 3.2. This makes
naive replay without considering the unique role of clients
unlikely to yield optimal results. To improve the effective-
ness of replay in the FL scenario, we propose an adaptive re-
play strategy: 1) Forgetting Pattern Profiling, which profiles
the unique forgetting patterns of each client; 2) Adaptive
Buffer Training, which reallocate personalized buffer for
each client during replay.

Forgetting Pattern Profiling. Initially, a replay buffer
B is pre-allocated to all clients, with synthetic data evenly
distributed across all previous tasks T :

B =

{
(X t

syn,Yt) | t ∈ T , |X t
syn| =

|B|
|T |

}
, (6)

where | · | denotes the size of a set. Each client then trains
on the replay buffer B alongside the new local data D for
τ iterations. The choice of τ controls the balance between
efficient training and capturing the impact of the new task,
as detailed in Appendix A.3.3.

After training, we evaluate the accuracy of each client c on
each old task t, denoted as Acctc, to determine the forgetting
pattern for each client. The forgetting weight wt

c for client c
on old task t is calculated as follows:

wt
c =

1

max(Acctc, ϵ)
, t ∈ T , (7)

where ϵ is a small predefined threshold to prevent numerical
instability when the accuracy is close to zero. A larger wt

c

indicates greater forgetting, suggesting that more data is
needed for client c’sreplay on task t.

Adaptive Buffer Training. Next, we implement a simple
adaptive strategy to allocate more buffer space to tasks with
higher forgetting weights. The adaptive replay buffer Bc for
client c is defined as:

Bc = {(X t
syn,Yt) | t ∈ T , |X t

syn| =
wt

c∑
t′∈T wt′

c

· |B|}, (8)

where wt
c represents the forgetting weight for task t on client

c, and |X t
syn| is the size of the buffer allocated to task t after

adaptation. Following this, each client c trains on their
personalized buffer Bc alongside their new local data Dc.
Finally, the loss of the client c after task t is defined as:

Lc = αt
new · EDc [CE] + αt

pre · EBc [KL], (9)

where αt
new and αt

pre balance learning from new data Dc

and retaining past knowledge via buffered data Bc. The
specific selection of α is detailed in Appendix A.3.4.

5. Experiments
5.1. Experimental Setup

Settings and Metrics. We evaluate CAN in both IID and
diverse non-IID scenarios using two key metrics: Average
Accuracy (A) and Average Forgetting Score (F ), as detailed
in Appendix A.1. Additionally, we also examine the impact
of different replay buffer sizes to assess the efficiency of
our approach under resource constraints. Furthermore, to
provide a comprehensive evaluation, we analyze accuracy
trajectory across sequential tasks and retention of initial task
accuracy, offering deeper insights into the model’s capacity
to maintain performance throughout training.

Baselines. We compare CAN with several methods:
Vanilla, FedEWC, FedLwF, FedWeIT, TARGET, and
LANDER. Vanilla sequentially finetunes each new class.
FedEWC (Kirkpatrick et al., 2017) mitigates forgetting by
penalizing changes to important parameters using elastic
weight consolidation (EWC). FedLwF (Li & Hoiem, 2017)
applies knowledge distillation to retain past knowledge. Fed-
WeIT (Yoon et al., 2021) preserves crucial weights in fed-
erated settings. TARGET (Zhang et al., 2023) generates
synthetic data for replay using the server model’s knowl-
edge, avoiding real data access. LANDER (Tran et al.,
2024), an extension of TARGET, introduces feature anchors
to improve synthetic data clustering. Additionally, we com-
pare CAN with DDDR (Liang et al., 2025), which leverages
a pretrained diffusion model (see Appendix B).

5.2. Main Results on CIFAR100

Tab. 1 compares various methods on CIFAR100 (Krizhevsky
& Hinton, 2009) across IID and various non-IID settings,
where our method consistently outperforms others across all
settings. As expected, Vanilla sequentially fine-tunes new
tasks, leading to severe forgetting. Among non-replay meth-
ods like FedEWC (Kirkpatrick et al., 2017), FedWeIT (Yoon
et al., 2021), and FedLwF (Li & Hoiem, 2017), forgetting
is somewhat alleviated, but these approaches struggle un-
der non-IID conditions due to the absence of synthetic data
replay. Replay-based methods like TARGET (Zhang et al.,
2023) and LANDER (Tran et al., 2024), which serve as our
main baselines, use synthetic data to replay. TARGET relies
on server-side knowledge with a larger buffer but exhibits
high forgetting in non-IID settings. LANDER introduces
feature anchors to improve clustering, but it struggles to
match our method’s performance at the same buffer size. In
fact, CAN outperforms LANDER even with smaller buffers,
highlighting CAN’s efficiency in terms of computational
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Table 1. Performance on CIFAR100 for 5-task and 10-task settings under IID and various non-IID scenarios. For TARGET, we replicate
it using a buffer size of 2,560 while following its default settings. Our main comparison is with LANDER, exploring different buffer sizes:
1,250 , 1,000 , 750 , and 500 . The results demonstrate that CAN consistently outperforms LANDER at equivalent buffer sizes and

achieves comparable performance even with smaller buffers, highlighting its efficiency and effectiveness in maintaining high accuracy (A)
and reducing forgetting score (F). Further analysis can be found in Sec. 5.2.

5 Tasks 10 Tasks
IID NIID(1) NIID(0.5) NIID(0.1) IID NIID(1) NIID(0.5) NIID(0.1)Method

A (↑) F (↓) A (↑) F (↓) A (↑) F (↓) A (↑) F (↓) A (↑) F (↓) A (↑) F (↓) A (↑) F (↓) A (↑) F (↓)

Vanila 16.12 78.12 16.33 77.59 15.49 74.95 15.69 72.73 7.83 75.89 8.45 74.89 7.64 71.52 8.04 65.27
FedEWC 16.51 71.12 16.06 68.02 16.86 62.40 17.69 65.84 8.01 65.06 8.84 62.14 8.04 65.23 7.61 58.79
FedWeIT 28.45 52.12 28.56 49.84 24.57 45.96 - - 20.39 43.18 19.68 45.96 15.45 48.54 - -
FedLwF 30.61 45.32 30.94 42.71 27.59 41.25 35.95 29.04 23.27 37.71 21.16 41.03 17.98 45.23 18.39 43.92
TARGET 36.31 32.23 34.89 34.48 33.33 39.23 28.32 38.23 24.76 35.45 22.85 38.25 20.71 42.23 19.25 45.23
LANDER 45.92 37.23 44.51 39.47 41.63 39.23 37.94 38.18 31.29 46.02 31.07 50.67 26.93 50.34 21.95 42.65

CAN 48.16 33.26 45.93 34.61 42.16 36.14 39.88 32.21 34.41 32.52 32.59 32.93 28.06 33.42 23.60 26.11
LANDER 43.99 40.71 43.46 41.70 40.85 41.49 37.65 38.89 30.25 47.83 28.82 53.64 25.46 52.65 20.37 44.26

CAN 46.16 35.01 44.82 27.80 42.35 37.56 38.91 35.10 33.96 33.43 31.52 34.18 27.32 28.72 22.09 31.75
LANDER 41.56 44.72 40.90 45.94 38.30 45.70 37.06 41.17 29.96 52.46 27.39 55.93 23.23 53.18 19.86 48.54

CAN 46.15 32.42 43.15 40.22 41.56 30.44 37.14 37.32 33.71 36.67 30.66 36.54 25.76 30.05 21.31 32.90
LANDER 36.99 51.87 36.41 52.74 35.63 49.80 33.34 46.59 27.00 56.70 23.86 46.71 22.16 55.83 19.00 52.60

CAN 44.92 29.51 43.64 34.34 41.04 34.65 35.38 43.63 31.83 37.34 27.13 42.75 24.99 32.87 21.07 33.91
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Figure 4. Results on TinyImageNet across 5 tasks under various data settings (IID, NIID 1.0, NIID 0.5, and NIID 0.1). The first row
shows accuracy (↑), while the second row displays the forgetting score (↓). We compare CAN with LANDER at different buffer sizes
(2,500, 5,000, and 10,000 samples) and include FedLwF as a baseline (the dashed line). CAN consistently outperforms other methods,
demonstrating superior accuracy and lower forgetting. Please see Sec. 5.3 for a detailed discussion.

costs. This demonstrates CAN’s efficiency, effectively lever-
aging client-specific expertise and adaptive buffer allocation
to maintain robust performance.

5.3. Results on More Complicated Settings

As shown in Fig. 4, CAN consistently achieves state-of-
the-art performance on TinyImageNet (Le & Yang, 2015),
particularly in non-IID settings. It outperforms both LAN-
DER (Tran et al., 2024) and FedLwF (Li & Hoiem, 2017),
demonstrating robustness in handling diverse data distribu-

tions. Notably, we observe a “V” phenomenon with CAN:
as buffer size increases, accuracy initially dips before rising,
while forgetting follows an inverted “V” pattern, suggesting
a trade-off between data quality and quantity. For LANDER,
larger buffers compensate for lower data quality, whereas
CAN’s high-quality synthetic data benefits less from simply
adding more samples. This suggests future improvements
should focus on further enhancing data quality to better
leverage larger buffers and optimize FCL performance in
federated settings.
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Table 2. Average accuracy trajectory measured after the com-
pletion of each task on ImageNet100 over a sequence of 5 tasks.
CAN consistently outperforms LANDER across all tasks and non-
IID settings, demonstrating its effectiveness in maintaining higher
accuracy throughout the sequence. Please refer to Sec. 5.3.

Settings Method Task 2 Task 3 Task 4 Task 5 Avg

NIID(0.5) LANDER 40.40 31.30 23.92 17.48 28.28
CAN (Ours) 50.15 40.87 32.70 26.52 37.56

NIID(0.1) LANDER 26.20 15.90 10.75 7.02 14.97
CAN (Ours) 40.90 31.00 23.30 17.50 28.18

Table 3. Retention of final accuracy on the first task after the
completion of all tasks on CIFAR100. (±) indicate the difference
compared to CAN with 500 buffer size. CAN consistently outper-
forms LANDER across all buffer sizes, even when LANDER uses
twice as much data. Please refer to Sec. 5.3 for further analysis.

Method IID NIID(1.0) NIID(0.5) NIID(0.1)
LANDER *500 18.20 (-20.20) 14.65 (-19.40) 14.55 (-16.00) 15.75 (-6.00)

LANDER *750 24.65 (-13.75) 21.30 (-12.75) 20.35 (-10.20) 20.20 (-1.55)

LANDER *1000 29.70 (-8.70) 26.95 (-7.10) 23.25 (-7.30) 21.80 (+0.05)

LANDER *1250 33.05 (-5.35) 28.20 (-5.85) 24.35 (-6.20) 22.25 (+0.50)

CAN *500 38.40 34.05 30.55 21.75

Accuracy Trajectory on ImageNet. To further evaluate
the robustness of our method, we investigate its accuracy tra-
jectory on the more challenging ImageNet100 (Russakovsky
et al., 2015) dataset over a sequence of five consecutive tasks.
As presented in Tab. 2, CAN consistently outperforms LAN-
DER (Tran et al., 2024) across all tasks, exhibiting a sub-
stantial improvement in average accuracy. This performance
gap becomes even more pronounced under the more chal-
lenging NIID(0.1) setting, where CAN achieves an average
accuracy of 28.18%, significantly exceeding LANDER’s
14.97%. These results highlight the effectiveness of our
client-centric approach in maintaining strong performance
across diverse learning conditions.

Retention of Initial Task Accuracy. Tab. 3 presents the
final accuracy on the initial task, offering a targeted eval-
uation of how well FCL methods retain early knowledge.
Unlike the average accuracy across all tasks, which may
obscure the forgetting patterns of individual tasks, this mea-
sure directly reflects a model’s ability to preserve knowledge.
CAN consistently outperforms LANDER, even when using
smaller buffer sizes. Notably, CAN achieves superior reten-
tion of initial task accuracy even as LANDER utilizes buffer
sizes up to twice as large, underscoring CAN’s efficiency
and effectiveness in mitigating forgetting.

5.4. Ablation Studies

As shown in Fig. 5, we analyze the impact of removing
key components from our method. The variant that ex-
cludes both client expertise and adaptive replay exhibits
a significant performance decline. Specifically, without
client expertise, data generation depends solely on server
knowledge, while the absence of adaptive replay results in

IID NIID(1.0) NIID(0.5) NIID(0.1)

30
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45

Ac
cu
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w/o (E+A) w/o A w/o E ours

Figure 5. Ablation study exploring the importance of client exper-
tise in data synthesis (E) and adaptive replay (A) across different
settings, as discussed in Sec. 5.4, highlighting their critical roles.

Figure 6. Visualization of the synthetic data generated by CAN.
The synthetic data represents features in the form of meta data,
abstracting class distributions without resembling real samples,
ensuring privacy preservation. Details refer to Sec. 5.5.

uniform buffer allocation across tasks. These findings high-
light two critical factors for replay-based FCL: 1) the quality
of synthetic data and 2) the effectiveness of buffer allocation.
Notably, the removal of adaptive replay leads to the most
substantial accuracy drop, underscoring the necessity of tai-
lored replay strategies to mitigate client-specific forgetting
patterns. Furthermore, the exclusion of client expertise also
degrades performance, demonstrating its essential role in
enhancing synthetic data quality.

5.5. Privacy Analysis of CAN

CAN builds upon the generative replay FCL framework,
similar to prior works like TARGET (Zhang et al., 2023)
and LANDER (Tran et al., 2024). It leverages client models
on the server side for knowledge transfer, synthesizing high-
quality representations without direct access to original data
and without introducing additional privacy concerns. As
shown in Fig. 6, the synthetic data exhibits distinct visual
differences from real data, serving as abstract representa-
tions of class distributions. Throughout the entire process,
we ensure that each client’s private data remains local and
inaccessible to others. The synthetic data distributed for
replay serves only as meta-level representations, effectively
capturing features while remaining free from any identifi-
able real-data characteristics, thereby safeguarding privacy.

6. Conclusion
In this paper, we introduce CAN, a client-centric approach
that enhances synthetic data quality and mitigates forget-
ting through adaptive replay. Unlike prior methods, CAN
tailors replay strategies to client-specific needs, improving
knowledge retention in FCL. Experiments show that CAN
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outperforms existing baselines, even with smaller buffers,
highlighting the effectiveness of client-aware strategies in
FCL and paving the way for future research.
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kullback-leibler divergence. IEEE TIT, pp. 3797–3820,
2014.

Wang, L., Zhang, X., Su, H., and Zhu, J. A comprehen-
sive survey of continual learning: theory, method and
application. IEEE TPAMI, 2024a.

Wang, N., Deng, Y., Feng, W., Yin, J., and Ng, S.-
K. Data-free federated class incremental learning with
diffusion-based generative memory. arXiv preprint
arXiv:2405.17457, 2024b.

Wang, W., Li, X., Qiu, X., Zhang, X., Brusic, V., and Zhao,
J. A privacy preserving framework for federated learning
in smart healthcare systems. IPM, pp. 103167, 2023.

Xie, Y., Zhang, W., Pi, R., Wu, F., Chen, Q., Xie, X., and
Kim, S. Optimizing server-side aggregation for robust
federated learning via subspace training. arXiv preprint
arXiv:2211.05554, 2022.

Xu, J., Glicksberg, B. S., Su, C., Walker, P., Bian, J., and
Wang, F. Federated learning for healthcare informatics.
HIR, pp. 1–19, 2021.

Yang, Q., Liu, Y., Chen, T., and Tong, Y. Federated machine
learning: Concept and applications. TIST, pp. 1–19, 2019.

Yang, X., Huang, W., and Ye, M. Dynamic personalized
federated learning with adaptive differential privacy. In
NeurIPS, 2023.

Yang, X., Yu, H., Gao, X., Wang, H., Zhang, J., and Li, T.
Federated continual learning via knowledge fusion: A
survey. IEEE TKDE, 2024.

Ye, M., Fang, X., Du, B., Yuen, P. C., and Tao, D. Hetero-
geneous federated learning: State-of-the-art and research
challenges. CSUR, 2023.

Yoon, J., Yang, E., Lee, J., and Hwang, S. J. Lifelong
learning with dynamically expandable networks. arXiv
preprint arXiv:1708.01547, 2017.

Yoon, J., Jeong, W., Lee, G., Yang, E., and Hwang, S. J.
Federated continual learning with weighted inter-client
transfer. In ICML, pp. 12073–12086. PMLR, 2021.

Yu, H., Yang, X., Gao, X., Feng, Y., Wang, H., Kang, Y.,
and Li, T. Overcoming spatial-temporal catastrophic
forgetting for federated class-incremental learning. In
ACMMM, pp. 5280–5288, 2024a.

Yu, H., Yang, X., Gao, X., Kang, Y., Wang, H., Zhang,
J., and Li, T. Personalized federated continual learning
via multi-granularity prompt. In KDD, pp. 4023–4034,
2024b.

Yu, H., Yang, X., Zhang, L., Gu, H., Li, T., Fan, L., and
Yang, Q. Addressing spatial-temporal data heterogeneity
in federated continual learning via tail anchor. arXiv
preprint arXiv:2412.18355, 2024c.

Zhai, M., Chen, L., Tung, F., He, J., Nawhal, M., and Mori,
G. Lifelong gan: Continual learning for conditional im-
age generation. In CVPR, pp. 2759–2768, 2019.

Zhang, J., Chen, C., Zhuang, W., and Lyu, L. Target: Fed-
erated class-continual learning via exemplar-free distilla-
tion. In CVPR, pp. 4782–4793, 2023.

Zhang, J., Fu, Y., Peng, Z., Yao, D., and He, K.
Core: Mitigating catastrophic forgetting in continual
learning through cognitive replay. arXiv preprint
arXiv:2402.01348, 2024.

Zhao, B., Xiao, X., Gan, G., Zhang, B., and Xia, S.-T. Main-
taining discrimination and fairness in class incremental
learning. In CVPR, pp. 13208–13217, 2020.

Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra,
V. Federated learning with non-iid data. arXiv preprint
arXiv:1806.00582, 2018.

Zhou, D.-W., Cai, Z.-W., Ye, H.-J., Zhan, D.-C., and Liu,
Z. Revisiting class-incremental learning with pre-trained
models: Generalizability and adaptivity are all you need.
arXiv preprint arXiv:2303.07338, 2023.

11



CAN: Clients As Navigators

A. Experiment Details
A.1. Evaluation Metrics

We employ two metrics to assess the performance of our method in the federated continual learning setting.

Average Accuracy (A) : This metric evaluates the model’s classification performance on the test set after completing the
final task, reflecting its ability to learn new tasks while retaining previously acquired knowledge. It is computed as:

A =
1

|DT |
∑

(x,y)∈DT

I(ŷ = y) (10)

where DT represents the test dataset of the overall tasks, and I(·) is the indicator function that returns 1 if the predicted label
ŷ matches the ground truth y, and 0 otherwise.

Average Forgetting Score (F) : This metric quantifies the extent of knowledge degradation across previously learned
tasks due to the introduction of new tasks. We first compute the maximum accuracy achieved for each task throughout
training and compare it with the final accuracy after training all tasks. The forgetting rate for task t is defined as:

Ft = max
i≤t
Ai,t −AT,t (11)

where Ai,t is the accuracy of task t after training on task i, and AT,t is the final accuracy on task t after training on all T
tasks. The Average Forgetting Rate (F) is then computed as:

F =
1

T − 1

T−1∑
t=1

Ft (12)

A.2. Generator Architecture and Optimization

To ensure a fair comparison under consistent conditions, we adopt the same generator architecture as LANDER (Tran et al.,
2024) (as shown in Tab. 4 and Tab. 5). To optimize the generator, Adam optimizer is employed with a learning rate of 2e-3,
ensuring stable convergence. The synthetic batch size is adjusted based on dataset complexity and hardware constraints,
set to 256 for CIFAR-100 and Tiny-ImageNet, and 128 for ImageNet100 to maintain GPU memory usage below 24GB
(NVIDIA RTX 4090). This design ensures that the generator remains scalable and efficient across diverse tasks, contributing
to the robustness of our method in challenging settings.

Table 4. Generator Architecture for CIFAR-100 and TinyImageNet.

Layers Output

Input 256

Linear, BatchNorm1D, Reshape 128× h/4× w/4

SpectralNorm (Conv (3 × 3)), BatchNorm2D, LeakyReLU 128× h/4× w/4

UpSample (2×) 128× h/2× w/2

SpectralNorm (Conv (3 × 3)), BatchNorm2D, LeakyReLU 64× h/2× w/2

UpSample (2×) 64× h× w

SpectralNorm (Conv (3 × 3)), Sigmoid, BatchNorm2D 3× h× w
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Table 5. Generator Architecture for ImageNet100.

Layers Output

Input 256

Linear, BatchNorm1D, Reshape 128× h/16× w/16

SpectralNorm (Conv (3 × 3)), BatchNorm2D, LeakyReLU 128× h/16× w/16

UpSample (2×) 128× h/8× w/8

SpectralNorm (Conv (3 × 3)), BatchNorm2D, LeakyReLU 128× h/8× w/8

UpSample (2×) 128× h/4× w/4

SpectralNorm (Conv (3 × 3)), BatchNorm2D, LeakyReLU 64× h/4× w/4

UpSample (2×) 64× h/2× w/2

SpectralNorm (Conv (3 × 3)), BatchNorm2D, LeakyReLU 64× h/2× w/2

UpSample (2×) 64× h× w

SpectralNorm (Conv (3 × 3)), Sigmoid, BatchNorm2D 3× h× w

A.3. Hyperparameter Choice

A.3.1. DEFAULT HYPERPARAMETER

To clarify the experimental setup, we provide the key hyperparameter configurations in the table below. These settings were
consistently applied across all experiments unless otherwise specified.

Table 6. Training parameters.

Hyperparameter Value

Communication Rounds 100
Clients Numbers 5

Local Epochs 2
Local Batch Size 128

Synthesis Batch Size 256

A.3.2. BALANCING Lnav AND Lgap

We analyze the effect of varying λ in Eq. (5) to balance Lnav and Lgap. As shown in Tab. 7, the results indicate that placing
greater emphasis on Lgap (higher λ values) leads to improved performance. This trend suggests that while prominent features
are relatively easy to capture through Lnav, the finer, more nuanced details—although harder to learn—are also crucial in
real-world scenarios and thus warrant additional focus. The stronger weighting on Lgap enables the generator to refine and
diversify synthetic data by capturing these subtle characteristics. This finding further supports the importance of introducing
the gap loss Lgap to achieve a richer and more comprehensive data.

Table 7. Effect of varying the value of λ on accuracy, as defined in the joint loss function L in Eq. (5). Increasing λ (placing more
emphasis on Lgap) leads to better performance.

λ 0.33 0.5 0.67

Acc (A) 41.01 42.03 43.25

A.3.3. ITERATIONS DURING PROFILING STAGE

In Tab. 8, we find that setting τ to 20 consistently yields either the best or second-best accuracy across different buffer sizes,
making it an effective choice for balancing efficient training and capturing the impact of new tasks. Additionally, we observe
that the accuracy improves when the loss stabilizes around 150 during training. For simplicity and consistency, we use
τ = 20 as the basis for measuring forgetting patterns in our experiments.
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Table 8. Effect of varying the number of iterations τ during the profiling stage across different buffer sizes, highlighting the best and
second-best performance.

Size
τ

5 10 15 20 25

500
Acc (A) 37.12 37.62 41.44 42.33 41.22
Loss (L) 162.75 160.76 152.33 147.97 146.80

750
Acc (A) 41.53 40.86 41.56 42.36 42.58
Loss (L) 166.93 162.92 161.03 155.80 151.87

1000
Acc (A) 41.78 42.06 42.35 42.27 41.96
Loss (L) 160.31 154.29 153.03 150.35 147.54

1250
Acc (A) 40.78 41.23 41.46 42.34 40.02
Loss (L) 161.77 155.32 151.81 149.45 147.17

A.3.4. PARAMETER SELECTION ON LOCAL TRAINING

Following Gao et al. (Gao et al., 2022b), we adopt an adaptive strategy for setting the scaling factors αt
new and αt

pre,
which balances the learning of new and previously encountered knowledge. As the ratio of previous classes to new classes
increases, the difficulty of preserving past knowledge also grows. To address this, the scaling factors are defined as:

αt
new =

1 + 1/κ

δ
αcur, αt

pre = κδαpre, (13)

where

κ = log2

(
|Yt|
2

+ 1

)
, δ =

√
|Y1:t−1|
|Yt|

, (14)

and |Yt| represents the number of classes in task t. Here, αnew and αpre are the base scaling factors.

This formulation ensures a dynamic adjustment of the importance weights, mitigating the challenges posed by an increasing
number of prior classes. The logarithmic function in κ provides a smooth scaling mechanism, while the square-root term in
δ prevents excessive emphasis on earlier tasks. For more details, we refer readers to Gao et al. (Gao et al., 2022b).

B. Further Comparison and analysis
Generative replay is a key technique in FCL to mitigate catastrophic forgetting. Two prominent approaches to replay-based
methods are:

• Diffusion-Based Generative Replay: Diffusion models have recently gained attention due to their ability to generate
high-quality synthetic samples for replay. These models iteratively refine noise into structured data distributions,
enabling data-free continual learning.

• Data-Free Knowledge Distillation (DFKD): Our approach leverages data-free knowledge distillation, which bypasses
explicit data synthesis by directly distilling knowledge from previous models into new tasks. This eliminates the need
for storing synthetic samples while still retaining knowledge through logit-based or feature-based distillation.

B.1. Performance Analyze

In this section, we compare CAN with two state-of-the-art methods that utilize pretrained models for generative replay:
DDDR (Liang et al., 2025), which leverages a pretrained diffusion model, and LANDER (Tran et al., 2024), which
incorporates pretrained language models. Unlike these approaches, CAN does not rely on any external pretrained models
but instead fully exploits the role of clients to achieve effective generative replay.
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Table 9. Performance comparison on CIFAR-100 with DDDR and LANDER across different buffer sizes and data heterogeneity levels.
Evaluated with Average Accuracy (A).

Buffer Size Methods IID NIID(1.0) NIID(0.5) NIID(0.1)

DDDR 44.21 41.82 40.06 36.93
LANDER 36.99(-7.22) 36.41(-5.41) 35.63(-4.43) 33.34(–3.59)500

CAN 44.92(+0.71) 43.64(+1.82) 41.04(+0.98) 35.38(-1.55)

DDDR 45.30 44.10 41.43 37.80
LANDER 41.56(-3.74) 40.90(-3.20) 38.30(-3.13) 37.06(-0.74)750

CAN 46.15(+0.85) 43.15(-0.95) 41.56(+0.13) 37.14(-0.66)

DDDR 46.81 44.51 41.11 38.55
LANDER 43.99(-2.82) 43.46(-1.05) 40.85(-0.26) 37.65(-0.90)1000

CAN 46.16(-0.65) 44.82(+0.31) 42.35(+1.24) 38.91(+0.35)

DDDR 46.50 45.20 43.04 39.06
LANDER 45.92(-0.58) 44.51(-0.69) 41.63(1.41) 37.94(-1.12)1250

CAN 48.16(+1.66) 45.93(+0.73) 42.16(-0.88) 39.88(+0.82)

As shown in Tab. 9, DDDR achieves strong performance due to the superior generative capabilities of pretrained diffusion
models, which enhance replay effectiveness. However, our proposed method, CAN, matches or even surpasses DDDR
across various settings—all without relying on any pretrained models. Specifically, CAN consistently outperforms LANDER
and achieves results comparable to DDDR, even under the most challenging NIID(0.1) scenario. This demonstrates that
the strategic use of client-side knowledge alone is sufficient to bridge the performance gap between diffusion-based and
traditional DFKD approaches, eliminating the need for computationally expensive pretrained models.

These results highlight the effectiveness of client-aware generative replay, showing that using pretrained models is not
a prerequisite for strong performance in federated continual learning. Instead, CAN effectively leverages local client
expertise to enhance knowledge retention and mitigate forgetting, achieving state-of-the-art results with significantly lower
computational overhead.

B.2. Cost Analysis

We analyze both the computational overhead (synthesis and local replay costs) and the storage requirements (buffer size and
model storage) of CAN, comparing it with DDDR and LANDER.

B.2.1. COMPUTATIONAL COST

Synthesis Overhead. DDDR relies on a pretrained diffusion model, which requires multiple iterative steps to produce
high-quality synthetic samples. This multi-step process significantly increases inference time and computational complexity.
In contrast, both CAN and LANDER are DFKD-based approaches that generate synthetic samples in a single step, making
them substantially more efficient in terms of synthesis time and computational cost.

Local Replay Overhead. Local replay introduces additional computation during training. By maintaining a smaller replay
buffer, CAN reduces the number of samples involved in this phase, resulting in shorter replay times and lower computational
load. In comparison, LANDER and DDDR utilize larger buffers, prolonging the replay phase and increasing the overall
training cost. Hence, replaying fewer samples allows CAN to accelerate local training and enhance efficiency in federated
continual learning.

GPU Memory Consumption. DDDR must load a large pretrained diffusion model, which consumes considerable GPU
memory due to its high parameter count and multi-step generation process. LANDER, reliant on pretrained language models,
also incurs a sizable memory footprint. In contrast, CAN operates without any pretrained models, reducing GPU memory
consumption and making it a practical option for resource-limited federated settings.
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B.2.2. STORAGE COST

Buffer Size Requirements. CAN achieves competitive performance with a substantially smaller buffer (see Table 9),
reducing storage needs while maintaining high accuracy. LANDER struggles to retain knowledge effectively due to
lower-quality generated data and the absence of an adaptive buffer strategy, forcing it to rely on a larger replay buffer
and incurring higher storage costs, yet still underperforming relative to CAN. Although DDDR benefits from the strong
generative capabilities of a pretrained diffusion model, it lacks an adaptive replay strategy. As a result, despite producing
high-quality synthetic samples, its performance remains on par with or slightly below CAN in most scenarios, illustrating
that superior data quality alone is insufficient without a client-adaptive replay mechanism.

Pretrained Model Storage Overhead. DDDR demands substantial storage for a pretrained diffusion model, which can
range from hundreds of megabytes to several gigabytes, depending on the architecture. LANDER also incurs notable
storage costs due to its reliance on pretrained language models, which can occupy multiple gigabytes. CAN eliminates
these overheads entirely by avoiding external pretrained models, drastically reducing storage requirements and enhancing
scalability.
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