H-InDex: Visual Reinforcement Learning with
Hand-Informed Representations for Dexterous Manipulation

Yanjie Ze'> Yuyao Liu®* Ruizhe Shi** Jiaxin Qin*
Zhecheng Yuan®' Jiashun Wang® Huazhe Xu?!6

!Shanghai Qi Zhi Institute 2Shanghai Jiao Tong University >Tsinghua University, ITIS
4Renmin University of China °Carnegie Mellon University ®Shanghai AI Lab
“Equal contribution. Order is decided by coin flip.

yanjieze.com/H-InDex

Abstract

Human hands possess remarkable dexterity and have long served as a source of
inspiration for robotic manipulation. In this work, we propose a human Hand-
Informed visual representation learning framework to solve difficult Dexterous
manipulation tasks (H-InDex) with reinforcement learning. Our framework con-
sists of three stages: (i) pre-training representations with 3D human hand pose
estimation, (ii) offline adapting representations with self-supervised keypoint detec-
tion, and (iii) reinforcement learning with exponential moving average BatchNorm.
The last two stages only modify 0.36% parameters of the pre-trained representation
in total, ensuring the knowledge from pre-training is maintained to the full extent.
We empirically study 12 challenging dexterous manipulation tasks and find that H-
InDex largely surpasses strong baseline methods and the recent visual foundation
models for motor control. Code is available at yanjieze.com/H-InDex.

1 Introduction

Humans can adeptly tackle intricate and novel Normalized Average Score
dexterous manipulation tasks. However, multi- 100 282

fingered robotic hands still struggle to achieve
such dexterity efficiently. Recent progress in 751
representation learning for visuomotor tasks 501
has proved that pre-trained universal represen-
tations may accelerate robot learning manipula- 251
tion tasks [17, 18,26, 30]. In light of previous
success, the similar morphology between human 0-
hands. and robotic hands begs the q}lestion: can EEm RRL (ResNet-50) . MVP (VIT-S)
robotic hands leverage representations learned s R3M (ResNet-50)

from human hands for achieving dexterity? « Model params: ResNet-50 (24 M), ViT-B (86 M), VIT-S (22 M)

In this paper, we propose Hand-Informed Figure 1: Normalized average score for our al-
visual reinforcement learning framework for gorithm H-InDex and the baselines (VC-1 [17],
Dexterous manipulation (H-InDex) that uses MVP [30], R3M [18], and RRL [26]).

and adapts visual representations from human hands to boost robotic hand dexterity. Our framework
consists of three stages:

B H-InDex (ResNet-50) VC-1 (ViT-B)

e Stage 1: Pre-training representations with 3D human hand pose estimation, where we adopt the
feature encoder from an off-the-shelf 3D hand pose estimator FrankMocap [24].

e Stage 2: Offline adapting representations with self-supervised keypoint detection, where we
freeze the convolutional layers in the pre-trained representation and only finetune the affine

37th Conference on Neural Information Processing Systems (NeurIPS 2023), New Orleans.

https://yanjieze.com/H-InDex
https://yanjieze.com/H-InDex

transformations in BatchNorm layers (0.18% parameters of the entire model). Such minimal
modification of the pre-trained representations ensures that human dexterity is retained to the
maximum extent and adapts the human hand representations into the target robotic domain.

e Stage 3: Reinforcement learning with exponential moving average (EMA) BatchNorm and
the adapted representations. EMA operates to dynamically update the mean and variance in
BatchNorm layers, to further make the model adapt to the progressive learning stages.

In contrast to previous works that also learn representations from human videos [17, 18, 30], there
are two major benefits of our framework: i) H-InDex explicitly learn human dexterity by forcing
the model to predict the 3D hand pose instead of predicting or discriminating pixels unsupervisedly
using masked auto-encoding [9] or time contrastive learning [25]; ii) H-InDex directly adopts the
off-the-shelf visual model that is designed to capture human hands rather than training large models
on large-scale datasets for specific robotic tasks. These two points combined demonstrate a new
cost-effective way to solve robotic tasks such as dexterous manipulation by leveraging existing visual
models that are originally and only designed for human understanding.

To show the effectiveness of H-InDex, we experiment on 12 challenging visual dexterous manipulation
tasks from Adroit [23] and DexMV [22]. We mainly report episode returns instead of success rates to
better show how well the robots solve the tasks. In comparison with several strong visual foundation
models for motor control, H-InDex largely surpasses all of them as shown in Figure 1.

To summarize, our contributions are three-fold:

* We propose a novel visual reinforcement learning framework called H-InDex to utilize rich
human hand information efficiently for dexterous manipulation.

* We show the effectiveness of our framework on 12 challenging visual dexterous manipulation
tasks, comparing with recent strong foundation models such as VC-1 [17].

* QOur study has offered valuable insights into the application of pre-trained models for dexterous
manipulation, by exploring the direct application of a 3D human hand pose estimation model,
originating from the vision community.

2 Related Work

Visual reinforcement learning for dexterous manipulation. Recent research has explored the
use of deep reinforcement learning (RL) for solving dexterous manipulation tasks [7,21,23,26,29].
For example, Rajeswaran et al. [23] investigated the use of vector state information as input to the
RL algorithm. Despite the success, assuming access to the ground-truth state limits its possibility
to be deployed in the real world. RRL [26] finds that ImageNet pre-trained ResNets [10] are
surprisingly effective in achieving dexterity with visual observations. Under the umbrella of visual
RL, MoDem [7] leverages a learned dynamics model to solve the tasks with good utilization of
demonstrations. Furthermore, VRL3 [29] utilizes offline RL to pre-train the visual representations
and the policies in an end-to-end manner. In this work, H-InDex is designed to focus on visual
representations while leaving the policy, training framework, and reward signals unchanged. As a
result, H-InDex offers an orthogonal and complementary approach to prior efforts in this area.

Foundation models for visuo-motor control. Given the diversity of robotic tasks and computational
constraints, there is a growing interest in developing a single visual foundation model that can serve
as a general feature extractor. Such a model would enable the processing of high-dimensional visual
observations into compact vectors, providing a promising approach for efficient and effective control
of a wide range of robotic systems [8, 17-19,26,30,32,33]. Among them, R3M [18] pre-trains a
ResNet-50 on Ego4D [6] dataset and evaluates on several robotic manipulation tasks with imitation
learning. MVP [30] pre-trains vision transformers [4] with Masked AutoEncoder (MAE) [9] on
internet-scale data, achieving strong results on dexterous manipulation tasks. Similarly, a very
recent foundation model VC-1 [17] explores the scaling up of MAE for motor control and achieves
consistently strong results across a wide range of benchmarks. However, it should be noted that VC-1
and R3M only employ IL to solve dexterous manipulation tasks, making it unclear whether these
models are suitable for the setting of reinforcement learning, where agents need to trade off between
exploration and exploitation. GNFactor [33] distills the 2D foundation models into 3D space, but
their agents are limited to address the gripper-based manipulation problems.

Learning dexterity from videos. A growing body of recent research aims to leverage human
manipulation videos for improving visuomotor control tasks [17,20,22,27,28,30]. A line of works
focuses on directly extracting human hand poses from videos and employing RL/IL to train on the
retargeted robot joint positions, such as DexMV [22], Robotic telekinesis [28], VideoDex [27], and
Imitate Video [20]. In contrast to these approaches, our work explores a representation learning
approach for leveraging online human-object interaction videos without explicit pose estimation to
improve dexterity in robotic manipulation, sharing a similar motivation as MVP [30] and VC-1 [17].

3 Preliminaries

Formulation. We model the problem as a Markov Decision Process (MDP) M = (S, A, T, R,~),
where s € S are states, a € A are actions, 7 : S x A — S is a transition function, r € R are rewards,
and 7 € [0,1) is a discount factor. The agent’s goal is to learn a policy 7y that maximizes discounted
cumulative rewards on M, i.e., maxgEr, [ZZO ’ytrt], while using as few interactions with the
environment as possible, referred as sample efficiency.

In this work, we focus on visual RL for dexterous manipulation tasks, where actions are high-
dimensional (a € A3°) and ground-truth states s are generally unknown, approximated by image
observations o € O together with robot proprioceptive sensory information q € Q, i.e., s = (0,q). To
better address the hard exploration problem in high-dimensional control [7,23,26,29], we assume
access to a limited number of expert demonstrations Dexper = { D1, D2, -+, Dn }.

Demo Augmented Policy Gradient (DAPG) [23] is a model-free policy gradient method that
utilizes given demonstrations to augment the policy and trains the policy with natural policy gradient
(NPG) [13]. DAPG mainly consists of two stages:

(1) Pre-training the policy with behavior cloning, which is to solve the following maximum-likelihood
problem:
maxtigmize > Inmg(als). (N

(57a)EDexpen

(2) RL finetuning with the demo augmented loss, which is to add an additional term to the gradient,

gug=), Velnme(a|s)AT(s,a)+ 3, Velnme(als)w(s,a), ()
(s,a)e€Dx (5,a)€Dexpert

original gradient demo augmented gradient

where A™(s,a) is the advantage function, D, represents the dataset obtained by executing policy gy
on the MDP, and w(s, a) is a weighting function.

4 Method

In this work, our goal is to achieve sample efficient visual reinforcement learning agents in dexterous
manipulation tasks by incorporating human hand dexterity into visual representations. To this end,
we propose Hand-Informed visual reinforcement learning for Dexterous manipulation (H-InDex), a
simple yet effective learning framework to address the contact-rich dexterous manipulation problems
effectively in limited interactions. The overview of our method is provided in Figure 2. H-InDex
consists of three stages: 1) a representation pre-training stage where we pre-train the visual rep-
resentations with the 3D human hand pose estimation task, aiming to make visual representations
understand human hand dexterity from diverse natural videos; 2) a representation offline adaptation
stage where we adapt only 0.18% parameters in the pre-trained representation with the self-supervised
keypoint objective with in-domain data; 3) a reinforcement learning stage where the visual repre-
sentation is frozen and we utilize the exponential moving average operation to update the mean and
variance in BatchNorm of the visual representations.

Stage 1: Representation pre-training. We start by pre-training visual representations with monocular
3D human hand pose estimation, which is a well-established human hand understanding task in
the computer vision community with large-scale annotated datasets available. Together with the
datasets, there are a plethora of open-sourced models from which we use an off-the-shelf model
FrankMocap [24]. FrankMocap is a whole-body pose estimation system with the hand module trained

(1) Pre-train representation with 3D human hand pose estimation

g compact [l hand [al
decoder >

repr.

AUOD

. f’é
. —>
. feature

src view map(7x7) reconstrct

AUO0D

.

. tgt view
: Adapt affine transformatlon Adapt runnmg mean and var
human — robot low return —. .. — high return

A 200

uu-oon---ncoo.----------—.-.-.-u.-.-.-.-u-------------o.o o o

(3) Reinforcement learning with compact representation and EMA BatchNorm

fﬁ . $<° compact
—l (N = = action
<] repr.
o
(<)

AUOD
AUOD

Figure 2: The overview of H-InDex. H-InDex consists of three stages: /) representation pre-training,
2) representation offline adaptation, and 3) reinforcement learning.

on 6 diverse hand datasets, totaling 400k samples. We adopt the ResNet-50 [10] feature encoder in
the hand module to extract visual representations.

The use of a pre-trained model from the 3D hand pose estimation task [24] shares the intuition with
recent works on foundation models for motor control [16—19,30]: learning representations from
human manipulation videos. However, the use of the pre-trained hand model offers two distinct
advantages that are not typically found in other approaches: i) the model explicitly predicts the
hand-related information from diverse videos, forcing it to learn the interaction and the movement
of human hands; ii) the model can be borrowed from vision community without any extra cost to
re-train a foundation model.

Stage 2: Representation offline adaptation. In the previous stage, we only pre-train visual repre-
sentations that are suitable for human-centric images, neglecting the morphology and structure gap
between robot hands and human hands. To bridge the gap without losing the information learned in
the pre-training stage, we adopt a self-supervised keypoint detection objective [11, 14, 15] to only
finetune the affine transformations in the BatchNorm layers of the pre-trained model, which occupy
only 0.18% of the entire model parameters. While finetuning only a small portion of parameters, it
empirically outperforms both a frozen model and a fully finetuned model. We hypothesize that this is
because the BatchNorm finetuning bridges the gap and mitigates catastrophic forgetting caused by
finetuning [1].

We now describe the self-supervised keypoint objective. Given a target image I; and a source image
I, sampled from a video, we aim to reconstruct I; with the appearance feature of I and the keypoint
feature of I;. Denote our pre-trained visual representation as hy, the keypoint feature extractor as /Ky,
the appearance feature extractor as F, and the image decoder as G,,. First, we extract a semantic

Hammer Door Pen Pour Place Inside Relocate Objects

Start End

RN BET R T T
“ o 4B

Figure 3: Visualization of our six Kkinds of dexterous manipulation tasks and one sampled
trajectory. We depict both the initial configuration and the goal. Videos of trajectories for all tasks
are available on our website yanjieze.com/H-InDex.

feature map hy(1;) from the target image I; and then get the keypoint feature /Cy, (hg(I;)). At the
same time, we extract the appearance feature F4(I,) from the source image ;. We then try to
reconstruct the target image /; by decoding the concatenated keypoint feature and the appearance
feature as I = G, (Ky (ho(1:)), Fs(Ls)). Our final supervision is the perceptual 1oss [12] Lperceps

Ekeypoint = [-:percep(It7 It,) = HA(It) - A(gw(K:¢ (h'9 (It))a f¢(18))) Hg) (3)
where A is the semantic feature prediction function in [12].

Stage 3: Reinforcement learning. During the reinforcement learning stage, the distribution of
observations is continually changing. For example, in the early learning stage, the observations are
usually random explorations, while at the end of the learning stage, most of the observations are
converged trajectories. Such a property of reinforcement learning requires the internal statistics of
neural networks to move slowly towards the current observation distribution. Therefore, we utilize the
exponential moving average (EMA) operation to dynamically update the statistics (i.e., the running
mean and the running variance) in BatchNorm layers.

Formally, for the input z that has k dimensions, i.e., x = {x(l), e () }, we update the running mean
1 and the running variance (¢(*)? in BatchNorm layers with the following equation,

1D« 1-m) p® +m-E[z®],)

(0?2« (1-m)-(6)2+m-Var[z(], 3)

for¢=1,---, k, where m is the momentum. When m is set to 0, our EMA BatchNorm layers revert

back to the original layers, ensuring that the modification does not have negative impacts at the very

least. Finally, all these three stages collectively contribute to our final method H-InDex. We remain
implementation details in Appendix A.

5 Experiments

In this work, we delve into the application of visual reinforcement learning to address dexterous
manipulation tasks, with a particular emphasis on the visual representation aspect. We evaluate the
effectiveness of our proposed framework, H-InDex, across various tasks and elucidate the significance
of each component in achieving the final results. Of particular importance is the integration of prior
knowledge pertaining to human hand dexterity into our framework.

https://yanjieze.com/H-InDex

Hammer Door 4000 Pen Pour
20000

15000
3500

n

»
@
S
3

15000

30001 Y,
A W 10000

\

4 lrl“

7500+

Episode Returi

2000 ’}‘w 5000
2500+ A "
0 = T : 14 ; r : 1501 r . r | ;i ; ; ;
0.0 05 1.0 15 20 1 2 3 2 4 6 8 0 2 4 6
Place Inside Relocate Large Clamp Relocate Foam Brick Relocate Box
1200 160 150!
250
1400
10004 0 1250
- 2004
E 8004 12001 1000
¢ o™ 1000+
g 600 o 750
B T
@
a
w

P 800+ M
; 500
b’

250

600

2001
M 400

2 4 6 0.0 0.5 1.0 15 20 1 2 3 4 5

2500 Relocate Mustard Bottle Relocate Tomato Soup Can 250 Relocate Potted Meat Can
e
2000
- 2000
5
E 1500
3 15001 o
2 1000
LIQJ- »
1000
f 500 r
T T 500 T T T T T T T T T T T T
4 6 1 2 3 4 5 0 2 4 6 1 2 3
Environment Steps (x10°) Environment Steps (x10°) Environment Steps (x10°) Environment Steps (x10°)

=== H-InDex (ours) — MVP —— R3M — RRL ve-1

Figure 4: Episode return for 12 challenging dexterous manipulation tasks. We compare H-InDex
with four strong visual representations for motor control, i.e., VC-1 [17], MVP [30], R3M [18], and
RRL [26]. Mean of 3 seeds with seed number 0, 1, 2. Shaded area indicates 95% confidence intervals.

5.1 Experiment Setup

We evaluate H-InDex on 12 challenging visual dexterous manipulation tasks from Adroit [23]
and DexMV [22] respectively, including Hammer, Door, Pen, Pour, Place Inside, and Relocate
YCB Objects (7 different objects [3]). Visualization of each task is given in Figure 3 and detailed
descriptions are provided in Appendix B. This selection of tasks is the most extensive compared to
previous works e.g., DAPG (4 tasks) and DexMV (7 tasks), thereby showcasing the robustness and
versatility of H-InDex. The tasks were performed with varying numbers of steps based on their level
of complexity. We mainly report the cumulative rewards to show the speed of task completion. The
dimension of image observations o € O is 3 x 224 x 224 across all methods. We run experiments
on an RTX 3090 GPU; each seed takes roughly 12 hours. Due to the limitation on computation
resources, we choose to run 3 seeds for each group of experiments and consistently use 3 seeds with
seed numbers 0, 1, 2 to ensure reproducibility. We also observe that H-InDex enjoys a slight variance
between seeds, while baselines tend to have a larger variance.

5.2 Main Experiments

To demonstrate the effectiveness of H-InDex, we evaluate diverse recent strong visual representations
for motor control, including (i) VC-1 [17], which trains masked auto-encoders over 5.6M images with
over 10,000 GPU-hours and we use the ViT-B [4] model (86M parameters); (ii) MVP [30], which
also uses masked auto-encoders for pre-training and we use the ViT-S [4] model (22M parameters);
(iii) R3M [18], which pre-trains a ResNet-50 (22M parameters) with time contrastive learning and
video-language alignment (iv) RRL [26], which uses the ResNet-50 pre-trained on the ImageNet
classification task directly. Due to task differences, we normalize the cumulative rewards based on
the highest rewards achieved and present the average scores in Figure 1. We also report the learning
curves in Figure 4. We then detail our observations below.

H-InDex emerges as the dominant representation. Across 12 tasks, H-InDex outperforms the
recent state-of-the-art representation VC-1 by a 16.8% absolute improvement. Furthermore, H-
InDex surpasses RRL, the original state-of-the-art representation in Adroit, by 25.4%. Analyzing
the learning curves, H-InDex demonstrates superior sample efficiency in 10 out of the 12 tasks. In

only two tasks, namely relocate mug and relocate mustard bottle, VC-1 exhibits a slight
advantage over H-InDex.

ConvNets v.s. ViTs. Among representations utilizing the ResNet-50 architecture (i.e., H-InDex,
R3M, RRL), only H-InDex showcases obvious advantages over ViT-based representations. This
suggests that with appropriate domain knowledge, ConvNets can still outperform ViTs. Additionally,
we notice that ConvNets and ViTs excel in different tasks. For instance, in relocate tomato
soup can, VC-1 and MVP achieve returns that are only half of what H-InDex and RRL accomplish.
However, in relocate mug, VC-1 performs well. These observations highlight the task-dependent
nature of the strengths exhibited by ConvNets and ViTs.

5.3 The Effectiveness of 3D Human Hand Prior

The significance of transferring the 3D human hand knowledge into dexterous manipulation
is non-negligible. To demonstrate the utility of such 3D human hand prior, we compare our
vanilla pre-trained representation i.e., the feature extractor from the FrankMocap hand mod-
ule [24] (denoted as FrankMocap Hand) with other 4 representative pre-trained models: (i)
FrankMocap Body, which is the body estimation module from FrankMocap [24], pre-trained
with 3D body pose estimation, (ii) AlphaPose [5], which is a widely-used robust 2D human
pose estimation algorithm, (iii) R3M [18], which is pre-trained with time contrastive learn-
ing [25] and language-video alignment on Ego4D [6], and (iv) RRL [26], which directly uses
the ResNet-50 pre-trained on the ImageNet classification task. All the models use a ResNet-
50 architecture and do not use any adaptation, ensuring the fairness of our comparison. We
also put H-InDex as the best results achieved for comparison. Results are shown in Figure 5.

We now detail our observations below: Hammer
FrankMocap hand v.s. RRL/R3M. Our vanilla represen- 15000 ,,,‘/“""“
tation has significantly outperformed both RRL and R3M € 2l
without the need for any adaptation. © 100001 I
l a ”

FrankMocap hand v.s. 3D/2D body-centric represen- 3 "“' \,!W
tations. Our vanilla 3D hand representation, FrankMocap & 5004 N
Hand, demonstrates superior sample efficiency compared " I"l 4 /
to FrankMocap Body and significantly outperforms Al- M |
phaPose. This confirms our hypothesis that the 3D human 00‘0 05 10 1’5 20
hand prior is more advantageous than both the 3D and Environment Steps (x 106)
2D human body prior. It is worth noting that AlphaPose, = = H-InDex AlphaPose
being a whole-body 2D pose estimation model, is also FrankMocap Hand == R3M

=== FrankMocap Body RRL

capable of estimating 2D hand poses. The fact that our 3D . .
hand prior outperforms the 2D hand prior in this context Figure 5: Co‘mpare; vanilla pre-trained
further supports its effectiveness. We hypothesize this is fepresentations with H-InDex.

because 2D pose estimation does not require deep spatial reasoning compared to 3D pose estimation.

H-InDex v.s. FrankMocap hand. Our vanilla hand representation already surpasses all other
pre-trained ConvNets in performance. However, by applying our adaptation technique, we can further
enhance the sample efficiency of the hand representation, underscoring the significance of adapting
the model with in-domain data in a proper way.

5.4 Ablations

To validate the rationale behind the design choices of H-InDex, we performed a comprehensive set of
ablation experiments.

Effects of each stage. Figure 6a provides insights into the contributions of each stage towards the
overall efficiency of H-InDex. We refer to RRL as w/o Stage 1,2,3. Significantly, Stage 1 exhibits
the most notable enhancement, underscoring the efficacy of human dexterity. Moreover, Stage 2
and Stage 3 also contribute appreciable advancements. In addition, the value of momentum (m) in
Stage 3 has a significant influence, as illustrated in Figure 6b. To determine the optimal value, we
performed a grid search over m € {0,0.1,0.01,0.001}. This analysis highlights the importance of
selecting an appropriate momentum value for achieving optimal performance in Stage 3 of H-InDex.

Hammer Hammer Hammer

15000 15000 15000
g 12500 g 12500 g 12500
& 10000 & 10000 & 10000
[0} [0} ()
g 7500 g 7500 g 75001
@2 = Stage 1 @2 g
& 5000 i & 5000 2 5000
25001 o= Stage 1+2+3 25001 25004 === Stage 2: adapt 0.18% params (ours)
== Ww/o Stage 1,2,3 === Stage 2: adapt 100% params
04 ‘ ; ; 0 ; ‘ ; 0 e =
00 05 10 15 20 00 05 10 15 20 00 05 10 15 20
Environment Steps (x10°) Environment Steps (x10°) Environment Steps (x 10°)

(a) Ablation on the effectiveness of (b) Ablation on momentum m € (c) Compare our minimal adaptation
our three stages. {0,0.1,0.01,0.001}. in Stage 2 and the full adaptation.

Figure 6: Ablation experiments. We ablate each component of H-InDex and show that each
individual part effectively combines to contribute to the overall effectiveness of H-InDex.

Hammer Door Pen Pour
4000
3000 20000
15000
2500
£ 12500 3000 15000
2 2000
& 10000
@ 1500 2000
$ 7500 10000
2 1000
S
(i 5000
5000
500 1000
2500
T e e e
0 - - - 0 : : : 0 : : : : ; 07 r - :
0.0 0.5 1.0 15 2.0 1 2 3 4 1 2 3 4 5 0 2 4 6
Place Inside 1500 Relocate Large Clamp 1600 Relocate Foam Brick 1500 Relocate Box
250
1250 1400 1250
< 200
g 1000 1200 1000
5}
£ 150
= 750 1000 750
B 100 800
2 500 500
. 600
50 250
250
0 T T T 0 T T T o T T T 0 T T T T T
2 4 6 2 4 6 0.0 0.5 1.0 15 2.0 1 2 3 4 5
2500 Relocate Mug 2500 Relocate Mustard Bottle Relocate Tomato Soup Can 2500 Relocate Potted Meat Can
2250 2000
2000 2000
£ 2000
3 1500 1500
o 1750
) 1500
2 1500 1000 1000
&
1250
1000 500 500
1000 M
r T T 500 T T T T T 0 T T T 0 T T
2 4 6 1 2 3 4 5 2 4 6 1 2
Environment Steps (x 106) Environment Steps (x 10°) Environment Steps (x106) Environment Steps (x106)
=== Stage 2: adapt 0.18% params (ours) —— Stage 2: adapt 100% params

Figure 7: Ablation on Stage 2 (adapting 0.18% parameters or adapting 100% parameters).
We observe that simply finetuning the entire visual representation would lead to sub-optimal results.
Instead, H-InDex only adapts the parameters in BatchNorm layers and effectively solves all the tasks.

Figure 9 provides more ablation results on Stage 3, further supporting the necessity of updating the
BatchNorm layers during the training of RL agents.

Adapting 100% parameters v.s. adapting 0.18% parameters in Stage 2. In Stage 2 of H-InDex, we
intentionally chose to adapt only 0.18% of the parameters (the affine transformations in BatchNorm
layers) in the pre-trained representation. This decision was made to address a specific concern, as
depicted in Figure 6¢ and Figure 7. By altering only the setting for Stage 2 while keeping all other
factors constant, we observed that across all tasks, adapting all parameters is not more advantageous.
This phenomenon may be attributed to the fact that freezing and finetuning partial parameters help
mitigate catastrophic forgetting, which is often caused by full finetuning [1]. In Figure 8, we also
show the necessity of our Stage 2. We could conclude from results that correctly finetuning the visual
representation is one key to the stable convergence, and not correctly finetuning the model, such as
finetuning all the parameters, could be even worse than the frozen model.

Robust visual generalization. One concern of our hand representation is its generalization ability,
compared to the vision model pre-trained on large-scale datasets, such as VC-1 [17]. Therefore, we
change the background of the training scene to various novel backgrounds, as shown in Figure 12
(see Appendix C) and evaluate VC-1 and H-InDex on the task relocate potted meat can. The

Hammer

Door

Pour

15000

n

N
&
S
3

10000

Episode Returi

a o~
3 a
s g
3 8

2500+

400!

3000

2000

1000+

20000

15000

10000

5000

0.0

05 10 15
Place Inside

i 2 3
Relocate Foam Brick

T2 3 4 5
Relocate Box

.

2 4 6
Relocate Mug

Episode Return

1600

14004

12004

1000

800

6001

4004

1500

1250+

1000

7504

500

2504

2501

2250
2000
1750
1500
1250

1000

2 4 6
Environment Steps (x 106)

0.0

05 10 15 20
Environment Steps (x10°)

e Stage 2: adapt 0.18% params (ours)

T2 3 4 5
Environment Steps (x10°)

—— w/o. Stage 2

2 4 6
Environment Steps (x 10°)

Figure 8: Ablation on Stage 2 (with or without adaptation). We also conduct more experiments
to show the necessity of Stage 2. We could observe a consistent improvement across these tasks by

applying Stage 2, which only adapts 0.18% parameters of the visual representation.

Hammer

Place Inside

Relocate Large Clamp

Relocate Foam Brick

250

200

150

100+

501

04

1500

12504

1000

7501

500

2501

04

1400

1200

1000

800

600

400

20

Relocate Box

6

Relocate Mustard Bottle

2 4 6

0.0

Relocate Tomato Soup Can

1250

Episode Return
o N o
g & 8
s & 8

N
o
3

2500

20004

1500

10004

2000+

15001

1000

500

500

1

2

3

2

5 2

e Stage 3: m>0

—— Stage 3: m=0

Figure 9: Ablation on Stage 3 (momentum m > 0 or m = 0). We observe that our Stage 3
contributes greatly to some specific tasks, such as relocate mustard bottle, and for some tasks
like hammer, tuning this parameter only results in a slightly faster convergence. For tasks not shown
here, we all use m = 0, since H-InDex with Stage 1 and Stage 2 has been strong enough.

results given in Table 3 (see Appendix C) show that H-InDex could handle the changed background
better than VC-1. We also see the consistent performance drop across all scenes, emphasizing the
importance of visual generalization.

Visualization of self-supervised keypoint detection in Stage 2. In Stage 2, a self-supervised
keypoint detection objective is employed to fine-tune a minimal percentage (0.18%) of parameters in
the pre-trained model. The visualization results, as shown in Figure 10, demonstrate the successful
detection of keypoints. This observation highlights the pre-trained model’s capability to effectively
allocate attention to the hand and objects depicted in the images, even with the adaptation of only a
small subset of parameters.

Visualization of affine transformations adaptation in Stage 2. The significance of Stage 2 in
H-InDex is evident from Figure 6a. To gain deeper insights into this phenomenon, we visualize the
distribution of the adapted parameters, specifically the affine transformations in BatchNorm layers.
We accomplish this by fitting a Gaussian distribution. Figure 11 presents the visualization results,
highlighting an interesting trend. For the shallow layers, the distributions of the adapted models
closely resemble those of the pre-trained models. However, as we move deeper into the layers,
noticeable differences emerge. We attribute this disparity to the fact that dissimilarities between
human hands and robot hands extend beyond low-level features like color and texture. Instead,

Pen Pour Relocate Objects

Figure 10: Visualization of our self-supervised keypoint detection. We select four tasks here and
mark the detected keypoints on images with *red stars. We observe that these keypoints consistently
mark the dynamic regions of images. Full videos are available on yanjieze.com/H-InDex.

Layerl BN1 Layerl BN2 Layerl BN3 Layer2 BN1 Layer2 BN2 Layer2 BN3
—— Human 8 4
3
2 | — Robot | 4 3 75
2 \ 6 3
@ 2 5.0
g 2 4 2
] 2
g1 / 1 2 25 1
o= - 0 0| 0 0.0 0
0.0 0.5 0.0 0.2 0.4 0.00 0.25 0.50 .0 0.2 0.4 0.1 0.2 0.3 0.00 0.25
10 Layer3 BN1 Layer3 BN2 Layer3 BN3 Layer4 BN1 Layer4 BN2 Layer4 BN3
.0 6
6
75 8 10
) 10
6 4 4
5.0
4 5
2 5 2
25 2
0.0! 0 0 0 0 0
0.2 0.4 0.0 0.2 0.0 0.2 0.1 0.2 0.3 0.1 0.2 0.3 0.2 0.4

Figure 11: Visualization of affine transformation adaptation in Stage 2. We fit a Gaussian
distribution for parameters of affine transformations. We omit the X-axis and Y-axis here for simplicity,
Human represents the original pre-trained model and robot represents the adapted representation in
different tasks. It is observed that deep layers are subjected to large distribution shifts.

they encompass higher-level features such as dynamics and structure [2,31,34]. This observation
underscores the importance of our adaptation approach, as it effectively addresses the variations in
both low-level and high-level features, facilitating the success of H-InDex.

6 Conclusion

In this study, we introduce H-InDex, a visual reinforcement learning framework that leverages hand-
informed visual representations to tackle complex dexterous manipulation tasks effectively. H-InDex
outperforms other recent state-of-the-art representations in a range of 12 tasks, including six kinds
of manipulation skills. The effectiveness of H-InDex can be attributed to its three-stage approach,
wherein Stage 1 incorporates a pre-trained 3D human hand representation and Stage 2 and Stage 3
focus on careful in-domain adaptation with only 0.36% parameters updated. These stages collectively
contribute to the successful preservation and utilization of the human hand prior knowledge.

It is also important to acknowledge some limitations of our work. We did not investigate the
generalization capabilities of H-InDex, particularly in scenarios involving the grasping of novel
objects. Our future work aims to address this limitation and enhance H-InDex’s generalization
capabilities for real-world applications. In addition, we find that our Stage 3 is surprisingly effective
in some specific tasks like relocate mustard bottle, while we have not given a theoretical
understanding of such phenomena. We consider this problem as a possible future direction.

Acknowledgment

This work is supported by National Key R&D Program of China (2022ZD0161700).

10

https://yanjieze.com/H-InDex

References

[1] Craig Atkinson, Brendan McCane, Lech Szymanski, and Anthony Robins. Pseudo-rehearsal:
Achieving deep reinforcement learning without catastrophic forgetting. Neurocomputing, 2021.
4,8

[2] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissec-
tion: Quantifying interpretability of deep visual representations. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 6541-6549, 2017. 10

[3] Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srinivasa, Pieter Abbeel, and Aaron M
Dollar. Benchmarking in manipulation research: The ycb object and model set and benchmark-
ing protocols. arXiv, 2015. 6, 14

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv, 2020. 2, 6

[5] Hao-Shu Fang, Jiefeng Li, Hongyang Tang, Chao Xu, Haoyi Zhu, Yuliang Xiu, Yong-Lu Li,
and Cewu Lu. Alphapose: Whole-body regional multi-person pose estimation and tracking in
real-time. PAMI, 2022. 7

[6] Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit
Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world
in 3,000 hours of egocentric video. In CVPR, 2022. 2,7

[7] Nicklas Hansen, Yixin Lin, Hao Su, Xiaolong Wang, Vikash Kumar, and Aravind Rajeswaran.
Modem: Accelerating visual model-based reinforcement learning with demonstrations. /CLR,
2023. 2,3

[8] Nicklas Hansen, Zhecheng Yuan, Yanjie Ze, Tongzhou Mu, Aravind Rajeswaran, Hao Su,
Huazhe Xu, and Xiaolong Wang. On pre-training for visuo-motor control: Revisiting a learning-
from-scratch baseline. ICML, 2023. 2

[9] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. Masked
autoencoders are scalable vision learners. In CVPR, 2022. 2

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016. 2,4, 13

[11] Tomas Jakab, Ankush Gupta, Hakan Bilen, and Andrea Vedaldi. Unsupervised learning of
object landmarks through conditional image generation. NeurIPS, 2018. 4, 13

[12] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer
and super-resolution. In ECCV, 2016. 5

[13] Sham M Kakade. A natural policy gradient. NeurIPS, 2001. 3

[14] Tejas D Kulkarni, Ankush Gupta, Catalin Ionescu, Sebastian Borgeaud, Malcolm Reynolds,
Andrew Zisserman, and Volodymyr Mnih. Unsupervised learning of object keypoints for
perception and control. NeurIPS, 2019. 4, 13

[15] Yizhuo Li, Miao Hao, Zonglin Di, Nitesh Bharadwaj Gundavarapu, and Xiaolong Wang.
Test-time personalization with a transformer for human pose estimation. NeurIPS, 2021. 4, 13

[16] Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and
Amy Zhang. Vip: Towards universal visual reward and representation via value-implicit
pre-training. ICLR, 2023. 4

[17] Arjun Majumdar, Karmesh Yadav, Sergio Arnaud, Yecheng Jason Ma, Claire Chen, Sneha
Silwal, Aryan Jain, Vincent-Pierre Berges, Pieter Abbeel, Jitendra Malik, Dhruv Batra, Yixin
Lin, Oleksandr Maksymets, Aravind Rajeswaran, and Franziska Meier. Where are we in the
search for an artificial visual cortex for embodied intelligence? 2023. 1, 2, 3, 4, 6, 8, 14, 15, 16

[18] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A
universal visual representation for robot manipulation. arXiv, 2022. 1,2,4,6,7, 15

[19] Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Gupta. The unsurpris-
ing effectiveness of pre-trained vision models for control. ICML, 2022. 2, 4

[20] Austin Patel, Andrew Wang, Ilija Radosavovic, and Jitendra Malik. Learning to imitate object
interactions from internet videos. arXiv, 2022. 3

11

[21] Ivaylo Popov, Nicolas Heess, Timothy Lillicrap, Roland Hafner, Gabriel Barth-Maron, Mate;j
Vecerik, Thomas Lampe, Yuval Tassa, Tom Erez, and Martin Riedmiller. Data-efficient deep
reinforcement learning for dexterous manipulation. arXiv, 2017. 2

[22] Yuzhe Qin, Yueh-Hua Wu, Shaowei Liu, Hanwen Jiang, Ruihan Yang, Yang Fu, and Xiaolong
Wang. Dexmyv: Imitation learning for dexterous manipulation from human videos. In ECCV,
2022. 2, 3,6, 13

[23] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. RSS, 2018. 2, 3, 6, 13

[24] Yu Rong, Takaaki Shiratori, and Hanbyul Joo. Frankmocap: Fast monocular 3d hand and body
motion capture by regression and integration. arXiv, 2020. 1, 3, 4,7

[25] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, Sergey
Levine, and Google Brain. Time-contrastive networks: Self-supervised learning from video. In
ICRA, 2018. 2,7

[26] Rutav Shah and Vikash Kumar. Rrl: Resnet as representation for reinforcement learning. ICML,
2021. 1,2,3,6,7, 13,15, 16

[27] Kenneth Shaw, Shikhar Bahl, and Deepak Pathak. Videodex: Learning dexterity from internet
videos. CoRL, 2022. 3

[28] Aravind Sivakumar, Kenneth Shaw, and Deepak Pathak. Robotic telekinesis: learning a robotic
hand imitator by watching humans on youtube. RSS, 2022. 3

[29] Che Wang, Xufang Luo, Keith Ross, and Dongsheng Li. Vrl3: A data-driven framework for
visual deep reinforcement learning. arXiv, 2022. 2, 3

[30] Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked visual pre-training for
motor control. arXiv, 2022. 1,2,3,4,6, 15

[31] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. Understanding
neural networks through deep visualization. arXiv preprint arXiv:1506.06579, 2015. 10

[32] Yanjie Ze, Nicklas Hansen, Yinbo Chen, Mohit Jain, and Xiaolong Wang. Visual reinforcement
learning with self-supervised 3d representations. RA-L, 2023. 2

[33] Yanjie Ze, Ge Yan, Yueh-Hua Wu, Annabella Macaluso, Yuying Ge, Jianglong Ye, Nicklas
Hansen, Li Erran Li, and Xiaolong Wang. Gnfactor: Multi-task real robot learning with
generalizable neural feature fields. CoRL, 2023. 2

[34] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
Computer Vision—ECCV 2014: 13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part I 13, pages 818-833. Springer, 2014. 10

12

Appendix

A Implementation Details

Codebase. Our major codebase is built upon the official implementation of RRL [26],
which is publicly available on https://github.com/facebookresearch/RRL and includes
the Adroit manipulation tasks [23]. The DexMV [22] tasks are from the official code
https://github.com/yzqin/dexmv-sim. All the visual representations in our work are
also available online, including RRL (pre-trained ResNet-50, provided in PyTorch officially),
R3M (https://github.com/facebookresearch/r3m), MVP (https://github.com/ir413/
mvp), VC-1 (https://github.com/facebookresearch/eai-vc), and FrankMocap (https:
//github.com/facebookresearch/frankmocap). This ensures the good reproducibility of our
work. We are also committed to releasing the code.

Network architecture for H-InDex. The architecture employed by H-InDex is based on ResNet-
50 [10], referred to as hg. In the initial stage (Stage 1), hy takes as input a 224 x 224 RGB image and
processes it to generate a compact vector of size 2048. In Stage 2, we modify hy by removing the
average pooling layer in the final layer, resulting in the image being decoded into a feature map with
dimensions 7 x 7 x 2048. Moving on to Stage 3, hy once again produces a compact vector of size
2048, while simultaneously updating the statistics within the BatchNorm layers using the exponential
moving average operation.

Implementation details for Stage 2. Our implementation strictly follows the previous work that also
uses the self-supervised keypoint detection as objective [11, 14, 15]. We give a PyTorch-style overview
of the learning pipeline below and refer to [11] for more implementation details. Notably, the visual
representation hg (24M) contains the majority of parameters, while all other modules in the pipeline
maintain a parameter count ranging from 1M to 3M. We use 50 demonstration videos as training data
for each task and train 100k iterations to ensure convergence with learning rate 1 x 107%. One of our
core contributions is to only adapt the parameters in BatchNorm layers in hy, and we emphasize that
the learning objective is not our contribution, as it has been well explored in [11, 14, 15].

for _ in range(num_iters):
sample data
source_view, target_view = next(data_iter) # 3x224x224

self-supervised keypoint-based reconstruction

h_theta is our visual representation

feature_map = h_theta(target_view) # -> 7x7x2048

keypoint_feat = keypoint_encoder(feature_map) # -> 30x56x56

keypoint_feat = up_sampler(keypoint_feature) # -> 256x28x28

apperance_feat = apperance_encoder(source_view) # -> 256x28x28

target_view_recon = image_decoder([keypoint_feat,apperance_feat]) # -> 3x224x224

compute loss
loss = perceptual_loss(target_view, target_view_recon)

compute gradient and update model
optimizer.zero_grad()
loss.backward()

optimizer.step()

B Task Descriptions

In this section, we briefly introduce our tasks. We use an Adroit dexterous hand for manipulation
tasks. The task design follows Adroit [23] and DexMV [22]. Visualizations of task trajectories are
available at h-index-rl.github.io.

Hammer (Adroit). It requires the robot hand to pick up the hammer on the table and use the hammer
to hit the nail.

Door (Adroit). It requires the robot hand to open the door on the table.

13

https://github.com/facebookresearch/RRL
https://github.com/yzqin/dexmv-sim
https://github.com/facebookresearch/r3m
https://github.com/ir413/mvp
https://github.com/ir413/mvp
https://github.com/facebookresearch/eai-vc
https://github.com/facebookresearch/frankmocap
https://github.com/facebookresearch/frankmocap
https://h-index-rl.github.io/

Pen (Adroit). It requires the robot hand to orient the pen to the target orientation.

Pour (DexMYV). It requires the robot hand to reach the mug and pour the particles inside into a
container.

Place inside (DexMYV). It requires the robot hand to place the object on the table into the mug.

Relocate YCB objects [3] (DexMYV). It requires the robot hand to pick up the object on the table to
the target location. The objects in our tasks include foam brick, box, mug, mustard bottle, tomato
soup can, and potted meat can.

C Visual Generalization

One concern of our hand representation is its generalization ability, compared to the vision model
pre-trained on large-scale datasets, such as VC-1 [17]. Therefore, we change the background of the
training scene to various novel backgrounds, as shown in Figure 12 and evaluate VC-1 and H-InDex
on the task relocate potted meat can. The results given in Table 3 show that H-InDex could
handle the changed background better than VC-1. We also see the consistent performance drop across
all scenes, emphasizing the importance of visual generalization.

%,

LN

(1]

Figure 12: Various backgrounds for visual generalization. The first image shows the training scene
and the rest 9 images show the novel scene.

Table 1: Scores for generalization to unseen backgrounds on relocate potted meat can task.
We evaluate VC-1 and H-InDex with 20 episodes for each seed.

Scene ID /Method | VC-1[17] H-InDex
Origin 2391.74:602.83 2240.37+85.45
1 896.28+1006.55 915.95+922.65
2 603.26+920.48 771.28+:793.51
3 451.36+839.45 578.42+764.09
4 360.21+772.64 472.66+715.03
5 300.02+718.05 393.32+676.41
6 256.80+673.16 340.07+639.68
7 224.21+635.56 298.20+608.54
8 226.59+610.58 265.82+581.03
9 214.30+581.76 239.60+556.80
Average 392.56 475.04

D Main Experiments (ConvNets Only)

In our primary experimental analysis, we conduct a comprehensive comparison of five visual repre-
sentations, with three of them being ConvNets, including our method. Figure 13 presents an isolated

14

demonstration of the comparison among the ConvNets. Notably, our method H-InDex exhibits
superior performance in comparison to the other ConvNets.

Hammer

Door

Pen

Pour

< 12500

Episode Returr
~
a
8
3

3000

2500

2000

1500

1000

500

4000

3500

3000

2500

2000

I

20000

15000

10000

5000

0.5 1.0

Place Inside

15

™

1 2 3 4
Relocate Large Clamp

1500

o

2 4 6
Relocate Foam Brick

o

2 4 6
Relocate Box

Episode Return

1200

1000

800

600

400

200

fo]

1600

1400

1200

1000

800

600

400

™

1500

1250

1000

750

500

250

2500

2 4 6
Relocate Mug

2 4 6
Relocate Mustard Bottle

o

.0 05 1.0 15 2,

Relocate Tomato Soup Can

2500

1 2 3 4 5
Relocate Potted Meat Can

2250

2000

1750

1500

Episode Return

1250

1000
0

2500

2000

1500

1000

2000

1500

1000

500

A

2000

1500

1000

500

=

2 4 6
Environment Steps (x 10)

500

1 2 3 4 5
Environment Steps (x106)
= H-InDex (ours)

0

—— R3M

0 2 4 6
Environment Steps (x10°)
—— RRL

1 2 3
Environment Steps (x10°)

Figure 13: Episode return for 12 challenging dexterous manipulation tasks. Mean of 3 seeds with
seed number 0, 1, 2. Shaded area indicates 95% Cls.

E Success Rates in Main Experiments

We present the success rates of our six task categories as in Table 3. Regarding the hammer task, it is
evident that both H-InDex and VC-1 exhibit success rates near 100%. However, a notable disparity
arises when considering episode returns, indicating the varying degrees of task execution proficiency
even among successful agents.

Table 2: Success rates for main experiments. Highest success rates for each task are marked with
bold fonts. The success rates only reflect whether the task is finished but do not reflect how fast the
task is finished. H-InDex still dominates other methods.

Task name / Method \ RRL [26] R3M[18] MVP[30] VC-1[17] H-InDex
Hammer (2M) 89+15 24121 8311 9743 1000
Door (4M) 9221 99.2 100-0 9922 965
Pen (8M) T8+4 586 80+4 812 902
Pour (8M) 38433 0+0 2338 67+29 992
Place inside (6M) 70+50 1:2 992 9814 9716
Relocate large clamp (8M) 33431 0+0 47+27 23121 50+45
Relocate foam brick (2M) 87+11 42137 48146 44149 86+10
Relocate box (6M) 9445 45124 48150 494150 85114
Relocate mug (2M) 100=0 822 54151 T4+44 100=0
Relocate mustard bottle (2M) 1000 8248 1000 9922 9922
Relocate tomato soup can (2M) 9743 18431 6+10 30+52 99.2
Relocate potted meat can (2M) 976 56+15 6948 88+21 9415
Average 81.3 42.3 63.1 70.8 91.3

15

Table 3: Success rates and scores for generalization to unseen backgrounds on relocate
potted meat can task. We evaluate VC-1 and H-InDex with 20 episodes for each seed.

Scene ID / Method \ VC-1 [17] (success rate) VC-1 [17] (score) \ H-InDex (success rate) H-InDex (score)

1 38443 896.28+1006.55 48448 915.95+922.65
2 26+39 603.26+920.48 32+46 771.28+793.51
3 19436 451.36+839.45 24142 578.42+764.09
4 15433 360.21+772.64 19439 472.66+715.03
5 13431 300.02+718.05 16+36 393.32+676.41
6 11429 256.80+673.16 14434 340.07+639.68
7 10427 224.21+635.56 12432 298.20+608.54
8 1026 226.59+610.58 11430 265.82+581.03
9 9125 214.30+581.76 10+29 239.60+556.80
Average 16.8 392.56 20.7 475.04

F Hyperparameters

We categorize hyperparameters into task-specific ones (Table 4) and task-agnostic ones (Table 5),
Across all baselines, all the hyperparameters are shared except the momentum m, which is only used
in our algorithm. All the hyperparameters for policy learning are the same as RRL [26]. This ensures
the comparison between different representations is fair.

Our exploration of the momentum m in Table 4 has been limited to a specific set of values, namely
{0,0.1,0.01,0.001}, through the use of a grid search technique, due to the limitation on computation
resources. It is observed that carefully tuning m could take more benefits.

Table 4: Task-specific hyperparameters.

Task name / Variable \ Momentum m Demonstrations Training steps (M) Episode length
Hammer 0.1 25 2 200
Door 0.0 25 4 200
Pen 0.0 25 6 100
Pour 0.0 50 8 200
Place inside 0.001 50 8 200
Relocate large clamp 0.01 50 8 100
Relocate foam brick 0.01 25 2 100
Relocate box 0.001 25 6 100
Relocate mug 0.0 25 8 100
Relocate mustard bottle 0.001 25 6 100
Relocate tomato soup can 0.01 25 8 100
Relocate potted meat can 0.0 25 4 100

Table 5: Task-agnostic hyperparameters.

Variable Value
Dimension of image observations 224 x 224 x 3
Dimension of robot states 30
Dimension of actions 30
Hidden dimensions of policy 7 256, 256
BC learning rate 0.001
BC epochs 5
BC batch size 32
RL learning rate 0.001
Number of trajectories for one step 100
VF batch size 64
VF epochs 2
RL step size 0.05
RL gamma 0.995
RL gae 0.97

16

