
Appendix367

A Implementation Details368

Codebase. Our major codebase is built upon the official implementation of RRL [25],369

which is publicly available on https://github.com/facebookresearch/RRL and includes370

the Adroit manipulation tasks [22]. The DexMV [21] tasks are from the official code371

https://github.com/yzqin/dexmv-sim. All the visual representations in our work are372

also available online, including RRL (pre-trained ResNet-50, provided in PyTorch officially),373

R3M (https://github.com/facebookresearch/r3m), MVP (https://github.com/ir413/374

mvp), VC-1 (https://github.com/facebookresearch/eai-vc), and FrankMocap (https:375

//github.com/facebookresearch/frankmocap). This ensures the good reproducibility of our376

work. We are also committed to releasing the code.377

Network architecture for H-InDex. The architecture employed by H-InDex is based on ResNet-378

50 [9], referred to as hθ. In the initial stage (Stage 1), hθ takes as input a 224 × 224 RGB image and379

processes it to generate a compact vector of size 2048. In Stage 2, we modify hθ by removing the380

average pooling layer in the final layer, resulting in the image being decoded into a feature map with381

dimensions 7 × 7 × 2048. Moving on to Stage 3, hθ once again produces a compact vector of size382

2048, while simultaneously updating the statistics within the BatchNorm layers using the exponential383

moving average operation.384

Implementation details for Stage 2. Our implementation strictly follows the previous work that also385

uses the self-supervised keypoint detection as objective [10,13,14]. We give a PyTorch-style overview386

of the learning pipeline below and refer to [10] for more implementation details. Notably, the visual387

representation hθ (24M) contains the majority of parameters, while all other modules in the pipeline388

maintain a parameter count ranging from 1M to 3M. We use 50 demonstration videos as training data389

for each task and train 100k iterations to ensure convergence with learning rate 1 × 10−4. One of our390

core contributions is to only adapt the parameters in BatchNorm layers in hθ, and we emphasize that391

the learning objective is not our contribution, as it has been well explored in [10, 13, 14].392

for _ in range(num_iters):393

# sample data394

source_view, target_view = next(data_iter) # 3x224x224395

396

# self-supervised keypoint-based reconstruction397

# h_theta is our visual representation398

feature_map = h_theta(target_view) # -> 7x7x2048399

keypoint_feat = keypoint_encoder(feature_map) # -> 30x56x56400

keypoint_feat = up_sampler(keypoint_feature) # -> 256x28x28401

apperance_feat = apperance_encoder(source_view) # -> 256x28x28402

target_view_recon = image_decoder([keypoint_feat,apperance_feat]) # -> 3x224x224403

404

# compute loss405

loss = perceptual_loss(target_view, target_view_recon)406

407

# compute gradient and update model408

optimizer.zero_grad()409

loss.backward()410

optimizer.step()411

B Task Descriptions412

In this section, we briefly introduce our tasks. We use an Adroit dexterous hand for manipulation413

tasks. The task design follows Adroit [22] and DexMV [21]. Visualizations of task trajectories are414

available at h-index-rl.github.io.415

Hammer (Adroit). It requires the robot hand to pick up the hammer on the table and use the hammer416

to hit the nail.417
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Figure 9: Episode return for 12 challenging dexterous manipulation tasks. Mean of 3 seeds with seed
number 0,1,2. Shaded area indicates 95% CIs.

Door (Adroit). It requires the robot hand to open the door on the table.418

Pen (Adroit). It requires the robot hand to orient the pen to the target orientation.419

Pour (DexMV). It requires the robot hand to reach the mug and pour the particles inside into a420

container.421

Place inside (DexMV). It requires the robot hand to place the object on the table into the mug.422

Relocate YCB objects [2] (DexMV). It requires the robot hand to pick up the object on the table to423

the target location. The objects in our tasks include foam brick, box, mug, mustard bottle, tomato424

soup can, and potted meat can.425

C Main Experiments (ConvNets Only)426

In our primary experimental analysis, we conduct a comprehensive comparison of five visual repre-427

sentations, with three of them being ConvNets, including our method. Figure 9 presents an isolated428

demonstration of the comparison among the ConvNets. Notably, our method H-InDex exhibits429

superior performance in comparison to the other ConvNets.430

D Success Rates in Main Experiments431

We present the success rates of our six task categories as in Table 1. Regarding the hammer task, it is432

evident that both H-InDex and VC-1 exhibit success rates near 100%. However, a notable disparity433

arises when considering episode returns, indicating the varying degrees of task execution proficiency434

even among successful agents.435
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Table 1: Success rates for main experiments. Highest success rates for each task are marked with
bold fonts.

Task name / Method RRL [25] R3M [17] MVP [29] VC-1 [16] H-InDex

Hammer 89±15 24±21 83±11 97±3 100±0
Door 92±1 99±2 100±0 99±2 96±5
Pen 78±4 58±6 80±4 81±2 90±2
Pour 38±33 0±0 23±38 67±29 99±2

Place inside 68±48 2±3 97±4 99±1 99±3
Relocate box 85±14 45±24 48±50 49±50 94±5

E Hyperparameters436

We categorize hyperparameters into task-specific ones (Table 2) and task-agnostic ones (Table 3),437

Across all baselines, all the hyperparameters are shared except the momentum m, which is only used438

in our algorithm. All the hyperparameters for policy learning are the same as RRL [25]. This ensures439

the comparison between different representations is fair.440

Our exploration of the momentum m in Table 2 has been limited to a specific set of values, namely441

{0,0.1,0.01,0.001}, through the use of a grid search technique, due to the limitation on computation442

resources. It is observed that carefully tuning m could take more benefits.443

Table 2: Task-specific hyperparameters.
Task name / Variable Momentum m Demonstrations Training steps (M) Episode length

Hammer 0.1 25 2 200
Door 0.0 25 4 200
Pen 0.0 25 6 100
Pour 0.0 50 8 200

Place inside 0.001 50 8 200
Relocate large clamp 0.01 50 8 100
Relocate foam brick 0.01 25 2 100

Relocate box 0.001 25 6 100
Relocate mug 0.0 25 8 100

Relocate mustard bottle 0.001 25 6 100
Relocate tomato soup can 0.01 25 8 100
Relocate potted meat can 0.0 25 4 100

Table 3: Task-agnostic hyperparameters.

Variable Value

Dimension of image observations 224 × 224 × 3
Dimension of robot states 30

Dimension of actions 30
Hidden dimensions of policy π 256,256

BC learning rate 0.001
BC epochs 5

BC batch size 32
RL learning rate 0.001

Number of trajectories for one step 100
VF batch size 64

VF epochs 2
RL step size 0.05
RL gamma 0.995

RL gae 0.97
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