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Methods

1 Training Settings

The hyperparameters used for training the Allegro [1] model are detailed below.

• Model Architecture (tensor size: 64)
– Two-body latent MLP: Dimensions [64, 128, 256], SiLU nonlinearity.
– Later latent MLP: Dimensions [256, 256, 256], SiLU nonlinearity.
– Embedding MLP: Linear projection.
– Final edge energy MLP: Single hidden layer (dimension 128), no nonlinearity.

• Initialization: Uniform distribution with unit variance for MLPs.

• Cutoff: Radial cutoff of 5.2 Å.

• Optimizer: Adam with learning rate of 1e-3.

• Batch Size: The batch size was varied between 8 and 128, adjusted according to the size of
the training dataset.

• Weight Decay: Default weight decay was used (value of 0 for ‘torch.optim.Adam‘).

• Epochs: Training was performed until convergence was reached, determined by the learning
rate scheduler monitoring the validation loss. A minimum of 100 epochs was executed for
all training runs, including those using the largest SPICE 2 dataset.
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• Loss Function: Combined Root Mean Square Error (RMSE) of per-atom energy, forces,
and stress.

• Loss Weights: Energy : Force : Stress = 8 : 1 : 1.

2 Dataset

The molecule targeted dataset utilizes SPICE version 2.0 [2]. This significantly expanded dataset
focuses on drug-like small molecules, peptides, and solvated amino acids relevant for bio-molecular
simulations, now containing approximately 2 million conformations across nearly 114,000 molecules.
Notably, version 2.0 extends the chemical space to include Boron (B) and Silicon (Si) containing
molecules, alongside improved sampling of non-covalent interactions, while retaining forces and
multipole moments calculated at the ωB97M-D3(BJ)/def2-TZVPPD level of theory. Crucially, both
dataset types underwent an energy offset alignment pre-processing step to ensure direct energetic
comparability despite their different origins and calculation levels. Further details regarding the
composition provided in Table 1.

For broader generalization studies, particularly to assess the emergence of physical scales from non-
molecular data, we also used data from MatPES [3], specifically its r²SCAN functional calculations;
MatPES also contributed to our mixed-dataset training. For direct analysis of reactive properties and
detailed bond characteristics within stable versus transition states, we further used structures from the
Transition1x (T1x) dataset [4], for which energies were recomputed (as detailed below) to align with
the SPICE level of theory. The T1x dataset was mainly used as a benchmark test set for evaluating
activation barriers and reaction energies.

For T1x dataset structures (reactants, transition states (TS), and products), we recalculated energies
and forces using Psi4 [5] at the SPICE dataset’s theory level (ωB97M-D3(BJ)/def2-TZVPPD).

Table 1: Training datasets, MPtrj, MatPES, OFF (SPICE 1), and SPICE 2 are datasets with structures
generated using PBE, r²SCAN, and ωB97M-D3(BJ) methods respectively. Ndata is the total number
of structures.

Name SPICE 2 OFF MatPES MPtrj Ndata

(SPICE 1)

Method ωB97M-D3(BJ) ← r²SCAN PBE –
Num. of structure 2.0 M 1.0 M 0.4 M 1.6 M –

SPICE 2[2] ✓ 2.0 M
MatPES[3] ✓ 0.4 M

Hybrid ✓ ✓ 2.4 M

Allegro-FM[6] ✓ ✓ 2.6 M

Table 2: Analysis datasets
Type Abbr. Ndata

Transition1x[4] All T1x 30 k
Reactant T1x:r 10 k

Transition state T1x:ts 10 k
Product T1x:pr 10 k

3 BDE evaluation

We inferred the multiplicity for each bond from the GAFF types of the two atoms forming it. Any
unclear automated assignments were manually corrected, and we added 0.5 to the multiplicity of
aromatic ring bonds for our analysis. We then used these bond multiplicities, along with the element
types of the atoms, to categorize bonds for our "Type-Decomposition" in the E3D analysis. This
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categorization was particularly used when calculating and comparing BDE metrics like ∆BDE and
σBDE.

Table 3 lists these typical BDEs for a variety of common chemical bond types, along with their stan-
dard bond orders and the primary sources for these energy values. These reference BDEs, primarily
from experimental measurements with some established theoretical values where experiments are
unavailable (details in [7, 8]), are fundamental, long-recognized measures of chemical bond strength.

Table 3: Literature BDEs referenced from Lange’s Handbook[7]a and theoretical calculations[8]b.
Bond Bond order Energy (eV) Ref. structure

C – H 1 4.27a H – CH2CH3
N – H 1 4.14a H – (NCH3)2
O – H 1 4.55a H – OCH3
C – C 1 3.83a H3C – CH3

1.5 5.22b benzene
2 5.97b – (HC) –– (CH) –
3 7.71b HC ––– CH

C – N 1 3.45a (CH3) – NH2
1.5 4.93a (interpolated)
2 6.41a (CH2) –– NH
3 8.02a C ––– N

C – O 1 3.93a HO – CH3
2 7.63a H2C –– O

N – O 1 2.18a HO – NCH3
1.5 3.59a (interpolated)
2 5.01a HN –– O

N – N 1 2.22a H2N – NHC6H5
1.5 3.48a (interpolated)
2 4.75a HN –– NH

2.5 7.30a (interpolated)
3 9.84a N ––– N

4 Cross-Domain Validation

Table 4: Cross-domain validation: RMSE performance on Si-O-H test subsets
RMSE on MatPES RMSE on SPICE 2

Trained Dataset E FSi / FO P E FSi / FO

(meV/atom) (meV/Å) (meV/Å3) (meV/atom) (meV/Å)

MatPES 71 293 / 339 19 104 1080 / 327
SPICE 2 579 1326 / 1022 37 22 149 / 67
Hybrid 50 585 / 394 13 6 107 / 59

Beyond our main work on carbon-based bonds, we also explored how accurately our models predict
energies for chemical systems that are uncommon in the training data, particularly those involving
Si – O – H bonds. We conducted these evaluations using general test sets split from our training data,
which were different from the specific t1x reaction systems we focused on previously, as shown
in Table 4. Usually, models trained only on a single type of dataset are expected to perform better
when the test data is similar to their training data. Remarkably, however, our study showed that
models trained with the hybrid dataset performed better in certain aspects—like predicting energies
for both the MatPES and SPICE datasets and forces for the SPICE dataset—than models trained
exclusively on either MatPES or SPICE data alone. This key finding strongly suggests that the
hybrid dataset learned to generalize more effectively by being exposed to a wider range of chemical
information. This improved generalization, in turn, allowed it to accurately understand and represent
even infrequently seen chemical structures, such as Si – O – H bonds.
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