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Figure 1: Schematic illustration of our federated learning algorithm using single images. Our al-
gorithm works on the principle of generating a common distillation dataset from only one shared
single image using deterministic augmentations. To this end, our method dynamically selects the
best patches for the training of the global model in the next round using knowledge distillation.

ABSTRACT

Federated Learning (FL) enables multiple machines to collaboratively train a ma-
chine learning model without sharing of private training data. Yet, especially for
heterogeneous models, a key bottleneck remains the transfer of knowledge gained
from each client model with the server. One popular method, FedDF, uses dis-
tillation to tackle this task with the use of a common, shared dataset on which
predictions are exchanged. However, in many contexts such a dataset might be
difficult to acquire due to privacy and the clients might not allow for storage of a
large shared dataset. To this end, in this paper, we introduce a new method that
improves this knowledge distillation method to only rely on a single shared im-
age between clients and server. In particular, we propose a novel adaptive dataset
pruning algorithm that selects the most informative crops generated from only a
single image. With this, we show that federated learning with distillation under
a limited shared dataset budget works better by using a single image compared
to multiple individual ones. Finally, we extend our approach to allow for train-
ing heterogeneous client architectures by incorporating a non-uniform distillation
schedule and client-model-mirroring on the server-side.

1 INTRODUCTION

Federated Learning (FL) is a paradigm in the field of distributed machine learning which enables
multiple clients to collaboratively train powerful predictive models without the need of centralising
the training data (Zhang et al., 2021). It comes with its own set of key challenges in terms of skewed
non-IID distribution of data between the participating clients (Zhu et al., 2021a; Li et al., 2020;
Chai et al., 2019; Hsu et al., 2019; Lin et al., 2020) and communication efficiency during training
(Konečnỳ et al., 2016; Lin et al., 2020) among others. These challenges are not directly answered
with the classical approaches such as FedAvg (McMahan et al., 2023), which rely primarily on a
naive client network parameter sharing approach. Since the inclusion of clients with different data
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distributions has a factor of heterogeneity involved (Zhu et al., 2021a; Hsu et al., 2019), another
well-known work (Li et al., 2020) counteracts this heterogeneity directly during the client training.
This tries to solve one challenge related to non-iidness in private data distribution, but other key
challenges related to network parameter sharing remain including concerns with privacy leakage
during parameter sharing (Wang et al., 2019; Sun et al., 2021), heterogeneity of client architectures
(Lin et al., 2020; Chai et al., 2019) and high bandwidth cost of parameter sharing (Konečnỳ et al.,
2016). To this end, along a second line of thought implementing a server-side training regime,
approaches suggested in (Lin et al., 2020; Li & Wang, 2019; Zhu et al., 2021b; Sui et al., 2020)
make use of the process of knowledge distillation (KD) (Hinton et al., 2015; Gou et al., 2021) to
overcome these challenges without the exclusive need of network parameter sharing. To facilitate
central network training with the help of KD, the sharing of public data is needed between the clients
and the server.

In this work, we propose a novel approach of making use of a single datum source to act as the
shared distillation dataset in ensembled distillation-based federated learning strategies. Our ap-
proach makes use of a novel adaptive dataset pruning algorithm on top of generating the distillation
data from a single source image during the training. This combination of shared data generation
and instance selection process not only allows us to train the central model effectively but also out-
performs the other approaches which make use of multiple small-sized images in place of a single
image under a limited shared dataset budget. The use of a single datum source has added benefits in
domains, where publicly available data and client resources (e.g., network bandwidth and connec-
tivity) are limited in nature. The use of a single datum source has been explored (Asano et al., 2020;
Asano & Saeed, 2023) under the settings of self-supervised learning and understanding extrapola-
tion capabilities of neural networks with knowledge distillation, but it has not yet been explored in
federated setting for facilitating model training.
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Figure 2: Comparison of test performance in federated setting using a single image with patch
selection compared to the equivalent size of multiple independent training samples from a labelled
dataset as shared distillation dataset. We use different rates of FedAvg. initialisations to emulate
different network bandwidth conditions. Detailed result in Table 4.

We perform a series of experiments to examine the viability of our proposed algorithm under vary-
ing conditions of heterogeneity in private client data, client-server model architectures, rate of pre-
training network initialisations before distillation, shared dataset storage budget and real-world do-
main of the single images. We also extend our experiments to a use-case of heterogeneous client
architectures involved during a single federated training with the help of client-model mirroring on
the server side. To facilitate this, we keep one copy of the client model of each type on the server
end, which acts as a global model for the clients that have the same network architecture. The global
models are improved with knowledge distillation after each round of local client training with the
help of shared logits over the single image dataset. The results we obtain during the aforementioned
experiments demonstrate positive reinforcement towards reaching our goal of efficient federated
training using Knowledge Distillation under a limited shared dataset budget.

The primary contributions of this work are :

1. Demonstrating the efficiency of a single image as a powerful medium for knowledge trans-
fer in a federated learning setting using knowledge distillation.

2. Novel algorithm for dynamic data pruning which evolves with the current global model
during federated learning.
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3. Extensive evaluation of our proposed methods under a variety of conditions in a federated
setting.

2 RELATED WORK

Federated Learning using Knowledge Distillation Knowledge Distillation (KD) (Hinton et al.,
2015) has been shown to successfully transfer the knowledge of an ensemble of neural networks
into a single network with the means of output logits over a shared dataset. KD has also been
leveraged in federated setting, such as Federated Distillation Fusion (FedDF) (Lin et al., 2020) and
Federated Ensemble Distillation (FedED) (Sui et al., 2020), where the respective authors make use
of KD to allow robust and faster convergence on top of using other ensembling methods such as the
ones suggested in Federated Averaging (McMahan et al., 2023) for initialising the central network
before the distillation training of the global model. On the other hand, authors of works such as
Federated Model Distillation (FedMD) (Li & Wang, 2019) have also successfully shown that KD can
be used for knowledge transfer in a federated setting for the purpose of client model personalisation.
However, the application of algorithms such as FedMD is targetted for personalisation by client-side
knowledge distillation rather than improvement of a central model, hence we have not delved into
it in the scope of our research. In the case of ensembling methods, it has been shown in (Lin et al.,
2020) that in the absence of an ensemble of local parameters before distillation training, the final
test performance of the central network tends to suffer. As a result, these methods have been shown
by the authors to significantly rely on parameter exchange every round similar to naive parameter
exchange-based algorithms such as FedAvg (McMahan et al., 2023) for robust performance on top
of KD. Since the aforementioned KD-based federated algorithms also require significant regular
ensembling using network parameter exchange, our approach focusses on improving this aspect by
relying significantly on knowledge distillation with the help of data pruning and augmentations on
the shared public dataset, which has not yet been explored in these works.

Communication Efficient Federated Learning To solve the high bandwidth costs related to pa-
rameter sharing, authors of (Caldas et al., 2018; Konečnỳ et al., 2016) have shown that quantisation
of network parameters before the transfer can significantly reduce the bandwidth costs incurred dur-
ing their transfer. However, with the application of the same low-bit quantization methods with the
KD-based federated learning methods in (Lin et al., 2020), the authors have also shown a significant
decrease in the overall test performance of models compared to their non-quantized counterparts.
On the other hand to not rely on public data sources, authors of the work (Zhu et al., 2021b) have
successfully shown that data-free approaches using a centrally trained generative network for pro-
ducing the public shared dataset works robustly. However, this also requires an additional exchange
of the generative network parameters before each round, which leads to an increase in the network
bandwidth usage itself. In pursuit of reducing the bandwidth costs pertaining to network parameter
exchanges as well as shared dataset sharing, these works have not yet made an attempt to make
use of a storage-efficient single data source, which can simultaneously generate a public distillation
dataset alongside being used for dynamic selection without added bandwidth costs. We explore this
in our work.

Single Image Representation Learning In (Asano et al., 2020), the authors have successfully
made use of a single image to produce augmented patches for facilitating self-supervised learning of
neural networks required for solving various downstream tasks. However, the focus of our work is
not on the process of solving tasks with the help of self-supervised learning, but on the implications
of making use of the single image patches in a federated setting as a medium of knowledge transfer
for training robust classifiers. To this end, in a closely resembling work to our target task, the
authors in (Asano & Saeed, 2023) have shown to be able to successfully use KD with single image
patches to transfer the knowledge between a pre-trained network and an untrained network to solve
the classification task of ImageNet-1k. However, the experiments by the authors were all based in
a non-federated setting. In our work, we explore the usage of single image patches in a federated
setting as the shared public distillation dataset and its implications in limited shared dataset budget
settings.
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3 METHOD

Our method focusses on a dynamic procedure to utilize a single image to act as a proxy dataset
for distillation in addition to a federated learning setup which is similar to existing ensemble-based
knowledge distillation-based methods such as FedDF (Lin et al., 2020). Alongside the generation of
a distillation dataset from a single data source, we take care of dynamically selecting the best patches
every round to improve the training. The two important parts of our federated strategy are described
in the following sections: 3.1 Distillation Set Generation and 3.2 Patch Subset Selection.

3.1 DISTILLATION DATASET GENERATION

For generating meaningful image representations out of a single image, we make use of the patchi-
fication technique. Using this technique, we generate a large number of small-size crops from a big
image by making combined use of augmentations such as 35-degree rotations, random horizontal
flipping, color transformations etc, similar to the ones used in (Asano & Saeed, 2023) for knowl-
edge distillation based learning. The image generation procedure can be controlled by a seed, which
allows all the clients to be able to generate the same set of patches using the same augmentations
from a single image. This provides us with the means of reducing the bandwidth usage pertaining to
the transfer of the distillation proxy set to the clients required for improving the global model using
Knowledge Distillation. Due to the flexibility provided by augmentations in combination with the
subset selection procedure described in Section 3.2, one can make use of a single image to produce
varying desired number of patches for the fixed amount of single image data.

3.2 PATCH SUBSET SELECTION

After we have an initial dataset for distillation using the method described in Section 3.1, we ap-
ply dataset pruning methods on this dataset to ensure the selection of information-rich patches for
assisting the current round of federated training. The dataset generation procedure is based on the
whole image, due to which it has the ability to produce bad representation patches such as: contain-
ing no entities, overlapping with others, being dissimilar to the target domain, and similar problems
arising due to heavy augmentations and information less regions of the single image. To prune the
bad patches, we make use of the following two mechanisms: KMeans Balancing (3) and Entropy
Selection (3.2). These mechanisms depend on the current global model for their operation, which
makes them dynamic in nature and improves their data-pruning ability with the improvement in the
global model. As a result, better representations are selected with better global models.

Algorithm 1: Entropy Selection

Input: Distillation Training Dataset (X),
Current Global Model (MG)

Parameters: Percentage of Examples to Prune
(k), Removal Heuristic (HE)

Output: Pruned Distillation Training Dataset
with Entropy Selection (XE)

begin
1 For all

xn ∈ X : n ∈ [1..S]where S = size of X,
find Y = {yn : yn =
Max(Softmax (Classifier Output (MG, xn)))}.

2 Select indices of the training examples
using the removal heuristic
HE ∈ {Top,Bottom,Random} with their
corresponding values in Y .

3 Push the selected indices in the new dataset
(XE).

end

Entropy Selection Entropy Selection is
based on the use of randomness present in
the output logits of the distillation training
examples to prune their dataset. To achieve
this, we examine the maximum softmax values
of the logits obtained for each distillation
training example using the current global
model. On the basis of a removal heuristic
HE ∈ {Top, Bottom, Random}, we remove
the top k percent of examples from each group
(grouped on the basis of their predicted class
using current global model). Top removes
training examples with high softmax values
while Bottom removes the ones with low soft-
max values. The algorithm has been described
in detail in Alg. 1.

KMeans Balancing KMeans Balancing is
based on the use of unsupervised KMeans clus-
tering on the embedding layer representations
of the training examples. To accomplish this,
we establish a KMeans clustering model (based
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on Euclidean distance) with K cluster centers and try to fit the embedding representations (using
the current global model) of the distillation training examples on it. Using a selection heuristic
HK ∈ {Easy, Hard, Mixed} on their calculated cluster distances D, we can select the training ex-
amples for the next round of training. Easy prefers examples with low cluster distance values while
Hard prefers high cluster distance values. A class balancing factor FK ∈ [0.0, 1.0] ensures that
there’s a fixed lower bound for selecting a minimum number of training examples from each of the
predicted classes (using the current global model) on the distillation training set. The algorithm has
been described in detail in Alg. 2.

Algorithm 2: K-Means Balancing

Input: Distillation Training Dataset (X), Current Global Model (MG)
Parameters: Number of Clusters (K), Size of New Dataset (s), Balancing Factor (FK ), Selection

Heuristic (HK )
Output: Pruned Distillation Training Dataset with KMeans Selection (XK )

begin
1 For all xn ∈ X : n ∈ [1..S] where S = size of X, find

Z = {zn : zn = Embedding Representation (MG, xn)} and
Y = {yn : yn = Max-Index (Classifier Output (MG, xn)}.

2 Define CP = {Set of unique classes in Y} and Number of unique classes C = |CP |.
3 Initialise an independent unsupervised KMeans Clustering Model (MC ) using K number of

cluster centers. Fit MC on Z and find D = {dn : dn = {Shortest euclidean distance of zn to its
cluster center}.

4 Define the minimum number of examples (balancing lower bound) to be selected from each class
ci ∈ CP , as LB = [ s

C
∗ FK ].

5 forall ci ∈ CP : i ∈ [1..C] do
Find the indices of examples belonging to the ci using yn ∈ Y : yn = ci.
Select indices of the new training examples on the basis of selection heuristic
HK ∈ {Easy,Hard,Mixed} with their corresponding cluster distance values D.

Push the training examples from X with selected indices in the new dataset (XK ).
Remove the selected training examples from X and D.

end
6 Remaining number of examples to be selected can be calculated as given by : s− size of XK .
7 Using selection heuristic = HK on the cluster distance values in D, find the indices of the

remaining examples to be selected. Push the training examples with selected indices in the new
dataset (XK )

end

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Our experimental setup for federated training using our algorithm has been shown schematically in
Fig. 1.

Dataset We do our experiments across the following publically available datasets: CIFAR10/100
(Krizhevsky et al., 2009) and MedMNIST (PathMNIST) (Yang et al., 2023). For the distribution
of private data among the clients from the collective training data, we use a similar strategy to the
one suggested in (Hsu et al., 2019), which allows us to control the degree of heterogeneity using
the parameter α (lower α = higher degree of non-iidness and vice-versa). We use the full test sets
corresponding to the private client datasets as evaluation sets for the global model (testing is only
server side). 10% of the training examples are held as a validation dataset.

For the shared public dataset, we generate patches out of a single image for all the experiments with
our method. For the FedDF experiments, we have made use of CIFAR100 training set for CIFAR10
experiments, unless mentioned otherwise. The single images have been visualised in Appendix A
alongside the patches and t-SNE visualisations during training.
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Server-Client Model Architecture ResNets (trained from scratch) have been used for most of
our experiments as the model of choice for the server and clients (He et al., 2016). WideResNets
have also been used for some of the experiments (Zagoruyko & Komodakis, 2016). The models
have been explicitly defined in the table descriptions for unambiguity.

Hyper-parameter Configuration The values of the learning rate (local and global) have been
motivated by the experiments described in Appendix C. We use a client learning rate of 0.01 for
ResNet and WResNet, while the distillation training learning rate is 0.005. For KMeans Balancing,
we use a KMeans model with 1000 clusters, a class balancing factor of 1.0, and the ’Hard’ selection
heuristic. For Entropy selection, we remove 90% of the training examples using the ’Top’ removal
heuristic (Appendix B). For the experiment in Table 2, we do local client training for 10 epochs
and server-side distillation for 250 steps, while 40 epochs and 500 distillation steps have been our
choice for other experiments unless mentioned otherwise. We prefer to keep the use of FedAvg
initialisations to 20% in our experiments unless mentioned otherwise. For all the experiments, we
simulate 20 private clients, with a selection probability (C) of 0.4 per training round.

4.2 SELECTING THE BEST IMAGE FOR DOMAIN OF TASK

We conduct cross-dataset single-image testing using our algorithm across 3 private training datasets
and 3 images, with two of them corresponding to one of the dataset domains and the third one
being a random noise. The results in Table 1 exhibit that it is necessary to use a single image that
is similar to the domain of the target task for optimal performance. In the case of using a single
random noise image as the distillation proxy, we get the lowest test performance as it is hard for
random augmentations to convert random noise patches into a knowledge transfer medium. Hence,
care must be taken in choosing a single image with similar patch representations as the target task
for optimal learning with our algorithm. There can be an interesting area to explore with more
augmentation experiments and generative algorithms, if it is possible to use a random noise image
viably as a single image with our method. We leave this as future work.

Image Dataset

CIFAR10 CIFAR100 PathMNIST

City Street 75.3 32.0 69.7
Multi Colon Pathology Samples 69.0 12.0 71.6
Random Noise 39.4 6.8 33.0

Table 1: Best test performance during 30 rounds of training using our federated method with varying
Pvt. Datasets (Distribuition α = 100.0) and 5k Single Image Patches (Distillation Proxy Set) on
ResNet-8 architecture with 20% rate of FedAvg. initialisation.

4.3 ABLATION STUDIES WITH PATCH SELECTION MECHANISM

Finding the Best Patch Subselection Strategies across Varying Pvt. Dataset To find the ef-
fectiveness of patch subset selection mechanisms, we test it under different private datasets from
different real-world domains (General and Medical). Through Table 2, it is evident that the single
image patches work best in the presence of a selection strategy in our federated algorithm. On their
own, both KMeans Balancing (3) and Entropy Selection (3.2) strategy works better than employing
no selection for the same number of patches. Together, they perform best across all the datasets we
have tested which is what we use in our other experiments in this work. Both of the selection strate-
gies and their combination significantly impact the final performance. We have done our primitive
analysis with them in light of this work to find an optimal setting (Appendix B, but there might be a
correlation between their settings which we have not delved into. We can propose this detailed anal-
ysis of their combinative work as future work for improving the test performance of our federated
strategy with the means of better data pruning.

Through the T-SNE visualisation in Fig. 3 during different phases of federated training with a single
image and our data pruning method, we observe the formation of identifiable boundary structures
among the selected patches as the global model accuracy improves. This provides a visual qualitative
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Selection Strategy Private Dataset

CIFAR10 CIFAR100 PathMNIST

No Selection 63.4 ± 1.4 24.2 ± 1.1 64.5 ± 4.7
KMeans 66.2 ± 0.8 21.8 ± 2.1 67.9 ± 8.4
Entropy 65.9 ± 1.0 26.3 ± 1.0 76.4 ± 2.8
KMeans + Entropy 67.0 ± 1.1 26.4 ± 1.2 77.1 ± 3.0

Table 2: Best test performance achieved during 30 rounds of training with different selection mech-
anisms (Distillation Set Size = 5000 patches) across different private datasets (α = 1.0) using our
federated strategy with ResNet-8 while using 20% rate of FedAvg. initialisations. (2 seeds)

assessment of our design claims regarding the positive correlation of the effectiveness of our patch
subset selection algorithm with the evolution of the global model.

(a) Global Model Accuracy = 52.8 (b) Global Model Accuracy = 76.7

Figure 3: Scatter plot of TSNE embeddings of single image patches during different phases of
training, using our method with FedAvg and ResNet-8 on CIFAR10.

Testing the Impact of Selection Mechanism with Manually Labelled Distillation Set We test
the viability of our selection mechanism in case of extending it to the use cases where we already
have a shared public dataset at hand in Table 3. During the regular exchange of initialisation param-
eters, the application of our selection mechanism exhibits no advantage. However, when we reduce
the exchange of initialisation parameters to emulate low bandwidth conditions, it shows significant
gains. This shows that even with the availability of standard distillation sets at hand in ensembled
distillation methods, the subset selection mechanism can play an important role in low bandwidth
cost federated training.

Selection Mechanism Applied FedAvg Initialisation Rate (in %)

100 50 20

✗ 75.0 ± 0.5 73.1 ± 1.1 67.4 ± 0.5
✓ 73.8 ± 1.9 72.3 ± 0.6 70.7 ± 1.2

Table 3: Comparison of best test performance during 30 rounds of training with CIFAR10 Pvt.
Data with Distribuition α = 1.0 using FedDF (with ResNet-8) between use/non-use of selection
mechanism across varying rate of using FedAvg initialisation. 1000 samples from CIFAR100 train
split make the distillation proxy dataset.

4.4 ABLATION STUDIES WITH VARYING NETWORK AND STORAGE CONDITIONS

Comparing Performance of a Single Image in Limited Shared Dataset Budget Settings This
is our most significant experiment in terms of exhibiting the viability of federated learning under
limited shared dataset budget settings using a single image. Going through the results in Table 4,
we see that for the same amount of storage budget, a single image with patch selection outperforms
similarly sized individual samples. If we also lower the network budget and the rate of exchange of

7



Under review as a conference paper at ICLR 2024

initialisation parameters, it is able to hold at par with individual training samples 10 times its size.
This shows a promising future for our work in the scenario where there is limited availability of
publicly shared datasets as well as storage budget would be low on participating clients.

Distillation Dataset No. of Pixels FedAvg Initialisation Rate (in %)

100 50 20

5K CIF100 Samples 5M 76.4 ± 1.4 74.1 ± 1.6 68.9 ± 1.4
Single Image with Patch Selection 0.5M 74.8 ± 2.6 73.2 ± 3.2 68.6 ± 0.8
500 CIF100 Samples 0.5M 73.2 ± 1.7 71.3 ± 2.0 66.5 ± 0.9

Table 4: Best test performance during 30 rounds of training with CIFAR10 Pvt. Data with Dis-
tribuition α = 1.0 using ResNet-8 with different distillation datasets and rate of using FedAvg ini-
tialisation.

Testing Performance in Limited Network Bandwidth Settings against Heterogeneous Data Dis-
tributions To test the impact of high data distribution heterogeneity on our FL strategy against
an existing SOTA federated learning strategy based on knowledge distillation, we show the perfor-
mance gains in Table 5. We also vary the network initialisation rate to test our method in high and
low-bandwidth situations. We notice that with the help of patch subset selection, our methods out-
perform the fed strategy which doesn’t make use of this process. This trend is constant across all
bandwidth scenarios and local client training expenditures. We have also extended our approach to
incorporate FedProx local client training regime, which shows better results than naive local client
training. This extendability makes our method unique and viable to more approaches than just one
kind of local training which can have added performance benefits with our algorithm.

Strategy Local Epochs
FedAvg Initialisation Rate (in %)

100 50 20

α = 1.0 α = 0.1 α = 1.0 α = 0.1 α = 1.0 α = 0.1

FedDF 20 75.7 ± 1.2 48.2 ± 2.6 73.9 ± 0.8 47.3 ± 5.2 71.1 ± 0.5 42.2 ± 9.4
40 75.7 ± 0.9 49.5 ± 3.1 74.9 ± 1.9 49.3 ± 1.1 72.5 ± 0.5 46.1 ± 6.6

Ours w/ FedAvg 20 76.9 ± 0.6 47.8 ± 5.3 75.8 ± 0.3 47.3 ± 5.5 73.7 ± 1.0 45.5 ± 5.1
40 77.0 ± 0.6 47.8 ± 5.4 76.2 ± 1.4 49.5 ± 2.2 74.3 ± 0.6 46.6 ± 6.7

Ours w/ FedProx 20 77.2 ± 0.8 47.2 ± 7.0 74.5 ± 1.3 44.6 ± 7.9 73.1 ± 0.2 46.9 ± 4.5
40 77.7 ± 0.8 47.7 ± 3.8 76.3 ± 0.4 46.0 ± 5.3 74.3 ± 1.1 45.1 ± 6.0

Table 5: Comparison of best test performance under different settings (FedAvg Initialisation Rate,
Degree of Heterogenity (α), Local Training Epochs) using different federated learning strategies
with ResNet-8 on CIFAR10 during 30 rounds of training (2 seeds). 5000 single image patches have
been used as distillation proxy set (w/o selection mechanism for FedDF).

4.5 ABLATION STUDIES WITH VARYING CLIENT-SERVER NEURAL NETWORK
ARCHITECTURES

Testing our Strategy under Homogeneous Network Architecture Settings We perform all the
experiments in the earlier sections using ResNet-8 as the client and server models. To make sure our
federated strategy works equally well among other homogenous network distributions, we put it to
the test against FedDF using ResNet-20 as well as W-ResNet-16-4 in Table 6. We see that under the
same distillation set storage budget, our method works better under all the tested network architec-
tures. As per nominal expectations, network architectures with more parameters show better results
than the ones with less number of parameters which enables us to achieve better test performance
with more complex networks. Irrespective of the network architecture, the trend is constant when it
comes to our FL strategy outperforming other strategies making use of a labelled distillation dataset
in a limited storage budget scenario.

Testing our Strategy under Heterogeneous Network Architecture Settings In the final exper-
imental section, we test our federated strategy in the presence of heterogeneity in the client model
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Fed Strategy Network Architecture

ResNet-8 ResNet-20 W-ResNet-16-4

FedDF 67.3 ± 1.9 73.0 ± 0.6 75.3 ± 1.2
Ours 70.2 ± 0.8 74.1 ± 0.9 75.7 ± 0.9

Table 6: Best test performance during 30 rounds of training using CIF10 Pvt. Data with Distribuition
α = 1.0 using different Fed strategies and homogeneous client-server network architectures with
20% rate of FedAvg. initialisation. FedDF uses 500 CIF100 samples as distillation proxy, while our
method makes use of a single image of equivalent size with patch subset selection.

architectures. The results present in Table 7 show the success of our method in training the global
models when pitted against a strategy not utilising a single image. It also exhibits the importance
of constant distillation training for the success of our methods, as our non-uniform approach gives
subpar results with less training time. However, when going from 15k to 11k steps, we also save
about 1/3 of the training time and computation resources used on the server side. It can be an in-
teresting point of extension to our work to improve upon this non-uniform scheduling to allow for
more robust training of heterogeneous models with less computation time.

Fed Strategy Total Distillation Steps Macro-Avg Accuracy (Server Models)

FedDF 15K 67.4 ± 0.6
Ours 15K 68.5 ± 1.1
Ours w/ Scheduling 11.3K 65.2 ± 1.3

Table 7: Best test performance across during 30 rounds of training using CIF10 Pvt. Data with
Distribuition α = 1.0 using different Fed strategies and distillation step scheduling, under a het-
erogenous client distibuition (6 ResNet-8, 7 ResNet-20, 7 W-ResNet-16-4) with 20% rate of Fe-
dAvg. Initialisation. 500 CIF100 samples have been used as distillation proxy for FedDF, while our
method makes use of a Single Image of equivalent size with patch selection.

5 CONCLUSION

Through this work, we present a novel approach for federated learning using ensembled knowledge
distillation with the use of augmented image patches from a single image with patch subset selec-
tion. We successfully exhibit the performance gains with our approach in a limited shared dataset
budget scenario as well as low network bandwidth requiring scenarios with less exchange of network
parameters. Alongside low resource usage, the use of a single image also enables our federated strat-
egy to be applicable to scenarios where we have a lack of public datasets required during federated
training of multiple clients.

Prospective Future of our Work We mention a few specialised avenues of extension to our work
during the discussion of results in Section 4. Some of the key points that were not mentioned in it
include: Application of the single datum based federated learning to other modalities and machine
learning tasks; Application of our work to other knowledge distillation-based algorithms in federated
learning other than ensembled methods, such as FedMD (Li & Wang, 2019); Analysis of different
kind of augmentations to improve the robustness of our method. With the aforementioned points,
significant work can be done to improve the viability of our novel approach presented in this work
to incorporate more real-world challenges.

9
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A IMAGE AND PATCH VISUALISATIONS

A.1 VISUALISATION OF SINGLE IMAGES

We make use of the images depicted in Fig. 4 as the sources for generating our distillation dataset.
Kindly note, we only used the images for non-profit educational research purposes and we do not
hold any rights over their commercial use. These images have been selected in correspondence to
the domains of datasets we have tested in our work.

(a) A busy street in a city. (b) Multiple colon pathology samples.

(c) Random noise.

Figure 4: Single Image sources used for our experiments for distillation dataset generation.

A.2 VISUALISATION OF IMAGE REPRESENTATIONS FROM SINGLE IMAGES

In Fig. 3, we visualise the TSNE embeddings of the training examples in our single image distillation
dataset during different phases of training on a scatterplot. It’s implications have been discussed in
the main paper in brief detail. To add to the earlier analysis, by looking at the difference between
Fig. 3a and Fig. 3b, one can see how the embedding layer in the neural network starts forming
particular regions belonging to certain classes with the increase in classification accuracy. Even
though the image representations do not contain many of the classes in the classifier as is prevalent
from visual inspection of Fig. 5, the pseudo labels are powerful enough to enable the learning
through knowledge distillation in a federated setting.

2
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Figure 5: TSNE Manifold visualisation of distillation dataset corresponding to TSNE scatter plot in
Fig. 3b).

B FINDING OPTIMAL HYPER-PARAMETERS FOR SELECTION ALGORITHMS

B.1 KMEANS BALANCING

To examine the impact of KMeans Balancing and its corresponding settings on the federated train-
ing, we conduct experiments while varying their values on multiple datasets having different num-
bers of prediction labels. The results have been presented in Table 8. Although values do not differ
by a large margin for CIFAR10, CIFAR100 results provide us more assurance for the optimal val-
ues. We find that the KMeans selection strategy works best with a high number of clusters (K)
compared to the number of classes in the corresponding classification problem (Table 8a), while
forcing maximum class balancing while pruning (Table 8b) as well as selecting the hard examples
(Table 8c) for distillation. Since the KMeans model is an independent model working on giving the
pseudo-labels to the distillation training examples, there could be a play of correlation between the
3 hyper-parameters for this mechanism. It can be an interesting point for future research on this.

B.2 ENTROPY SELECTION

For the entropy selection mechanism, we only have 2 settings to vary: Removal Percentage and
Heuristics (Section 3.2). The results obtained during ablation studies with these settings have been
presented in Table 9. From the results in Table 9a, it is clear that removing training examples with
high confidence (less entropy) provides us best results. Removing a high percentage of training

3
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Number of Clusters Private Dataset

CIFAR10 CIFAR100

5 64.3 ± 0.7 19.9 ± 1.9
10 65.2 ± 0.9 21.2 ± 0.1
50 65.3 ± 0.3 22.9 ± 0.9
100 65.5 ± 1.1 18.9 ± 2.9
1000 66.3 ± 1.1 22.9 ± 0.1

(a) Varying cluster number with selection heuristic
= easy and balancing factor = 0.1.

Balancing Factor Private Dataset

CIFAR10 CIFAR100

0.0 64.9 ± 1.3 22.5 ± 0.2
0.05 65.0 ± 1.7 22.5 ± 0.4
0.1 65.2 ± 2.0 21.3 ± 0.1
0.5 66.6 ± 1.4 22.2 ± 0.1
1.0 66.0 ± 1.2 24.0 ± 1.4

(b) Varying balancing factor with number of clus-
ters (K) = 1000 and selection heuristic = easy.

Selection Heuristics Private Dataset

CIFAR10 CIFAR100

Easy 65.8 ± 1.3 22.1 ± 0.4
Hard 66.7 ± 1.1 23.8 ± 1.8
Mixed (50-50) 65.5 ± 2.1 21.8 ± 1.0

(c) Varying selection heuristics with number of
clusters (K) = 1000 and balancing factor = 1.0.

Table 8: Best test set accuracy achieved during 30 rounds of training with KMeans balancing under
different settings with different private datasets (Distribution α = 1.0) using single image patches
as the distillation dataset with 20% FedAvg initialisation rate on ResNet-8 (across 2 seeds).

examples from a large initial set using this mechanism also provided us with more robust training,
compared to removing a smaller number of training examples from a small initial set (Table 9b).
Similar to our last experiments with the KMeans mechanism, the results are more clearly pronounced
in the presence of a more difficult dataset (100 classes compared to 10 in the case of CIFAR100 and
CIFAR10).

Removal Heuristic Private. Dataset

CIFAR10 CIFAR100

Top 67.0 ± 0.9 26.2 ± 1.9
Bottom 61.9 ± 2.4 15.4 ± 2.4
Random 67.4 ± 1.5 23.2 ± 0.9

(a) Varying Removal Heuristic with Removal Per-
centage = 90%.

Removal Percentage (%) Private Dataset
CIFAR10 CIFAR100

10 65.0 ± 0.9 24.4 ± 1.2
50 67.5 ± 1.2 25.8 ± 1.4
90 66.2 ± 1.5 26.7 ± 1.5

(b) Varying Removal Percentage with Removal
Heuristic = Top.

Table 9: Best test set accuracy achieved during 30 rounds of training with Entropy selection under
different settings with different private datasets (Distribution α = 1.0) using single image patches
as the distillation dataset with 20% FedAvg initialisation rate on ResNet-8 (across 2 seeds).

C LEARNING RATE OPTIMISATION

C.1 CLIENT SIDE LR

We find the optimal learning rate for local model training by using vanilla FedAvg as represented in
Table 10 on ResNet-8. We do a grid search across a certain set of values for it, which is described in
Table 10.

C.2 SERVER SIDE LR

To find the optimal learning rate for the distillation training, we use FedDF as depicted in Table 11.
This is accomplished with the help of a grid search across certain values for the distillation training
learning rate, as mentioned in Table 11 itself.
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Local L.R. Accuracy

0.1 74.6
0.05 80.1
0.01 80.9
0.005 80.6
0.001 74.6

Table 10: Highest test accuracy achieved
during 30 rounds of training with FedAvg (no
distillation) on CIF10 with ResNet-8 (Distri-
bution α = 100.0).

Global L.R. Accuracy

0.1 44.8 ± 1.4
0.05 62.7 ± 1.0
0.01 76.6 ± 0.3
0.005 78.1 ± 0.4
0.001 75.2 ± 1.0

Table 11: Highest test accuracy achieved
during 30 rounds of training with client
learning rate = 0.01 using FedDF on CIF10
with ResNet-8 on 2 different seeds. (Distri-
bution α = 100.0)
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