
Learning Distributed Geometric Koopman Operator for
Sparse Networked Dynamical Systems

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract1

The Koopman operator theory provides an alternative to studying nonlinear net-2

worked dynamical systems (NDS) by mapping the state space to an abstract higher3

dimensional space where the system evolution is linear. The recent works show4

the application of graph neural networks (GNNs) to learn state to object-centric5

embedding and achieve centralized block-wise computation of the Koopman op-6

erator (KO) under additional assumptions on the underlying node properties and7

constraints on the KO structure. However, the computational complexity of learn-8

ing the Koopman operator increases for large NDS. Moreover, the computational9

complexity increases in a combinatorial fashion with the increase in number of10

nodes. The learning challenge is further amplified for sparse networks by two11

factors: 1) sample sparsity for learning the Koopman operator in the non-linear12

space, and 2) the dissimilarity in the dynamics of individual nodes or from one13

subgraph to another. Our work aims to address these challenges by formulating14

the representation learning of NDS into a multi-agent paradigm and learning the15

Koopman operator in a distributive manner. Our theoretical results show that the16

proposed distributed computation of the geometric Koopman operator is beneficial17

for sparse NDS, whereas for the fully connected systems this approach coincides18

with the centralized one. The empirical study on a rope system, a network of19

oscillators, and a power grid show comparable and superior performance along20

with computational benefits with the state-of-the-art methods.21

1 Introduction22

NDS represents an important class of dynamic networks where the state of the network is defined by23

a vector of node-level properties in a geometrical manifold, and their evolution is governed by a set24

of differential equations. Data-driven modeling of both spatio-temporal dependencies and evolution25

dynamics is essential to predict the response of the NDS to an external perturbation. Surely, machine-26

learning approaches that explicitly recognize the interconnection structure of such systems or model27

the dynamical system-driven evolution of the network outperform initial deep learning approaches28

based on recurrent neural networks and its variants [1–5]. Deep learning approaches such as GNNs29

fit into this paradigm by learning non-linear functions for each of the encoder-system model-decoder30

components [6–10]. Discovering the underlying physics of dynamical systems have intrigued control31

theory researcher for decades resulting into multiple sub-space based system identification works32

[11–14]. Koopman operator theory [15, 16] is an approach for such model discovery where the core33

idea is to transform the observed state-space variables to the space of square-integrable functions,34

where a linear operator provides an exact representation of the underlying dynamical system and the35

spectrum of the operator encodes all the non-linear behaviors. However, for computational purposes,36

finding finite-dimensional approximation of Koopman operator is challenging. The key to computing37

the finite-dimensional Koopman operator is fixing the lifting functions (observables) and existing38

approaches such as classical or extended dynamic mode decomposition [17, 18] use an a-priori39

choice of basis functions for lifting; however, this choice usually fails to generalize to more complex40

environments. Instead, learning these transformations from the system trajectories themselves using41

deep neural networks (DNNs) have been shown to yield much richer invariant subspaces [19, 20].42

Submitted to the First Learning on Graphs Conference (LoG 2022). Do not distribute.

Learning Distributed Geometric Koopman Operator for Sparse Networked Dynamical Systems

Continuing the idea of lifting the non-linear state space into another space to learn linear transition43

dynamics, [21] proposed the use of a graph neural network as the encoder-decoder function. While44

graph neural networks (GNN) [22] appears to be a natural approach for modeling the physics of45

networked systems, their ability to discover dynamic evolution models of large-scale networked46

systems is a nascent area of research [6, 7, 9, 23]. For NDS, where the number of system states47

increases with the number of nodes, the computational complexity of learning the Koopman operator48

also increases. The topology of the network or its sparsity are typically not taken advantage of in the49

existing studies when learning observable functions or the Koopman operator.50

In this work, we address the challenge of learning dissimilar dynamics in sparse networks by51

formulating the representation learning of networked dynamical systems into a multi-agent paradigm.52

We refer to this approach as Distributed Koopman-GNN (DKGNN). DKGNN is more suitable for53

sparse and large networked dynamical systems as the proposed distributed learning method yields54

superior computational efficiency compared to traditional methods. We applied the GNNs to capture55

the distributed nature of the dynamical system behavior, transform the original state-space into56

the Koopman observable space, and subsequently use the network sparsity patterns to constrain57

the Koopman operator construction into a block-structured distributed representation along with58

theoretical guarantees. Information-theoretic network clustering strategies were utilized for specific59

dynamic systems to capture the joint evolution of the clusters in a coarse-grained fashion resulting in60

further computational benefits. Please see Figure 1 for an illustration of the approach.

Network partitioned into different clusters Corresponding multi-agent
system (based on clusters)

Multi-dimensional spatio-temporal time-series
data rearranged as a 2D array Training Objective

Agent-5

Agent-2

Agent-3

Agent-1

Agent-4

<latexit sha1_base64="JG9wj+adn5pKUgAzj4DylTNt6oQ=">AAACMXicbVDLSgMxFM34tr5GXboJFsEuLDNFVHCjKNJlBfuATh0yacaGJpmQZMQy9Jfc+CfipgtF3PoTpg/wUQ8EDuecy809kWRUG88bODOzc/MLi0vLuZXVtfUNd3OrppNUYVLFCUtUI0KaMCpI1VDDSEMqgnjESD3qXgz9+j1RmibixvQkaXF0J2hMMTJWCt1ywKPkIeNU9IPTAMJAIoUYIyzoIJM1+mEMD2Bwj5Ts0P3z8NIGLGmEslD4zoZXt6XQzXtFbwQ4TfwJyYMJKqH7HLQTnHIiDGZI66bvSdPKkDIUM9LPBakmEuEuuiNNSwXiRLey0cV9uGeVNowTZZ8wcKT+nMgQ17rHI5vkyHT0X28o/uc1UxOftDIqZGqIwONFccqgSeCwPtimimDDepYgrKj9K8QdWwM2tuScLcH/e/I0qZWK/lHx8Powf+ZN6lgCO2AX7AMfHIMzUAYVUAUYPIIX8ArenCdn4Lw7H+PojDOZ2Qa/4Hx+AWuTqQU=</latexit>

KBM k X̂f � '(AD�(Xp)) k2
F

GNN-Decoder (𝜑)Distributed Geometric Koopman Computation (AD)

Outputs
<latexit sha1_base64="HntVZ+F42mI7BoW0PPGyaWlL4tU=">AAAB73icbVBNSwMxEJ3Ur1q/qh69BIvgQcquFPVY8OKxgv2iXZZsmm1Ds9k1yQpl6Z/w4kERr/4db/4b03YP2vpg4PHeDDPzgkRwbRznGxXW1jc2t4rbpZ3dvf2D8uFRS8epoqxJYxGrTkA0E1yypuFGsE6iGIkCwdrB+Hbmt5+Y0jyWD2aSMC8iQ8lDTomxUqfrJxe464d+ueJUnTnwKnFzUoEcDb/81R/ENI2YNFQQrXuukxgvI8pwKti01E81SwgdkyHrWSpJxLSXze+d4jOrDHAYK1vS4Ln6eyIjkdaTKLCdETEjvezNxP+8XmrCGy/jMkkNk3SxKEwFNjGePY8HXDFqxMQSQhW3t2I6IopQYyMq2RDc5ZdXSeuy6l5Va/e1St3J4yjCCZzCObhwDXW4gwY0gYKAZ3iFN/SIXtA7+li0FlA+cwx/gD5/AB7Qj1M=</latexit>

Yp, Yf

Inputs
<latexit sha1_base64="wHE09sFp2348nbCyZtb8Uzx/MHI=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5REinosePFYwbaBNoTNdtMu3d3E3Y1QQv+EFw+KePXvePPfuG1z0NYHA4/3ZpiZF6WcaeO6305pbX1jc6u8XdnZ3ds/qB4edXSSKULbJOGJ8iOsKWeStg0znPqpolhEnHaj8e3M7z5RpVkiH8wkpYHAQ8liRrCxku+H6QXywzis1ty6OwdaJV5BalCgFVa/+oOEZIJKQzjWuue5qQlyrAwjnE4r/UzTFJMxHtKepRILqoN8fu8UnVllgOJE2ZIGzdXfEzkWWk9EZDsFNiO97M3E/7xeZuKbIGcyzQyVZLEozjgyCZo9jwZMUWL4xBJMFLO3IjLCChNjI6rYELzll1dJ57LuXdUb941a0y3iKMMJnMI5eHANTbiDFrSBAIdneIU359F5cd6dj0VrySlmjuEPnM8fG7+PUQ==</latexit>

Xp, Xf

GNN-Encoder (∅)
<latexit sha1_base64="1oscokho1/fX6FFWYfvAtKh251E=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSxChVISKeqy4MaVVLAPaUOYTCft0MmDmYlQQsCNv+LGhSJu/Ql3/o3TNgutHrhwOOde7r3HizmTyrK+jMLS8srqWnG9tLG5tb1j7u61ZZQIQlsk4pHoelhSzkLaUkxx2o0FxYHHaccbX079zj0VkkXhrZrE1AnwMGQ+I1hpyTUP7tw0rqZ9gjm6zir2SVZFWvKrduaaZatmzYD+EjsnZcjRdM3P/iAiSUBDRTiWsmdbsXJSLBQjnGalfiJpjMkYD2lP0xAHVDrp7IcMHWtlgPxI6AoVmqk/J1IcSDkJPN0ZYDWSi95U/M/rJcq/cFIWxomiIZkv8hOOVISmgaABE5QoPtEEE8H0rYiMsMBE6dhKOgR78eW/pH1as89q9Zt6uVHJ4yjCIRxBBWw4hwZcQRNaQOABnuAFXo1H49l4M97nrQUjn9mHXzA+vgGRXpYd</latexit>

Yp,N (1), Yf,1

<latexit sha1_base64="Wdt7IRHrtVq9EbFtMIadUMQkXnc=">AAACA3icbVDJSgNBEK1xjXEb9aaXxiBECGFGEvUY8OJJIphFkmHo6fQkTXoWunuEMAx48Ve8eFDEqz/hzb+xsxw08UHB470qqup5MWdSWda3sbS8srq2ntvIb25t7+yae/tNGSWC0AaJeCTaHpaUs5A2FFOctmNBceBx2vKGV2O/9UCFZFF4p0YxdQLcD5nPCFZacs3DezeNS2mXYI5usmL1NCshLfmlauaaBatsTYAWiT0jBZih7ppf3V5EkoCGinAsZce2YuWkWChGOM3y3UTSGJMh7tOOpiEOqHTSyQ8ZOtFKD/mR0BUqNFF/T6Q4kHIUeLozwGog572x+J/XSZR/6aQsjBNFQzJd5CccqQiNA0E9JihRfKQJJoLpWxEZYIGJ0rHldQj2/MuLpHlWts/LldtKoVacxZGDIziGIthwATW4hjo0gMAjPMMrvBlPxovxbnxMW5eM2cwB/IHx+QOdrpYl</latexit>

Yp,N (5), Yf,5

.

.

.

.

.

.

!𝐴1

!𝐴5

Input
<latexit sha1_base64="ib0dx85TqWzyIWfL2ZlHdf23K5E=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mVoh4revBYwX5IuyzZNNvGZpMlyQpl6X/w4kERr/4fb/4b03YP2vpg4PHeDDPzwoQzbVz32ymsrK6tbxQ3S1vbO7t75f2DlpapIrRJJJeqE2JNORO0aZjhtJMoiuOQ03Y4up767SeqNJPi3owT6sd4IFjECDZWal0FNw9BEpQrbtWdAS0TLycVyNEIyl+9viRpTIUhHGvd9dzE+BlWhhFOJ6VeqmmCyQgPaNdSgWOq/Wx27QSdWKWPIqlsCYNm6u+JDMdaj+PQdsbYDPWiNxX/87qpiS79jIkkNVSQ+aIo5chINH0d9ZmixPCxJZgoZm9FZIgVJsYGVLIheIsvL5PWWdU7r9buapW6m8dRhCM4hlPw4ALqcAsNaAKBR3iGV3hzpPPivDsf89aCk88cwh84nz8Fb465</latexit>

ADYp

Output<latexit sha1_base64="IJocySfPXqPeUl693c56uDMl6/s=">AAACBXicbVDLSsNAFJ34rPUVdamLwSLUTUmkqAhCRRcuK9iHNCFMppNm6CQZZiaFErpx46+4caGIW//BnX/jtM1CWw9cOJxzL/fe43NGpbKsb2NhcWl5ZbWwVlzf2NzaNnd2mzJJBSYNnLBEtH0kCaMxaSiqGGlzQVDkM9Ly+9djvzUgQtIkvldDTtwI9WIaUIyUljzzwBkgwUNavvJuHjx+DC8uoRMilbVHXuCZJatiTQDniZ2TEshR98wvp5vgNCKxwgxJ2bEtrtwMCUUxI6Oik0rCEe6jHuloGqOISDebfDGCR1rpwiARumIFJ+rviQxFUg4jX3dGSIVy1huL/3mdVAXnbkZjnioS4+miIGVQJXAcCexSQbBiQ00QFlTfCnGIBMJKB1fUIdizL8+T5knFPq1U76qlmpXHUQD74BCUgQ3OQA3cgjpoAAwewTN4BW/Gk/FivBsf09YFI5/ZA39gfP4As6yXYg==</latexit>

'(ADYp) := X̂f

Spatio-temporal time-series data from
the network (according to clusters)

Time

St
at
es

<latexit sha1_base64="2G9YF3OcrQF4hAnEF2cU+vQBEgQ=">AAACvXicbZHNbhMxEMedLR8lfLXlyMUiQuIQovVmadITFRzgWD7SRkqiyOvMbq16bcv2Uq1W+whc4QV4Kd4Gb7qRoMtIHv018xt7PJNowa0Lw9+9YO/O3Xv39x/0Hz56/OTpweHRuVWFYTBjSigzT6gFwSXMHHcC5toAzRMBF8nV+yZ/8Q2M5Up+daWGVU4zyVPOqPOhL/O1Xh8MwlG4NdwVpBUD1NrZ+rD3a7lRrMhBOiaotQsSareqqHGcCaj7y8KCpuyKZrDwUtIc7Kra9lrjlz6ywaky/kiHt9G/KyqaW1vmiSdz6i7t7VwT/F9uUbh0uqq41IUDyW4eSguBncLNx/GGG2BOlF5QZrjvFbNLaihzfjz95QZSP8JtO1Vevk5EAXX1+cO7ugqHmJDYu+lJ3eGUoTLbkRGZDPF0PMTRmy5ZghDqekeOPUkm3o2jLpoZANmShJw0ZDTE8bRL6sJosXueRMeeai6O/aV+r+T2FrviPBqR41H8KR6cRu2G99Fz9AK9QgRN0Cn6iM7QDDGUoe/oB/oZvA0gEIG8QYNeW/MM/WPB9R8y8NOf</latexit>

Xp

<latexit sha1_base64="E3ODURYuZmFyW2goDy61NJfoJLQ=">AAACvXicbZHfb9MwEMfdbMAov7bxyIu1ComHUsVpWLsnJnjYHrdBt0ptVTnuJbPm2JHtMEVR/gRe4R/gn+K/welSaSw7yaev7j5nn++iTHBjff9vx9vafvL02c7z7ouXr16/2d3bvzQq1wwmTAmlpxE1ILiEieVWwDTTQNNIwFV087XOX/0AbbiS322RwSKlieQxZ9S60LfpMl7u9vyBvzbcFqQRPdTY2XKv82e+UixPQVomqDEz4md2UVJtORNQdee5gYyyG5rAzElJUzCLct1rhd+7yArHSrsjLV5H71eUNDWmSCNHptRem4e5OvhYbpbbeLwoucxyC5LdPRTnAluF64/jFdfArCicoExz1ytm11RTZt14uvMVxG6E63bKtPgYiRyq8uLkS1X6fUxI6Nz4qGpxSlOZbMiAjPp4POzj4FObLEAIdbshh44kI+eGQRtNNIBsSEKOajLo43DcJrNcZ2LzPAkOHVVfHLpL3V7Jwy22xWUwIIeD8DzsHQfNhnfQO3SAPiCCRugYnaIzNEEMJegn+oV+e5898IQn71Cv09S8Rf+Zd/sPG4rTlQ==</latexit>

Xf

Figure 1: Overview of the proposed approach (best viewed with colors) : (Top row) the sparse networked
dynamical system (NDS) is partitioned into clusters using dynamic spatio-temporal data resulting into an agent
representation (each color represents an agent). The time-series associated with each node is also color coded by
the agents. (Bottom row) the re-arranged multi-dimensional spatio-temporal data is fed to the GNN along with
the agent network structure to learn the nonlinear observables. Learning the distributed geometric Koopman
operator by exploiting the sparsity of the multi agent system is shown in lower right, with colors in the Koopman
matrix capturing the distributed connection in the agent topology (white blocks correspond to no edges between
the agents and hence they are all zeros).

61

Contributions. The main contributions of this paper are summarized as follows:62

• We develop methods for learning distributed Koopman operator for large-scale networks, using63

system topology and network sparsity properties for NDS. We present a system theoretic learning64

approach that can exploit the network connectivity structure via GNNs.65

• We introduce information theoretic-based clustering strategies for sparse NDS to learn a coars-66

ened structure and model the system using a hierarchical multi-agent paradigm.67

• We present theoretical results on bounding the performance of the distributed geometric Koop-68

man operator with respect to its centralized counterpart.69

2

Learning Distributed Geometric Koopman Operator for Sparse Networked Dynamical Systems

• We demonstrate that DKGNN yields two benefits. It improves the scalability of learning, and70

for sparse NDS with divergent dynamics across different parts of the network, it outperforms71

prediction performance of centralized approaches.72

1.1 Related Work73

Koopman operator theory The infinite-dimensional Koopman operator is computationally in-74

tractable. Several methods for identifying approximations of the infinite-dimensional Koopman75

operator on a finite-dimensional space have recently been developed. Most notable works include76

dynamic mode decomposition (DMD) [17, 24], extended DMD (EDMD) [18, 25], Hankel DMD77

[26], naturally structured DMD (NS-DMD) [27] and deep learning based DMD (deepDMD) [20, 28].78

These methods are data-driven and one or more of these methods have been successfully applied79

for system identification [17, 29] including system identification from noisy data [30], data-driven80

observability/controllability gramians for nonlinear systems [31, 32], control design [33–35], data-81

driven causal inference in dynamical systems [36] and to identify persistence of excitation conditions82

for nonlinear systems [37]. [38] discusses distributed design of Koopman without control and using83

dictionary lifting functions.84

Graph Neural Networks GNNs [22, 39] have found widespread use into every application involving85

non-Euclidean data [40]. Extending GNNs to model physics-driven processes gives rise to a new86

class of physics-inspired neural networks (PINN) [8–10]. A common theme is to model many-body87

interactions via a nearest-neighbor graph and then model the evolution of that graph [6, 7, 9]. However,88

addressing issues around compositionality [7, 23] and scalability becomes important as the foundation89

for PI(G)NN matures and we seek to model larger, multi-scale spatio-temporal interactions. Moreover,90

applications such as molecular biology [20] and power grid [41] motivate the modeling of NDS where91

the graph structure is distinct from k-nearest neighbor graphs, with sparsity and connectivity that92

resemble small-world networks. Recent works such as [21] provides a bridge that seeks to integrate93

GNNs and Koopman operators to improve generalization ability and result in simpler linear transition94

dynamics. However, their approach for learning Koopman state transitions and GNN embedding95

results in performance and scalability bottlenecks when system size increases.96

2 Methodology97

2.1 Networked Dynamical Systems and the Koopman Operator98

Problem Statement: Consider a networked dynamical system (NDS) evolving over a network,99

G = (V, E). Let the number of nodes and edges be nv and ne respectively and the governing equation100

for the NDS on G is given by,101

xt+1 = F (xt), (1)
where xt ∈M ⊆ Rn is the concatenated system state at time t and F :M→M is the discrete-time102

nonlinear transition mapping. Our goal is to learn the system dynamics as expressed in equation (1)103

in a distributed approach combining the Koopman operator theory, graph neural networks and by104

leveraging on network sparsity properties.105

Exploring the network structure, the nv nodes could be grouped to form na agents where na ≤ nv106

and results in a network denoted by Ga = (Va, Ea) with the state at any time t is partitioned as107

xt = [x>t,1, . . . , x
>
t,na]> where for every α ∈ {1, . . . , na}, the states xt,α belongs to agent α. For108

completion, we mention that the number of nodes in Va is equal to na. The motivation behind109

exploring the network structure is to develop models that will possess certain advantages when110

compared to the centrally learned models. A method to identify Ga from G for practical dynamical111

systems is discussed later in the paper. Associated with the system (1) is a linear operator, namely the112

Koopman operator U [42] which is defined as follows.113

Definition 1 (Koopman Operator (KO) [42]). Given any h ∈ L2(M), the Koopman operator114

U : L2(M) → L2(M) for the system (1) is defined as [Uh](x) = h(F (x)), where L2(M) is the115

space of square integrable functions onM.116

Originally developed for autonomous systems, recently Koopman framework has been extended to117

systems with control [43, 44]. In this paper we consider a controlled dynamical system of the form:118

xt+1 = F (xt) +G(xt)ut, (2)

3

Learning Distributed Geometric Koopman Operator for Sparse Networked Dynamical Systems

where G :M→ Rn×q is the input vector field and ut ∈ Rq denote the control input to the system at119

time t. The Koopman operator associated with (2) is defined on an extended state-space obtained as120

the product of the original state-space and the space of all control sequences, resulting in a control-121

affine dynamical system on the extended state-space [43, 44]. In general, the Koopman operator is an122

infinite-dimensional operator, but for computation purposes, a finite-dimensional approximation of123

the operator is constructed from the obtained time-series data as discussed below.124

Consider the time-series data from a networked dynamical system as X = [x1 x2 . . . xk] ∈125

Rn×k, and the corresponding control inputs U = [u1 u2 . . . uk] ∈ Rq×k. Define one time-step126

separated datasets, Xp and Xf from X as Xp = [x1, x2, . . . , xk−1], Xf = [x2, x3, . . . , xk] and let127

S = {Ψ1, . . . ,Ψm} be the choice of non-linear functions or observables where Ψi ∈ L2(Rn,B, µ)128

(where B is the Borel σ algebra and µ denote the measure [42]) and Ψi : Rn → C. Define a vector129

valued observable function Ψ : Rn → Cm as, Ψ(x) := [Ψ1(x) Ψ2(x) · · · Ψm(x)]
>
. Then the130

following optimization problem which minimizes the least-squares cost yields the Koopman operator131

and the input matrix.132

minA,B ‖ Yf −AYp −BU ‖2F (3)

where Yp = Ψ(Xp) = [Ψ(x1), · · · ,Ψ(xk−1)], Yf = Ψ(Xf) = [Ψ(x2), · · · ,Ψ(xk)], A ∈ Rm×m is133

the finite dimensional approximation of the Koopman operator defined on the space of observables and134

the matrix B ∈ Rm×q is the input matrix. The optimization problem (3) can be solved analytically135

and the approximate Koopman operator and the input matrix are given by [A B] = Yf [Yp U]
†

136

[43], where (·)† is the Moore-Penrose pseudo-inverse of a matrix. Identifying the observable functions137

such that S is invariant under the action of the Koopman operator is challenging. In this work, graph138

neural network-based mappings are used to construct the non-linear observable functions that satisfy139

the invariance by simultaneously learning the observables and the Koopman operator.140

2.2 Graph Neural Network based Koopman Observables141

Consider the network G with nv nodes where the time-series data at each node is supplemented with142

the node attribute capturing the nature of the node, denoted by the vector xvi where i = {1, 2, . . . , nv}.143

For instance, we can characterize the generators in a electric power grid network with their inertia144

values. Similarly, the designer can embed knowledge about the interaction between the agents using145

edge attributes, denoted as xeij for the edge connecting nodes i and j. We consider a graph neural146

network embedding to transition from the actual state-space to the lifted state-space using multiple147

compositional neural operations. At the tth time-step, the node, and edge attributes are combined148

along with the state vectors of the agents which are compactly written as,149

xkt,i = fkv (xk−1t,i ,
∑

j∈N (i)

fke (xk−1t,i , xk−1vi , xk−1t,j , xk−1vj , xk−1eij)) (4)

where the superscript k denotes the kth layer of the GNN, and functions fe(·), and fv(·) are edge150

and node-level aggregation functions in a GNN architecture. We use φ(·) to denote the multi-layer151

GNN operation in a compact form.152

3 Distributed Geometric Koopman Operator with Control Inputs153

This section formally presents the computation of distributed geometric Koopman operator with154

control. The (centralized) Koopman operator with control input for the system (2) is obtained by155

solving (3). For the na agent NDS, the resultant KO can be represented as n2a block matrices:156

A =

A1

A2

...
Ana

 =

A11 A12 · · · A1na

A21 A22 · · · A2na
...

...
. . .

...
Ana1 Ana2 · · · Anana

 (5)

The dynamics of the αth agent have the dimension, mα, such that,
∑na
α=1mα = m. It now follows157

that the block matrix Aαβ ∈ Rmα×mβ denotes the transition of agent α with respect to β and the158

transition mapping for agent α is given by Aα. Similarly, the control input matrix is partitioned159

4

Learning Distributed Geometric Koopman Operator for Sparse Networked Dynamical Systems

as B = blkdiag(B1, B2, . . . , Bna), where the matrix Bα corresponds to input matrix of agent160

α ∈ {1, 2, . . . , na}. The objective of the distributed learning is to compute these block matrices in161

a distributed manner and form the geometric Koopman operator and the control input matrix for162

the complete NDS as opposed to directly solving the centralized optimization problem in Eq. (3)163

without sacrificing the performance with the distributed method. There are two major advantages164

to this approach. Firstly, if there is change in the local agent behavior, one can simply update the165

transition mapping corresponding to that agent and the agents dependent on it to learn the full system166

evolution. Secondly, computational advantages can be obtained by incorporating parallel learning of167

each agent transition mapping and this approach is more appropriate for the sparse networks.168

By exploiting the topology of the network, the KO and the control input matrices are computed169

in a distributed manner. As a consequence, if agent i is not a neighbor of agent j, that is, the170

dynamics of agent i is not affected by the dynamics of agent j, we make Aij = 0. Therefore, for171

every α ∈ {1, 2, · · · , na}, let Âα be the transition mapping corresponding to the agent α, then172

the distributed Koopman is given by AD =
[
Â>1 Â>2 · · · Â>na

]>
. For a sparse network, the173

distributed Koopman will be a sparse matrix irrespective of the centralized Koopman being either174

sparse or full (Figure 1). Consider Xp and Xf be the one time-step separated time-series data on the175

state space, φ be the GNN-embedding that maps the state space data into an embedded space. Then176

the time-series data on the embedded space for every agent can be expressed in terms of the neighbor177

and non-neighbor agents.178

Remark 2. The one time-step forwarded time-series data corresponding to agent α is given by179

AαYp =
[
AN (α) AN (α)

] [Yp,N (α)

Y
p,N (α)

]
, where N (α) is the set of agents containing the neighbors of180

agent α and itself, N (α) is the set of agents who are non-neighbors of agent α and the (rectangular)181

matrices, AN (α) and AN (α)
are the transition mappings associated with the agent α.182

Let Rp,α, Rf,α, and Ru,α be the transformation matrices defined in such a way that they remove zero183

rows of any matrix, D when pre-multiplied to the matrix, D. Suppose if the matrix D has no zero184

rows then the transformation matrices are identity.185

Theorem 3. The centralized Koopman (A,B) learning problem described in Eq. (3) can be186

expressed as a distributed Koopman (AD, BD) learning problem such that there exists ma-187

trices, Â1, Â2, . . . , Âna , B̂1, B̂2, . . . , B̂na and the distributed Koopman operator is given by188

AD =
[
Â>1 Â>2 · · · Â>na

]>
, input matrix is BD = blkdiag(B̂1, B̂2, . . . , B̂na) where for189

α ∈ {1, 2, . . . , na}, Âα = AN (α)Rp,α, B̂α = BαRu,α and AN (α), Bα are obtained as a solu-190

tion to the optimization problem minAN(α),Bα ‖ Yf,α −AN (α)Yp,N (α) −BαUα ‖2F .191

From Theorem 3, with gt = φ(xt), φ being the GNN encoder, the distributed geometric Koopman192

operator system with control input is given by gt+1 = ADgt +BDut.193

Corollary 4. The distributed learning problem and the centralized learning problem yield the same194

Koopman operator for a fully connected network.195

The proofs for Theorem 3 and Corollary 4 are included in the appendix.196

3.1 Training Distributed Geometric Koopman Model197

Agent 1

Agent 2
inputs

Agent
inputs

Figure 2: Distributed geometric Koopman architecture

The state space data is198

mapped to the GNN-199

embedded space using the200

GNN encoder φ. To201

retrieve the actual state202

space data from the GNN-203

embedded space, we use204

a decoding GNN opera-205

tor such that, x̂t = ϕ(gt).206

The decoder ϕ(·) fol-207

lows similar GNN archi-208

tecture as encoder how-209

ever it maps from the210

5

Learning Distributed Geometric Koopman Operator for Sparse Networked Dynamical Systems

lifted Koopman space to the original state space. Looking into the agent-wise architectural de-211

tail, both encoder and decoder functions can be represented for the ith agent as φi(·), ϕi(·) as shown212

in Figure 2 with the understanding that all the GNN functionalities take the neighbouring agent213

states and attributes as additional inputs. This facilitates the computation of Koopman matrices in a214

distributed manner. This architecture leads us to compute an auto-encoding loss, and a prediction215

loss over the time-steps t = 1, 2, . . . , k − 1, and are given as follows:216

Lae =
1

k

k−1∑
t=1

na∑
i=1

ϕi(φi(xt,i))− xt,i, Lp =
1

k

k−1∑
t=1

na∑
t=1

ϕi(gt+1,i)− xt+1,i,

with total loss of L = Lae + Lp. The algorithm will consist of two main update steps sequentially,217

one to update the Koopman and the control input matrix in a distributed manner for a fixed set218

of GNN encoder and decoder parameters, and another to update GNN weights with a learned219

distributed geometric Koopman representation. Algorithm 1 shows the computational steps where220

the function DistributedKoopmanMatrices(·) presents the distributed Koopman state and input221

matrices, AD, BD. Thereafter the Main(·) function runs the update of the distributed Koopman222

matrices and the GNN parameters sequentially for each epoch as shown in steps 15 and 16. For223

simplicity of representation in the algorithm, we use the compact notations φ(·) and ϕ(·) instead of224

agent-wise representation as in Figure 2.225

Algorithm 1 Distributed Geometric Koopman Operator with Control Computation
1: function DISTRIBUTEDKOOPMANMATRICES(Xp, Xf , U, φ)
2: Map the time-series data to the GNN-embedded space using φ as follows:

Yp = φ(Xp) = [φ(x1), φ(x2), · · · , φ(xk−1)], Yf = φ(Xf) = [φ(x2), φ(x3), · · · , φ(xk)]

3: for α = 1, 2, . . . , na do
4: Define the transformation matrices for agent α as:

Tp,α := blkdiag(ae1, . . . , aena), Tf,α := blkdiag(ee1, . . . , eena),

Tu,α := blkdiag(eu1, . . . , euna), where
aei = (aα + eα)i ⊗ Imi , eei = (eα)i ⊗ Imi , eui = (eα)i ⊗ Iqi ,

where ⊗ is the Kronecker product.
5: Compute Yf,α, Yp,N (α), Uα associated with agent α as

Yf,α = Rf,αTf,αYf , Yp,N (α) = Rp,αTp,αYp, Uα = Ru,αTu,αU

6: Solve the optimization problem: minAN(α),Bα ‖ Yf,α −AN (α)Yp,N (α) −BαUα ‖2F
7: Compute Âα = AN (α)Rp,α and B̂α = BαRu,α
8: end for
9: return: AD =

[
Â>1 Â>2 · · · Â>n

]>
, BD = blkdiag(B̂1, B̂2, . . . , B̂n).

10: end function
11: function MAIN()
12: Given state (Xp, Xf) and input (U) time-series data from a Na agent network
13: Initialize the GNN-based encoder (φ) and decoder (ϕ) network
14: for epochs = 1,2,. . . , Nepoch do
15: Koopman Update: Run (AD, BD) = DistributedKoopmanMatrices(Xp, Xf , U, φ)
16: GNN Update: Compute , L = Lp + Lae, and backpropagate L to update φ, ϕ parameters.
17: end for
18: return: Updated AD, BD, φ, and, ϕ.
19: end function

3.2 Multi-Agent Network Construction via Information Transfer-based Clustering226

Mapping of nodes in an NDS to nodes in an agent network is a core aspect for our proposed method.227

We use an information-theoretic clustering method [45]that exploits both the adjacency matrix228

structure as well as dynamical properties of the network for this task. For a dynamical system, the229

definition of information transfer [46] from a dynamical state xt,i to another state xt,j is based on230

the intuition that the total entropy of a dynamical state xt,j is equal to the sum of the entropy of xt,j231

when another state xt,i is not present in the dynamics and the amount of entropy transferred from xt,i232

6

Learning Distributed Geometric Koopman Operator for Sparse Networked Dynamical Systems

Figure 3: Illustration of divergent cluster dynamics from a power network. Top plot shows that the transient
frequency trajectories from three different clusters behave differently. Phase-space plots in the bottom row
illustrate the temporal evolution of the nodal attributes in each cluster, initial time-points are marked larger and
lighter, while later time-points are marked thinner and darker.

to xt,j . In particular, for a discrete-time dynamical system xt+1 = F (xt), where xt = [x>t,1 x>t,2]>233

and F = [f>1 f>2]>, the one-step information transfer from xt,1 to xt,2, as the system evolves from234

time-step t to t+ 1 is [Txt,1→xt,2]t+1
t = H(xt+1,2|xt,2)−H6xt,1(xt+1,2|xt,2). Here, H(xt+1,2|xt,2)235

is the conditional Shannon entropy of xt,2 for the original system and H 6xt,1(xt+1,2|xt,2) is the236

conditional entropy of xt,2 for the system where xt,1 has been held frozen from at time t. Note that237

the information transfer is in general asymmetric and characterize the influence of one state on any238

other state. Furthermore, for stable dynamical system the information transfer between the states239

always settle to a steady state value.240

We use this information transfer measure to define an influence graph for the NDS studied in this paper.241

We form a directed weighted graph with the states as the nodes and introduce an edge from xt,1 to242

xt,2 iff the information transfer from xt,1 to xt,2 is non-zero. Moreover, the edge-weight for the edge243

xt,1 → xt,2 is exp(−|Txt,1→xt,2 |/β) [45], where |Txt,1→xt,2 | is the steady-state information transfer244

from xt,1 to xt,2 (we assume stable dynamics) and β > 0 is a parameter similar to temperature in a245

Gibbs’ distribution. Applying this to a dynamical system, a directed weighted graph is computed246

based on the information transfer and is clustered accordingly to obtain a multi-agent network.247

Figure 3 uses a power network example to illustrate how the nodal attributes from different clusters248

demonstrate different transient evolution trajectories.249

4 Numerical Experiments250

In this section, we aim to answer the following research questions through our experiments: (RQ1)251

How does the distributed GNN-based Koopman (DKGNN) model’s performance compare with252

other state-of-the-art approaches such as centralized GNN-based Koopman (CKGNN) [21] and253

graph neural network approaches for modeling multi-body interactions [47] (RQ2) How do various254

dynamical system properties such as sparsity, spatio-temporal correlation, and damping properties255

influence the performance boost from the distributed algorithm? (RQ3) What is the potential for256

distributed approaches for scaling to larger NDS in the future?257

Power
Grid CKGNN

DKGNN
area-wise
clustering

DKGNN
IT-based
clustering

PN Oscillator CKGNN DKGNN PN

Disturbance
Location MSE MSE MSE MSE Disturbance

Location MSE MSE MSE

One hop 0.0352 0.0064 0.0079 0.1123 High damping 1.938E-04 1.026E-04 3.6E-04
Two hops 0.0212 0.0044 0.0049 0.2498 Low Damping 1.404E-04 1.185E-04 5.205E-04

Three hops 0.029 0.0075 0.0098 0.0468 Random 4.86E-05 4.059E-04 4.7328
High degree 0.0055 0.0013 8.538E-04 0.0246
Low degree 0.0195 0.005 0.006 0.0427 Rope 0.2301 0.2008 0.3091

Table 1: Prediction performance of the proposed distributed geometric Koopman approach with other baselines
in terms of mean square errors (MSE) averaged over all time-steps and states for test trajectories.

7

Learning Distributed Geometric Koopman Operator for Sparse Networked Dynamical Systems

Figure 4: DKGNN out-performs the baselines. Columns A, B, C represent for rope, oscillator (high damping)
and grid (high degree) examples, respectively. Prediction error over time-steps with darker lines representing
median are shown in Row A, and MSE-based box plots are shown in Row B.

Environments. We perform numerical experiments on three different data-sets. The baseline rope258

system introduced in [7] consists of a set of six objects connected via a line graph. The second dataset259

is a network of oscillators which is a prototype used for modelling various real-world systems in260

biology [48, 49], synchronization of fireflies [50], superconducting Josephson junctions [51] etc. We261

consider a sparse network of oscillators consisting of 50 agents where the dynamics at each oscillator262

are governed by a second-order swing differential equation. The network density for this network263

is 0.0408. Our third dataset studies a significantly larger and complex system of immense practical264

importance. Power grid networks [52] are complex infrastructures that are essential for every aspect265

of modern life. The ability to predict transient behavior in such networks is key to the prevention266

of cascading failures and effective integration of renewable energy sources [53, 54]. We consider267

the IEEE 68-bus power grid model [55] that represents the interconnections of New England Test268

System and New York Power System. This is a sparse, heterogeneous network with a network density269

0.0378; the network has 68-nodes, with 16-nodes representing generators and the rest being loads.270

The ability to accurately predict changes in voltage and frequency is key to capturing the tendency271

of a power grid to move towards undesired oscillatory regions. Transient stability simulations for272

the grid datasets are performed by the Power Systems Toolbox [56]. We provide more details on the273

datasets and experiments in the supplementary.274

Baselines and Implementation Details. We baseline our method against centralized GNN-based275

Koopman (CKGNN) [21] and propagation network (PN), a GNN-based approach [47] using their276

available implementations. We evaluate all models on the trajectory prediction task where we predict277

the node-level time-series measurements for each of these environments that represent velocity of278

objects (rope), angles and frequencies of oscillators, and frequency measurements for the power grid.279

For PN, we slightly modify the prediction workflow from the author-provided implementation to280

make sure that we always feed the PN with the predicted signal values except for the initial signal281

input for the prediction task in consecutive time steps. Our methods are implemented on the Pytorch282

framework [57] and run on an NVIDIA A100 GPU. For PN baseline, we used 3 propagation steps283

with 32 as the batch size. The dimensions of the hidden layer of relation encoder, object encoder,284

and propagation effect are set as follows, for PN we use 150, 100, and 100, respectively for all the285

cases, for the rope system with CKGNN and DKGNN, we have used 120, 100, and 100, and for the286

oscillator and grid example with both CKGNN and DKGNN, these are set to be 60. The models287

are trained with Adam based stochastic gradient descent optimizer with a learning rate of 10−5. For288

rope, we consider 10, 000 episodes with 100 time-steps and training-testing division of 90%− 10%,289

and batch size of 8 episodes. We consider the oscillator node state trajectories of 100 time-steps290

and trained with a total of 9000 time-steps, batch size of 10 trajectories, and have tested with three291

different testing configurations and predicting for each trajectory of 100 time-steps. Considering the292

power grid network, we have considered 50 time-steps to capture the initial fast transients and train293

the model with 1100 time steps with a batch size of 5 episodes along with testing in five different294

scenarios with multiple testing trajectories each with 50 time steps.295

8

Learning Distributed Geometric Koopman Operator for Sparse Networked Dynamical Systems

RQ1: Prediction performance analysis. Figure 4 shows that DKGNN outperforms other baselines296

in trajectory prediction. Table 1 reports the mean square error (MSE) averaged over all time-297

steps and over all states in the test trajectory dataset. The rope system is minimally sparse with298

a network density of 0.33, thereby resulting in improved predictive performance for the DKGNN299

when compared to KGNN. The improvements are significantly pronounced for sparser and larger300

network models of oscillators (network density 0.0408) and power grid (network density 0.0378).301

The superior prediction performance over considerable trajectory time-steps (as demonstrated in302

Figure 4 second row) substantiates the applicability of DKGNN for sparse NDS.303

RQ2.1 Performance with respect to varying NDS properties. The damping parameter provides304

us with a way to systematically study the response of an NDS to an input. Lower damping implies305

that the system will take longer to converge to a steady state. We hypothesize that the introduction of306

input perturbations of the same magnitude at different nodes will evoke different responses depending307

on the connectivity structure around these nodes. For the oscillator network, we consider testing308

scenarios with disturbances created at high damping nodes (> 13 in appropriate units) and low309

damping nodes (< 1). We consider five different configurations for the power grid network. Three of310

the scenarios are based on the perturbations in the loads which are respectively one-hop, two-hop, and311

three-hop away from the generator buses, and two other load disturbance scenarios are considered at312

locations with high and low degrees of connectivity. We observe DKGNN approach is able to produce313

better prediction performance with all of these scenarios (81, 79, 74, 76, 74% improvements with314

area-wise partitioning, and 77, 76, 66, 84, 69% improvements with information-theoretic partitioning315

for the five cases listed in Table I from top to bottom with respect to the centralized approach).316

The second and third columns of Figure 4 correspond to the oscillator (where the disturbance is at317

high-damping nodes), and the power grid (where the disturbance is at high-degree buses), respectively,318

where both of them show the superior performance of DKGNN to the baselines.319

RQ2.2 Performance with respect to sparse NDS clustering. This subsection reports our validation320

of the effectiveness of the information-theoretic clustering based agent structure discovery using the321

power grid network. The IEEE-68 bus grid network specifications also include an area-wise parti-322

tioning that is done based on eigenvalue separation and extensive application of domain-knowledge323

[58]. Both the expert-driven partitioning and our clustering driven partitioning divide the grid into 5324

clusters and yields a 5-agent network to use for the training. Table I and Figure 4 show that DKGNN325

exploits the localized dominant dynamics and yields superior predictive performance when compared326

to the centralized approaches such as CKGNN and PN.327

RQ3. Computational Scalability. We compare the run time of our DKGNN with the328

corresponding centralized one, KGNN. Let τ(φ + AD + ϕ) denote the combined compu-329

tation time for GNN encoder (φ), distributed Koopman (AD) and the GNN decoder (ϕ).330

Re
du

ct
io

n
in

 to
ta

l r
un

-ti
m

e
(%

)

0

12.5

25

37.5

50

Rope Power grid Oscillators

Figure 5: Scalability of DKGNN compared
to KGNN model.

Similarly, τ(φ + A + ϕ) denote the computation for331

KGNN where the centralized Koopman (A) is obtained.332

The reduction in total run-time (%) is computed as333
τ(KGNN)−τ(DKGNN)

τ(KGNN) × 100. From Figure 5, it is clear334

there is a significant reduction in run time for the larger335

and sparser networks of oscillator (50 nodes with network336

density = 0.041), and power grid (68 nodes, 5 clustered337

areas and network density of 0.038). These examples see338

a considerable performance boost (45.63% for oscillator339

and 32% for power grid) owing to capturing the domi-340

nant localized dynamic behavior. The rope which is a341

smaller system with 6 nodes and single excitation (at the342

top) shows only slightly improvement in runtime (5%), owing to high network density (0.33).343

5 Conclusions344

We present a geometric deep learning based distributed Koopman operator (DKGNN) framework345

that can exploit dynamical system sparsity to improve computational scalability. Our results on346

bounding the DKGNN performance with respect to its centralized counterpart provides a rigorous347

theoretical foundation. Extensive empirical studies on large NDS of oscillators and practical power348

grid models show the effectiveness of DKGNN design with respect to varying degree of NDS349

dynamical properties and sparsity patterns. Future research will look into incorporating attention350

capability to the distributed design, investigating the robustness aspects in presence of physical or351

adversarial faults, and perform control designs on the learned distributed dynamical model.352

9

Learning Distributed Geometric Koopman Operator for Sparse Networked Dynamical Systems

References353

[1] Coryn AL Bailer-Jones, David JC MacKay, and Philip J Withers. A recurrent neural network354

for modelling dynamical systems. Network: Computation in Neural Systems, 9(4):531–547,355

1998. 1356

[2] Min Han, Zhiwei Shi, and Wei Wang. Modeling dynamic system by recurrent neural network357

with state variables. In International Symposium on Neural Networks, pages 200–205. Springer,358

2004.359

[3] Olalekan Ogunmolu, Xuejun Gu, Steve Jiang, and Nicholas Gans. Nonlinear systems identifica-360

tion using deep dynamic neural networks. arXiv preprint arXiv:1610.01439, 2016.361

[4] Yu Wang. A new concept using LSTM neural networks for dynamic system identification. In362

2017 American Control Conference (ACC), pages 5324–5329. IEEE, 2017.363

[5] FA Gers, J Schmidhuber, and F Cummins. Learning to forget: Continual prediction with lstm.364

Neural computation, 12(10):2451–2471, 2000. 1365

[6] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction366

networks for learning about objects, relations and physics. In Advances in neural information367

processing systems, pages 4502–4510, 2016. 1, 2, 3368

[7] Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Antonio Torralba. Learning369

particle dynamics for manipulating rigid bodies, deformable objects, and fluids. arXiv preprint370

arXiv:1810.01566, 2018. 2, 3, 8371

[8] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:372

A deep learning framework for solving forward and inverse problems involving nonlinear partial373

differential equations. Journal of Computational physics, 2019. 3374

[9] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and375

Peter W Battaglia. Learning to simulate complex physics with graph networks. arXiv preprint376

arXiv:2002.09405, 2020. 2, 3377

[10] Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization378

with physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.379

1, 3380

[11] Tohru Katayama. Subspace methods for system identification. Springer Science & Business381

Media, 2006. 1382

[12] Michel Verhaegen and Vincent Verdult. Filtering and system identification: a least squares383

approach. Cambridge University Press, 2007.384

[13] Rik Pintelon and Johan Schoukens. System identification: a frequency domain approach. John385

Wiley & Sons, 2012.386

[14] Zoltán Szabó, Peter SC Heuberger, József Bokor, and Paul MJ Van den Hof. Extended Ho–387

Kalman algorithm for systems represented in generalized orthonormal bases. Automatica, 36388

(12):1809–1818, 2000. 1389

[15] Bernard O Koopman. Hamiltonian systems and transformation in Hilbert space. Proceedings of390

the National Academy of Sciences of the United States of America, 17(5):315, 1931. 1391

[16] Igor Mezić. Spectral properties of dynamical systems, model reduction and decompositions.392

Nonlinear Dynamics, 41(1):309–325, 2005. 1393

[17] Clarence W Rowley, Igor Mezic, Shervin Bagheri, Philipp Schlatter, Dans Henningson, et al.394

Spectral analysis of nonlinear flows. Journal of Fluid Mechanics, 641(1):115–127, 2009. 1, 3395

[18] Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A data–driven approxima-396

tion of the Koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear397

Science, 25(6):1307–1346, 2015. 1, 3398

[19] Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear399

embeddings of nonlinear dynamics. Nature communications, 9(1):1–10, 2018. 1400

10

Learning Distributed Geometric Koopman Operator for Sparse Networked Dynamical Systems

[20] Enoch Yeung, Soumya Kundu, and Nathan Hodas. Learning deep neural network representations401

for koopman operators of nonlinear dynamical systems. In 2019 American Control Conference402

(ACC), pages 4832–4839. IEEE, 2019. 1, 3403

[21] Yunzhu Li, Hao He, Jiajun Wu, Dina Katabi, and Antonio Torralba. Learning compositional404

koopman operators for model-based control. arXiv preprint arXiv:1910.08264, 2019. 2, 3, 7, 8,405

14406

[22] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.407

The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.408

2, 3409

[23] Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li Fei-Fei, Joshua B Tenenbaum,410

and Daniel LK Yamins. Flexible neural representation for physics prediction. arXiv preprint411

arXiv:1806.08047, 2018. 2, 3412

[24] J Nathan Kutz, Steven L Brunton, Bingni W Brunton, and Joshua L Proctor. Dynamic mode413

decomposition: data-driven modeling of complex systems. SIAM, 2016. 3414

[25] Qianxiao Li, Felix Dietrich, Erik M Bollt, and Ioannis G Kevrekidis. Extended dynamic mode415

decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the416

Koopman operator. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(10):103111,417

2017. 3418

[26] Hassan Arbabi and Igor Mezic. Ergodic theory, dynamic mode decomposition, and computation419

of spectral properties of the Koopman operator. SIAM Journal on Applied Dynamical Systems,420

16(4):2096–2126, 2017. 3421

[27] Bowen Huang and Umesh Vaidya. Data-driven approximation of transfer operators: Naturally422

structured dynamic mode decomposition. In 2018 Annual American Control Conference (ACC),423

pages 5659–5664. IEEE, 2018. 3424

[28] Naoya Takeishi, Yoshinobu Kawahara, and Takehisa Yairi. Learning Koopman invariant425

subspaces for dynamic mode decomposition. In Advances in Neural Information Processing426

Systems, pages 1130–1140, 2017. 3427

[29] Peter J Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of428

fluid mechanics, 656:5–28, 2010. 3429

[30] Subhrajit Sinha, Bowen Huang, and Umesh Vaidya. On robust computation of koopman operator430

and prediction in random dynamical systems. Journal of Nonlinear Science, pages 1–34, 2019.431

3432

[31] Umesh Vaidya. Observability gramian for nonlinear systems. In Decision and Control, 2007433

46th IEEE Conference on, pages 3357–3362. IEEE, 2007. 3434

[32] Amit Surana and Andrzej Banaszuk. Linear observer synthesis for nonlinear systems using435

Koopman operator framework. IFAC-PapersOnLine, 49(18):716–723, 2016. 3436

[33] Steven L Brunton, Bingni W Brunton, Joshua L Proctor, and J Nathan Kutz. Koopman invariant437

subspaces and finite linear representations of nonlinear dynamical systems for control. PloS438

one, 11(2):e0150171, 2016. 3439

[34] Bowen Huang, Xu Ma, and Umesh Vaidya. Feedback stabilization using koopman operator. In440

2018 IEEE Conference on Decision and Control (CDC), pages 6434–6439. IEEE, 2018.441

[35] Milan Korda and Igor Mezić. Koopman model predictive control of nonlinear dynamical442

systems. In The Koopman Operator in Systems and Control, pages 235–255. Springer, 2020. 3443

[36] S Sinha and U Vaidya. On data-driven computation of information transfer for causal inference444

in discrete-time dynamical systems. Journal of Nonlinear Science, pages 1–26, 2020. 3445

[37] Nibodh Boddupalli, Aqib Hasnain, Sai Pushpak Nandanoori, and Enoch Yeung. Koopman446

operators for generalized persistence of excitation conditions for nonlinear systems. In 2019447

IEEE 58th Conference on Decision and Control (CDC), pages 8106–8111. IEEE, 2019. 3448

[38] Sai Pushpak Nandanoori, Seemita Pal, Subhrajit Sinha, Soumya Kundu, Khushbu Agarwal,449

and Sutanay Choudhury. Data-driven distributed learning of multi-agent systems: A koopman450

operator approach. In 2021 60th IEEE Conference on Decision and Control (CDC), pages451

5059–5066. IEEE, 2021. 3452

11

Learning Distributed Geometric Koopman Operator for Sparse Networked Dynamical Systems

[39] Mostafa Haghir Chehreghani. Half a decade of graph convolutional networks. Nature Machine453

Intelligence, 4(3):192–193, 2022. 3454

[40] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.455

Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine,456

2017. 3457

[41] Wenlong Liao, Birgitte Bak-Jensen, Jayakrishnan Radhakrishna Pillai, Yuelong Wang, and458

Yusen Wang. A review of graph neural networks and their applications in power systems.459

Journal of Modern Power Systems and Clean Energy, 2021. 3460

[42] Andrzej Lasota and Michael C Mackey. Chaos, fractals, and noise: stochastic aspects of461

dynamics, volume 97. Springer Science & Business Media, 2013. 3, 4462

[43] Milan Korda and Igor Mezić. Linear predictors for nonlinear dynamical systems: Koopman463

operator meets model predictive control. Automatica, 93:149–160, 2018. 3, 4464

[44] Joshua L Proctor, Steven L Brunton, and J Nathan Kutz. Dynamic mode decomposition with465

control. SIAM Journal on Applied Dynamical Systems, 15(1):142–161, 2016. 3, 4466

[45] Subhrajit Sinha. Data-driven influence based clustering of dynamical systems.467

arXiv:2204.02373, accepted for publication in European Control Conference, 2022. 6, 7468

[46] Subhrajit Sinha and Umesh Vaidya. Causality preserving information transfer measure for469

control dynamical system. In 2016 IEEE 55th Conference on Decision and Control (CDC),470

pages 7329–7334. IEEE, 2016. 6471

[47] Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B Tenenbaum, Antonio Torralba, and Russ Tedrake.472

Propagation networks for model-based control under partial observation. pages 1205–1211,473

2019. 7, 8474

[48] Charles S Peskin. Mathematical aspects of heart physiology. Courant Inst. Math, 1975. 8475

[49] Michael B Elowitz and Stanislas Leibler. A synthetic oscillatory network of transcriptional476

regulators. Nature, 403(6767):335–338, 2000. 8477

[50] John Buck. Synchronous rhythmic flashing of fireflies. ii. The Quarterly review of biology, 63478

(3):265–289, 1988. 8479

[51] Kurt Wiesenfeld, Pere Colet, and Steven H Strogatz. Synchronization transitions in a disordered480

josephson series array. Physical review letters, 76(3):404, 1996. 8481

[52] Florian Dörfler, Michael Chertkov, and Francesco Bullo. Synchronization in complex oscillator482

networks and smart grids. Proceedings of the National Academy of Sciences, 110(6):2005–2010,483

2013. 8484

[53] Benjamin Schäfer, Dirk Witthaut, Marc Timme, and Vito Latora. Dynamically induced cascad-485

ing failures in power grids. Nature communications, pages 1–13, 2018. 8486

[54] Joshua W Busby, Kyri Baker, Morgan D Bazilian, Alex Q Gilbert, Emily Grubert, Varun Rai,487

Joshua D Rhodes, Sarang Shidore, Caitlin A Smith, and Michael E Webber. Cascading risks:488

Understanding the 2021 winter blackout in texas. Energy Research & Social Science, 2021. 8489

[55] Wei Yao, Lin Jiang, Jinyu Wen, QH Wu, and Shijie Cheng. Wide-area damping controller490

of facts devices for inter-area oscillations considering communication time delays. IEEE491

Transactions on Power Systems, 29(1):318–329, 2013. 8492

[56] Joe H Chow and Kwok W Cheung. A toolbox for power system dynamics and control engineer-493

ing education and research. IEEE transactions on Power Systems, 7(4):1559–1564, 1992. 8,494

15495

[57] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,496

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative497

style, high-performance deep learning library. Advances in neural information processing498

systems, 32, 2019. 8499

[58] Joe H Chow. Power system coherency and model reduction, volume 84. Springer, 2013. 9500

12

Learning Distributed Geometric Koopman Operator for Sparse Networked Dynamical Systems

6 Appendix501

Notations. The vectors aj , ej respectively denote the jth column of the adjacency matrix, Adj and a502

vector of standard basis in Rm. The notation, (aj)i denotes the ith entry of the column vector aj . Im503

denote the identity matrix of size m. The Kronecker product is denoted by ⊗. The block diagonal504

matrix with block matrices, M1,M2, . . . ,M` is denoted by blkdiag(M1,M2, . . . ,M`).505

Suppose D =
[
D>1 D>2 · · · D>`

]>
where D1, D2, . . . , D` are wide rectangular matrices. Then506

from the definition of the Frobenius norm, we have,507

‖ D ‖2F=
∑̀
i=1

‖ Di ‖2F . (S1)

If D1 and D2 are two matrices, then508

‖ D1 −D2 ‖2=‖ D1 ‖2 + ‖ D2 ‖2 −2trace(D>1 D2) (S2)
where trace(D>1 D2) denote the Frobenius inner product of the matrices D1 and D2. For any matrix509

D, the Moore-Penrose inverse is denoted by D†.510

6.1 Proof of Theorem 3511

Proof. Consider the the centralized learning problem described in Eq. M3 (where the notation ‘M’512

indicates the equation is from the main manuscript). This problem is now rewritten with respect to513

each agent as follows.514

‖ Yf −AYp −BU ‖2F=

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

Yf,1 −A1Yp −B1U1

Yf,2 −A2Yp −B2U2

...
Yf,na −AnaYp −BnaUna

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

F

=

na∑
α=1

‖ Yf,α −AαYp −BαUα ‖2F (from Eq. S1)

=

na∑
α=1

‖ Yf,α −AN (α)Yp,N (α) −BαUα −AN (α)
Y
p,N (α)

‖2F (from Remark 2)

=

na∑
α=1

‖ Yf,α −AN (α)Yp,N (α) −BαUα ‖2F + ‖ AN (α)
Y
p,N (α)

‖2F

− 2 trace
(

(Yf,α −AN (α)Yp,N (α) −BαUα)>AN (α)
Y
p,N (α)

)
(from Eq. S2)

=

na∑
α=1

‖ Yf,α −AN (α)Yp,N (α) −BαUα ‖2F

where the last step follows by noticing that AN (α)
= 0 since the agent α is not connected to the515

agents in N (α). In the above steps, the computation of Yf,α and Yp,N (α) involves computing the516

transformation matrices Tf,α, Rf,α, Tp,α, Rp,α which are computed under the knowledge of the517

network topology.518

Finally, we obtain,519

min
A,B

‖ Yf −AYp −BU ‖2F = min
AN(α),Bα

α∈{1,2,...,na}

na∑
α=1

‖ Yf,α −AN (α)Yp,N (α) −BαUα ‖2F

=

na∑
α=1

min
AN(α),Bα

‖ Yf,α −AN (α)Yp,N (α) −BαUα ‖2F

For every α ∈ {1, 2, . . . , na}, AN (α), Bα can now be obtained analytically as
[
AN (α) Bα

]
=520

Yf,α
[
Yp,N (α) Uα

]†
and the transition mapping corresponding to the agent α is given by521

Âα = AN (α)Rp,α, for α ∈ {1, 2, . . . , na}.
Finally the distributed Koopman is given by AD =

[
Â>1 Â>2 · · · Â>na

]>
, input matrix is522

BD = blkdiag(B1, B2, . . . , Bna). Hence the proof.523

13

Learning Distributed Geometric Koopman Operator for Sparse Networked Dynamical Systems

Figure 6: Rope prediction performance under random control inputs (the solid lines indicate the
actual state trajectories and the dotted line shows the corresponding predictions.)

6.2 Proof of Corollary 4524

Proof. The proof follows by noticing that in a fully connected network, for any agent α, the corre-525

sponding non-neighbors set, N(α) is empty.526

6.3 More Details on the Numerical Studies527

The network topologies of the three example systems are given in Figure 7. We follow the physics528

simulation engine provided by [21] for generating the data for the rope example, and follow the529

baseline node and edge attributes for the objects and connecting edges.530

For the oscillator network, each of the individual node dynamics follows a second order differential531

equation. The overall dynamics is represented as:532 [
θ̇

θ̈

]
=

[
0nv Inv

−βM−1L M−1D

] [
θ

θ̇

]
, (6)

where θ ∈ Rnv , θ̇ ∈ Rnv are the angles and frequencies of the oscillator.533

Figure 7: Network topologies

The diagonal matrices M and D contain inertia534

and damping of the nodes. The coupling of the535

nodes are captured by the Laplacian L with their536

strengths represented by β. 0nv and Inv denote537

the zero and identity matrices of size nv . For the538

oscillators we have created one-hot vector for539

node attributes. We have divided the nodes into540

low inertia (< 3 in appropriate units), medium541

inertia (> 3, but < 8), and considerably high542

inertia (> 8), thereby creating 3−dimensional543

node attribute vectors. The edge attributes are also one-hot vectors with 6 different types. Based544

14

Learning Distributed Geometric Koopman Operator for Sparse Networked Dynamical Systems

Figure 8: Oscillator prediction performance with random perturbations where the model is distributed
according to the adjacency matrix of the underlying network (the solid lines indicate the actual state
trajectories and the dotted line shows the corresponding predictions.)

Figure 9: Powergrid prediction performance with information theoretic clustering and two-hop
load perturbations (the solid lines indicate the actual state trajectories and the dotted line shows the
corresponding predictions.)

on inertia, these types are: low-low, high-high, medium-medium, and un-directed low-medium,545

medium-high, and low-high.546

The IEEE benchmark 68-bus powergrid model is simulated with detailed dynamics following the547

power system toolbox [56]. Our prediction models are learned for fast transient frequencies. The548

node attributes are designed similarly as the oscillator studies, however, here the nodes are physical549

15

Learning Distributed Geometric Koopman Operator for Sparse Networked Dynamical Systems

powergrid buses which are classified as generator buses, load buses, and buses without any loads550

or generators (let us call it none), thereby creating 3−dimensional one-hot vectors. The edges551

connecting buses represent powergrid transmission lines, thereby, edge attributes are characterized as552

generator-load, load-none, and generator-none connections, resulting in a 3−dimensional one-hot553

vectors.554

The network density of the systems are used to characterize the sparsity which is defined as the ratio555

between the number of edges to the maximum number of possible edges.556

We present few examples of the prediction performance of the DKGNN model for predicting the557

dynamic system behaviours over time steps. Figure 6 shows the the positions and velocities of the558

rope objects 2, 4 and 6 for the predicted performance with respect to the actual physics simulations.559

Figure 8 shows an example of prediction performance for the network of oscillators at nodes 12, 23,560

and 45. Prediction performance for the powergrid example is shown in Figure 9 with information-561

theoretic clustering used for the DKGNN for buses 20, 54, and 60. These figures show satisfactory562

performance for the distributed geometric Koopman models for all the networked dynamic system563

examples.564

16

	1 Introduction
	1.1 Related Work

	2 Methodology
	2.1 Networked Dynamical Systems and the Koopman Operator
	2.2 Graph Neural Network based Koopman Observables

	3 Distributed Geometric Koopman Operator with Control Inputs
	3.1 Training Distributed Geometric Koopman Model
	3.2 Multi-Agent Network Construction via Information Transfer-based Clustering

	4 Numerical Experiments
	5 Conclusions
	6 Appendix
	6.1 Proof of Theorem 3
	6.2 Proof of Corollary 4
	6.3 More Details on the Numerical Studies

