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1. Proof of Proposition 8

Proposition The Adversarial Robust Reject Option Loss ℓγd for the class of linear classi-
fiers is γ-right shift of ℓd loss as follows.

ℓγd(yf(x), ρ) = (1− d) 1{yf(x)<−ρ+γ } + d 1{ yf(x)≤ ρ+γ } (1)

Proof Let ℓ be a non-increasing function of yf(x). The following property holds for ℓ.

sup
x

ℓ(yf(x)) = ℓ(inf
x

yf(x)) (2)

Both indicator functions, 1{yf(x′)<−ρ} and 1{yf(x′)<ρ}, are non-increasing with yf (x′).
Hence using (2) in the definition of the Adversarial Robust Reject Option Loss, we have

ℓγd(yf(x), ρ) = (1− d) 1{ infx′:∥x−x′∥≤γ yf(x′)<−ρ } + d 1{ infx′:∥x−x′∥≤γ yf(x′)≤ρ }. (3)

For Hlin, f(x) = w · x with ∥w∥ = 1. The optimization problem formulated in eq. (3)
is as follows :

min
x′

y (w · x′)

s.t. ∥x− x′∥ ≤ γ
(4)

(4) is a convex optimization problem. The Lagrangian is given by

L(x′, λ) = y w · x′ + λ (∥x− x′∥ − γ)

where λ ∈ R is a Lagrangian multiplier. Applying KKT conditions, we get the following

1. y w − λ x−x′

∥x−x′∥ = 0

2. λ ≥ 0

3. ∥x− x′∥ ≤ γ

4. λ (∥x− x′∥ − γ) = 0 (Complementary Slackness)
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Using the condition from complementary slackness , we have the trivial case when λ = 0 as
the objective function value is always 0. For λ ̸= 0, it holds that ∥x− x′∥ = γ. Hence, the
constraint ∥x− x′∥ ≤ γ is activated. From 1.) we have x− x′ = y γ

λ w. But, ∥x− x′∥ = γ,
so ∥y γ

λ w∥ = γ. Solving, we get λ = ∥w∥ and x− x′ = y γ
∥w∥w.

The optimal solution to (4) is given by (x′)∗ = x − y γ w
∥w∥ . Substituting this in (3), we

get

ℓγd(yf(x), ρ) = (1− d) 1{yf(x)<−ρ+γ } + d 1{ yf(x)≤ ρ+γ } (5)

which is equivalent to γ-right shift of ℓd.

2. Proof of Lemma 9

Lemma The excess-inner risk for target loss ℓγd is given by

∆Cℓγd ,H(α, η) = Cℓγd ,H(α, η)− C∗
ℓγd ,H

(α, η) =

(η − d) 1min{η,1−η}−d≥0 + |2η − 1| 12η−1>0 1min{η,1−η}−d<0 if α < −ρ− γ

(1− d) η 1min{η,1−η}−d≥0+

{(η − (1− η)(1− d)) 12η−1>0 + (1− η)d 12η−1<0}1min{η,1−η}−d<0 if − ρ− γ ≤ α < −ρ+ γ

{(d− (1− η)) 12η−1>0 + (d− η) 12η−1<0}1min{η,1−η}−d<0 if − ρ+ γ ≤ α ≤ ρ− γ

(1− d) (1− η) 1min{η,1−η}−d≥0+

{η d 12η−1>0 + ((1− η)− η (1− d)) 12η−1<0}1min{η,1−η}−d<0 if ρ− γ < α ≤ ρ+ γ

(1− η − d) 1min{η,1−η}−d≥0 + |2η − 1| 12η−1<0 1min{η,1−η}−d<0 if ρ+ γ < α

Proof A case by case breakdown of the definition of Cℓγd ,H(α, η) is the first step. Depend-

ing upon prediction or rejection, the minimal inner-risk will be C∗
ℓγd ,H

(η) = C∗
ℓγd ,H

(α, η) =

min{η, 1− η, d}. Additionally, we also assume that ρ+ γ < 1. For each sub-case, a further
splitting is done based on the minimal inner-risk value and using ∆Cℓγd ,H(α, η), we have
the desired result. We prove it for one of the cases and for rest of the cases, proof follows
the similar procedure. Consider the case of α < −ρ − γ : when the minimal inner risk
is d, then, ∆Cℓγd ,H(α, η) = Cℓγd ,H(α, η) − ∆C∗

ℓγd ,H
(α, η) = η − d. When the minimal inner

risk is η, ∆Cℓγd ,H(α, η) = η − η = 0 and for the sub-case when minimal inner risk is 1 − η,

∆Cℓγd ,H(α, η) = η− (1− η) = 2η− 1. Combining all the sub-cases using indicator functions,
we have for

∆Cℓγd ,H(α, η) = (η − d) 1min{η,1−η}−d≥0 + |2η − 1| 12η−1>0 1min{η,1−η}−d<0



3. Proof of Theorem 10

Theorem Any margin-based surrogate ℓ is (ℓγd ,H)-calibrated if and only if it satisfies the
following :

inf
ρ−γ<α≤∥x∥

Cℓ,H(α,
1

2
) > inf

0≤α≤∥x∥
Cℓ,H(α,

1

2
) (6)

inf
−∥x∥≤α≤ρ+γ

Cℓ,H(α, η) > inf
−∥x∥α≤∥x∥

Cℓ,H(α, η) η ∈ (
1

2
, 1] (7)

Proof Let ℓ be a margin-based surrogate to ℓγd . Using Proposition 5, we have that ℓ is
(ℓγd ,H)-calibrated if and only if its corresponding calibration function δ(ϵ) > 0, ∀ϵ. The case
for η = 0.5 is dealt separately. Based on range of η, two cases are made and for each one,
a further split is made based on prediction or rejection, and then, the calibration function
is computed. This further has 3 sub-cases - (based on the “Bayes classifier” and change in
definition of Cℓγd ,H

)

1. 1− η < d

2. d ≤ 1− η and η ≥ ηright

3. d ≤ 1− η and η < ηright

δ(ϵ) = δ1 + δ2 (8)

where
δ1 = δr(ϵ) 1{min(η,1−η)−d≥0} (9)

δ2 = δp(ϵ) 1{min(η,1−η)−d<0} (10)

For δ(ϵ) > 0 to hold ∀η ∈ [0, 1] , we need either δ1(ϵ) > 0 or δ2(ϵ) > 0 to hold
∀η ∈ [0, 1]. Note that one among δ1 or δ2 is always 0. We use Figure 1 to split the case of
η > 0.5, into further sub-cases. First split is based on prediction or rejection, i.e minimizer
is {η, 1− η} or d. In the prediction case, a definition change occurs around the points ηleft
(when η < 0.5) or ηright (when η > 0.5), as seen in Figure 1.

Case i) : η > 1
2

Sub-case A) : min{η, 1− η} < d (prediction)

δp(ϵ) =



∞ if ϵ > η − (1− η)(1− d)

inf{α:−ρ−γ≤α<−ρ+γ}∆Cℓ,H(α, η) if η − (1− η)(1− d) ≥ ϵ > 2η − 1

inf{α:α<−ρ−γ}∆Cℓ,H(α, η) if 2η − 1 ≥ ϵ > η d

inf{α:ρ−γ<α≤ρ+γ}∆Cℓ,H(α, η) if η d ≥ ϵ > d− (1− η)

inf{α:−ρ+γ≤α≤ρ−γ}∆Cℓ,H(α, η) if d− (1− η) ≥ ϵ

(11)

Sub-case B) : min{η, 1− η} ≥ d (rejection)
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(a) (b)

Figure 1: Graph of excess target risk vs η for two different d values.

I) η ≥ ηright

δr(ϵ) =



∞ if ϵ > (1− d) η

inf{α:−ρ−γ≤α<−ρ+γ}∆Cℓ,H(α, η) if (1− d) η ≥ ϵ > η − d

inf{α:α<−ρ−γ}∆Cℓ,H(α, η) if η − d ≥ ϵ > (1− η)(1− d)

inf{α:ρ−γ<α≤ρ+γ}∆Cℓ,H(α, η) if (1− η)(1− d) ≥ ϵ > 1− η − d

inf{α:−ρ+γ≤α≤ρ−γ}∆Cℓ,H(α, η) if 1− η − d ≥ ϵ

(12)

II) η < ηright [Narrow band]

δr(ϵ) =



∞ if ϵ > (1− d) η

inf{α:−ρ−γ≤α<−ρ+γ}∆Cℓ,H(α, η) if (1− d) η ≥ ϵ > (1− η)(1− d)

inf{α:α<−ρ−γ}∆Cℓ,H(α, η) if (1− η)(1− d) ≥ ϵ > η − d

inf{α:ρ−γ<α≤ρ+γ}∆Cℓ,H(α, η) if η − d ≥ ϵ > 1− η − d

inf{α:−ρ+γ≤α≤ρ−γ}∆Cℓ,H(α, η) if 1− η − d ≥ ϵ

(13)

NOTE: For margin-based surrogate, Cℓ,H(f(x), η) and ∆Cℓ,H(f(x), η) are symmetrical
about η = 1

2 . Hence, the definitions for Case ii) can be obtained by replacing η with 1− η
from Case i).

Case ii) : η < 1
2

Sub-case A) : min{η, 1− η} < d (prediction)



δp(ϵ) =



∞ if ϵ > (1− η)− η(1− d)

inf{α:−ρ−γ≤α<−ρ+γ}∆Cℓ,H(α, η) if (1− η)− η(1− d) ≥ ϵ > 1− 2η

inf{α:α<−ρ−γ}∆Cℓ,H(α, η) if 1− 2η ≥ ϵ > (1− η) d

inf{α:ρ−γ<α≤ρ+γ}∆Cℓ,H(α, η) if (1− η) d ≥ ϵ > d− η

inf{α:−ρ+γ≤α≤ρ−γ}∆Cℓ,H(α, η) if d− η ≥ ϵ

(14)

Sub-case B) : min{η, 1− η} ≥ d (rejection)
I) η ≤ ηleft

δr(ϵ) =



∞ if ϵ > (1− d) (1− η)

inf{α:−ρ−γ≤α<−ρ+γ}∆Cℓ,H(α, η) if (1− d) (1− η) ≥ ϵ > 1− η − d

inf{α:α<−ρ−γ}∆Cℓ,H(α, η) if 1− η − d ≥ ϵ > η (1− d)

inf{α:ρ−γ<α≤ρ+γ}∆Cℓ,H(α, η) if η (1− d) ≥ ϵ > η − d

inf{α:−ρ+γ≤α≤ρ−γ}∆Cℓ,H(α, η) if η − d ≥ ϵ

(15)

II) η > ηleft [Narrow band]

δr(ϵ) =



∞ if ϵ > (1− d) (1− η)

inf{α:−ρ−γ≤α<−ρ+γ}∆Cℓ,H(α, η) if (1− d) (1− η) ≥ ϵ > (1− d) η

inf{α:α<−ρ−γ}∆Cℓ,H(α, η) if (1− d) η ≥ ϵ > 1− η − d

inf{α:ρ−γ<α≤ρ+γ}∆Cℓ,H(α, η) if 1− η − d ≥ ϵ > η − d

inf{α:−ρ+γ≤α≤ρ−γ}∆Cℓ,H(α, η) if η − d ≥ ϵ

(16)

For each of these sub-cases, we arrive at this definition using the graph below.
For each case, the corresponding calibration function definitions are (11) , (12) and (13)

respectively. Using Proposition 5, it holds that ℓ is (ℓγd ,H)-calibrated if and only if its
corresponding calibration function δ(ϵ) > 0. Applying this for each case , we get

1. infα>ρ+γ Cℓ,H(α, 1− η) > infα∈Z Cℓ,H(α, η)
≡
infα<−ρ−γ Cℓ,H(α, η) > infα∈Z Cℓ,H(α, η)

2. infρ−γ<α≤ρ+γ Cℓ,H(α, 1− η) > infα∈Z Cℓ,H(α, η)
≡
inf−ρ−γ≤α≤−ρ+γ Cℓ,H(α, η) > infα∈Z Cℓ,H(α, η)

3. inf |α|≤ρ−γ Cℓ,H(α, η) > infα∈Z Cℓ,H(α, η)
≡
inf−ρ+γ≤α≤ρ−γ Cℓ,H(α, η) > infα∈Z Cℓ,H(α, η)
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4. infρ−γ<α≤ρ+γ Cℓ,H(α, η) > infα∈Z Cℓ,H(α, η)

where Z =
[
−∥x∥ , ∥x∥

]
.

By combining all 4 conditions mentioned above, we get

inf
−∥x∥≤α≤ρ+γ

Cℓ,H(α, η) > inf
−∥x∥α≤∥x∥

Cℓ,H(α, η) (17)

Now, we compute δ(ϵ) for η = 0.5

∆Cℓγd ,H(α, η) =


0 if |α| ≤ ρ− γ
1−d
2 if ρ− γ < |α| ≤ ρ+ γ

1
2 − d if ρ+ γ < |α|

(18)

δ(ϵ) =


∞ if |α| ≤ ρ− γ or ϵ > 1−d

2

infρ−γ<|α|≤ρ+γ ∆Cℓ,H (α, 12) if |α| > ρ− γ and 1−d
2 ≥ ϵ > 1

2 − d

inf |α|>ρ+γ ∆Cℓ,H (α, 12) if |α| > ρ− γ and 1
2 − d ≥ ϵ

(19)

Bayes-inner risk : C∗
ℓγd ,H

(α, 12) = d

Using Proposition 5 on (19), we get

A surrogate ℓ is (ℓγd ,H) calibrated if and only if

inf
ρ−γ<|α|≤ρ+γ

∆Cℓ,H(α,
1

2
) > 0 =⇒ inf

ρ−γ<α≤ρ+γ
Cℓ,H(α,

1

2
) > inf

α∈Z
Cℓ,H(α,

1

2
) (20)

and

inf
|α|>ρ+γ

∆Cℓ,H(α,
1

2
) > 0 =⇒ inf

α>ρ+γ
Cℓ,H(α,

1

2
) > inf

α∈Z
Cℓ,H(α,

1

2
) (21)

By combining (20) and (21) , we get

inf
ρ−γ<α≤∥x∥

Cℓ,H(α,
1

2
) > inf

0≤α≤∥x∥
Cℓ,H(α,

1

2
) (22)

NOTE : Cℓ,H(α, 12) is symmetric about 0. So, C∗
ℓ,H(α,

1
2) = inf0≤α≤∥x∥ Cℓ,H(α, 12).

Thus, for any surrogate ℓ to be (ℓγd ,H)-calibrated if and only if it satisfies (6) and (7).



4. Proof of Theorem 11

Theorem Let ℓ be a differentiable and convex margin based surrogate to ℓγd. Then, ℓ is
not (ℓγd ,H)-calibrated.

Proof Assume that ℓ, convex, differentiable surrogate to ℓγd is H-calibrated. For η = 1
2 ,

the minimizer of the conditional risk lies at 0. As ℓ is convex, Cℓ,H(α, η) is also convex
and Cℓ,H(α, 12) = 0.5 ℓ̄(α). From convexity of ℓ̄, we have ℓ̄(0) ≤ ℓ̄(α) ∀α. Thus, calibra-
tion condition (6) is satisfied. Next, we consider the case when η > 1

2 and use proof by
contradiction.

Any convex function on a compact set [θ1, θ2] ⊂ R can be characterised as :

1. Non-increasing

2. Non-decreasing

3. Non-increasing upto ω (∈ [θ1, θ2]) and non-decreasing on [ω, θ2]

Using the above characterization, for calibration condition (7) to hold, two cases are
possible.

Let α⋆ = argminα Cℓ,H(α, η).

Case i) : ρ+ γ < α⋆ ≤ ∥x∥ (when there exists a minimizer inside the compact set)

d

dα
Cℓ,H(α, η)

∣∣∣∣
α=α⋆

= 0

∴ η ℓ
′
(α⋆) = (1− η) ℓ

′
(−α⋆)

As η ∈ (12 , 1], we have that η
1−η > 1. Thus, ℓ

′
(−α⋆) > ℓ

′
(α⋆). But as ℓ is convex, ℓ

′
is

monotone. Hence, [ℓ
′
(α⋆)− ℓ

′
(−α⋆)](2 α⋆) ≥ 0. This implies that ℓ

′
(α⋆) ≥ ℓ

′
(−α⋆). Hence,

we have arrived at a contradiction.

Case ii) : α⋆ > ∥x∥ (non-increasing on the compact set)

Then, it holds that d
dαCℓ,H(α, η)

∣∣∣∣
α=∥x∥

< 0 and since (7) requires the minima to lie in

(ρ+ γ, ∥x∥ ], the following must hold :

Cℓ,H(ρ+ γ, η) > Cℓ,H(∥x∥, η) ∀x such that ∥x∥ > ρ+ γ

Using the definition of conditional risk and rearranging the terms, we get(
η

1− η

)
[ ℓ(∥x∥)− ℓ(ρ+ γ) ] < [ ℓ(−ρ− γ)− ℓ(−∥x∥) ]

Since η ∈ (12 , 1], it holds that
η

1−η > 1. Thus, ℓ(∥x∥)− ℓ(ρ+ γ) < ℓ(−ρ− γ)− ℓ(−∥x∥)
which implies that ℓ̄(∥x∥) < ℓ̄(ρ + γ). But, ℓ̄ is a even, convex function. Hence, it holds
that ℓ̄(∥x∥)− ℓ̄(ρ+ γ) ≥ ℓ̄

′
(ρ+ γ) [ ∥x∥ − (ρ+ γ) ] and ℓ̄

′
(0) = 0. So, ℓ̄

′
(ρ+ γ) > 0 and we

have that ℓ̄(∥x∥) ≥ ℓ̄(ρ+ γ) resulting in a contradiction.
Thus, no differentiable convex surrogate is (ℓγd ,H)-calibrated.
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5. Proof of Theorem 12

Theorem No margin-based surrogate ℓ satisfying the property of Quasi-concavity of the
conditional risk Cℓ,H(α, η) in α, ∀η ∈ [0, 1] is (ℓγd ,H)-calibrated.

Proof Let ℓ be a margin-based surrogate whose Cℓ,H(α, η) is quasi-concave in α , ∀η ∈ [0, 1]
and assume that ℓ is (ℓγd ,H)-calibrated. Let ℓ̄(α) = ℓ(α) + ℓ(−α). Since it holds true
∀η ∈ [0, 1], it must hold for η = 1

2 . At η = 1
2 , Quasi-concavity is transferred onto ℓ̄. Also,

every quasi-concave function on R can be characterized as following :

1. non-increasing on R

2. non-decreasing on R

3. non-decreasing up to a point of maxima θ i.e on (−∞, θ], constant upto to ω (θ ≤ ω)
and non-increasing on [ω,∞).

Also, ℓ̄ is symmetric about 0. Hence, Quasi-concavity for even function would imply
that first two cases essentially are reduced to constant functions. Else, third case prevails
and we get two scenarios, maxima on either side of 0, both of which imply that ℓ̄(α) is
non-increasing for α > 0. For any surrogate ℓ to be (ℓγd ,H)-calibrated , it must satisfy (6)
i.e

inf
α ∈ (ρ−γ,∥x∥ ]

Cℓ,H(α,
1

2
) > inf

α ∈ [0,∥x∥ ]
Cℓ,H(α,

1

2
)

∴ inf
α ∈ (ρ−γ,∥x∥ ]

ℓ̄(α) > inf
α ∈ [0,∥x∥ ]

ℓ̄(α)

This is in contradiction to ℓ̄(α) being non-increasing. Hence, our initial assumption was
incorrect.

6. Reproducibility

Link to the repository containing the code files for reproducing the simulations is given
here.

https://github.com/Vrund0212/Calibrated-Losses-for-Adversarial-Robust-Reject-Option-Classification
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