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Abstract

We study how group symmetry helps improve data efficiency and generalization1

for end-to-end differentiable planning algorithms, specifically on 2D robotic path2

planning problems: navigation and manipulation. We first formalize the idea from3

Value Iteration Networks (VINs) on using convolutional networks for path plan-4

ning, because it avoids explicitly constructing equivalence classes and enable end-5

to-end planning. We then show that value iteration can always be represented as6

some convolutional form for (2D) path planning, and name the resulting paradigm7

Symmetric Planner (SymPlan). In implementation, we use steerable convolution8

networks to incorporate symmetry. Our algorithms on navigation and manipula-9

tion, with given or learned maps, improve training efficiency and generalization10

performance by large margins over non-equivariant counterparts, VIN and GPPN.11

1 Introduction12

Figure 1: The path planning problem has
symmetry, so we study how to exploit its
symmetry in (differentiable) planning. Red
dots are goal. The optimal actions A =
SymPlan(M) (bottom row) for the maps M
(top row) are guaranteed to be equivariant
SymPlan(g.M) = g.SymPlan(M) under 	
rotations for (2D) path planning. For exam-
ple, the action in the NW corner of A is the
same as the action in the SW corner of g.A,
after also rotating the arrow 	 90◦.

Model-based planning usually struggles in complex prob-13

lems, and planning in more structured and abstract space14

is a major solution [1, 2, 3, 4]. Symmetry is ubiquitous15

in learning and decision-making problems and can effec-16

tively reduce search space for planning. However, ex-17

isting planning algorithms using symmetry assumes per-18

fect dynamics knowledge, needs to explicitly build equiv-19

alence classes, or does not consider problem structure20

[5, 4, 6, 7, 8]. For example, if we use A* on path plan-21

ning, we cannot specify visually obvious rotation sym-22

metry in Figure 1, and need to detect in manually from23

the provided dynamics model. This would be even more24

challenging to detect in differentiable planning.25

Nevertheless, symmetry in model-free deep reinforce-26

ment learning (RL) has been studied recently [9, 10].27

However, it can only effectively handle pixel-level28

“element-wise” symmetry, such as flipping or rotating29

state and action together. Despite of this, a critical bene-30

fit of model-free RL agents that enables great asymptotic31

performance is its end-to-end differentiability. This moti-32

vates us to combine the spirit of both: is it possible to de-33

sign an end-to-end differentiable planning algorithm that34

makes use of symmetry in environments?35

In this work, we propose to (1) avoid explicitly building equivalence classes for symmetric states36

while (2) realize planning in an end-to-end differentiable manner. We are motivated by work in37

the equivariant network and geometric deep learning community [11, 12, 13, 14, 15, 16], which38
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treat an RGB image as a mapping Z2 → R3 and apply equivariant convolutions between feature39

maps. It satisfies our desiderata: equivariant networks on images do not need to explicitly consider40

“symmetric pixels” while guarantee symmetry properties. Based on the intuition, we propose a41

framework, Symmetric Planning (SymPlan), to understand a straightforward but general problem,42

path planning, as operating like images, called steerable feature fields [14, 16]. We focus on 2D grid43

and prove that value iteration (VI) for 2D path planning is equivariant under the isometries of Z2:44

translations, rotations, and reflections, and further show that VI here is a special form of steerable45

convolution network [14]. This provides us a foundation to equip Value Iteration Network (VIN,46

[17]) with steerable convolution. We implement the equivariant steerable version of VIN, named47

SymVIN, and use a variant, GPPN [18], to build SymGPPN. Both SymPlan methods achieve great48

improvement on training efficiency and generalization performance to unseen random maps, which49

showcases the advantage of exploiting symmetry from environments for planning.50

Our contributions are as follows:51

• Understand the inherent symmetry in path planning problems (on 2D grids), formulate value iter-52

ation in as steerable convolution network, and connect both to incorporate symmetry into VI.53

• Based on the formulation, implement equivariant steerable version of VIN and GPPN.54

• Show significant improvement in training and generalization on 2D navigation and manipulation.55

2 Related work56

Planning with symmetries (Symmetric Planning). Symmetries widely exist in various domains,57

and have been exploited in classic planning algorithms as well as model checking [5, 4, 6, 19, 20,58

21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. Zinkevich and Balch [7] show the invariance of value function59

for an MDP with symmetry. Narayanamurthy and Ravindran [8] prove that finding exact symmetry60

in MDPs is graph isomorphism complete. However, they are based on classic planning algorithms,61

such as A*, and have a fundamental issue with exploitation of symmetries: they explicitly construct62

equivalence classes of symmetric states, which explicitly represents states and introduces symmetry63

breaking. Therefore, they are intractable (NP-hard) in maintaining symmetries in trajectory rollout64

and forward search (for large state space and symmetry group) and incompatible with differentiable65

pipelines for representation learning, hindering it from wider applications in RL and robotics.66

State abstraction for detecting symmetries. Coarsest state abstraction aggregates all symmetric67

states into equivalence classes, studied in MDP homomorphisms and bisimulation [3, 31, 2]. How-68

ever, they usually require perfect MDP dynamics knowledge and do not scale up well, because of the69

complexity in maintaining abstraction mappings (homomorphisms) and abstracted MDPs. van der70

Pol et al. [32] integrate symmetry into model-free RL based on MDP homomorphisms [3], which71

avoids the challenges in handling symmetry in forward search. Park et al. [33] learn equivariant72

transition models, but do not consider planning. Additionally, the formulation in commonly defined73

symmetric MDPs [3, 9, 6, 7] is different from our symmetry formulation for path planning, since74

they study "element-wise" symmetry for every state-action pairs and require reward to be symmet-75

ric. Our reward is not symmetric and we mainly study symmetry of the underlying domain (2D76

grid), as further discussed in Section F.2.77

Symmetries and equivariance in deep learning. Equivariant neural networks are used to incor-78

porate symmetry in supervised learning for different domains (e.g. grid and sphere), symmetry79

groups (e.g. translations and rotations), and group representation on feature spaces [34]. Cohen and80

Welling [15] introduce G-CNNs, followed by Steerable CNNs [14] which generalizes from scalar81

feature fields to vector fields with induced representations. Kondor and Trivedi [13], Cohen et al.82

[12] study theory on the relation between equivariant maps and convolutions. Weiler and Cesa [16]83

propose to solve kernel constraints under arbitrary representations for E(2) and its subgroups by84

decomposing into irreducible representations, named E(2)-CNN.85

Differentiable planning. Our pipeline is based on learning to plan in a neural network in a differ-86

entiable manner. Value iteration network (VIN) [35] is a representative work that performs value87

iteration using convolution on lattice grids, and has been further extended [36, 18, 37, 38]. Other than88

using convolution network, works on integrating learning and planning into differentiable networks89

include [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]. In the theoretical side, Grimm et al. [50, 51]90

propose to understand the differentiable planning algorithms from value equivalence perspective,91

while Gehring et al. [52] study its gradient dynamics.92
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3 Preliminaries93

Markov decision processes. We model the path planning problems as Markov decision processes94

(MDP) [1]. An MDP is a 5-tupleM = 〈S,A, P,R, γ〉, with state space S, action spaceA, transition95

probability function P : S × A × S → R+, reward function R : S × A → R, and discount factor96

γ ∈ [0, 1]. Value functions V : S → R and Q : S ×A → R represent expected future returns [1].97

Symmetry groups and equivarance. A symmetry group is defined as a setG together with a binary98

composition map satisfying the axioms of associativity, identity, and inverse. A (left) group action99

of G on a set X is defined as the mapping (g, x) 7→ g.x which is compatible with composition.100

Given a function f : X → Y and G acting on X and Y , then f is G-equivariant if it commutes101

with group actions: g.f(x) = f(g.x),∀g ∈ G,∀x ∈ X . In the special case the action on Y is trivial102

g.y = y, then f(x) = f(g.x) holds, and we say f is G-invariant.103

Group representations. We mainly use two groups: dihedral group D4 and cyclic group C4. The104

cyclic group of 4 elements is C4 = 〈r | r4 = 1〉, a symmetry group of rotating a square. The105

dihedral group D4 = 〈r, s | r4 = s2 = (sr)2 = 1〉 includes both rotations r and reflections s, and106

has size |D4| = 8. A group representation defines how a group action transforms a vector space107

G × S → S. These groups have three types of representations of our interest: trivial, regular, and108

quotient representations, see [16]. The trivial representation ρtriv maps each g ∈ G to 1 and hence109

fixes all s ∈ S. The regular representation ρreg ofC4 group sends each g ∈ C4 to a 4×4 permutation110

matrix that cyclically permutes a 4-element vector, such as a one-hot 4-direction action. The regular111

representation of D4 maps each element to an 8 × 8 permutation matrix which does not act on 4-112

direction actions, which requires the quotient representations (quotienting out sr2 reflection part)113

and forming a 4 × 4 permutation matrix. It is worth mentioning the standard representation of the114

cyclic groups, which are 2× 2 rotation matrices, only used for visualization (Figure 2 middle).115

Steerable feature fields and Steerable CNNs. The concept of feature fields is used in (equivariant)116

CNNs [11, 12, 13, 14, 15, 16]. The pixels of an 2D RGB image x : Z2 → R3 on a domain Ω = Z2117

is a feature field. In steerable CNNs for 2D grid, features are formed as steerable feature fields118

f : Z2 → RC that associate a C-dimensional feature vector f(x) ∈ RC to each element on a119

base space, such as Z2. Defined like this, we know how to transform a steerable feature field and120

also the feature field after applying CNN on it, using some group [14]. The type of CNNs that121

operates on steerable feature fields is called Steerable CNN [14], which is equivariant to groups122

including translations as subgroup (Z2,+), extending [15]. It needs to satisfy a kernel steerability123

constraint, where the R2 and Z2 cases are considered in [16]. We consider the 2D grid as our domain124

Ω = S = Z2 and use G = p4m group as the running example. The group p4m = (Z2,+) o D4125

(wallpaper group) is semi-direct product of discrete translation group Z2 and dihedral groupD4, see126

[15, 14]. We visualize the transformation law of p4m on a feature field on Ω = Z2 in Figure 2127

(Middle), usually referred as induced representation [14, 16]. Additional details in Section G.128

Planning as convolution. The core component behind dynamic programming (DP) based algo-129

rithms in planning or reinforcement learning is Bellman (optimality) equation [53, 1]: V (s) =130

maxaR(s, a) + γ
∑
s′ P (s′|s, a)V (s′). Value Iteration (VI) iteratively applies Bellman operator131

and converges to fixed points [1, 53]. The key component of our interest is
∑
s′ P (s′|s, a)V (s′)132

that aggregates values V (s′) from adjacent states by expectation using transition probabilities, here133

referred as expected value operation. Tamar et al. [17] propose Value Iteration Network (VIN) that134

uses convolution (networks) for planning, as an instance of differentiable planning, by recursively135

applying planar convolutions and max-pooling over feature spaces on 2D grid Z2.136

4 Symmetric Planning Framework137

This section formulates the notion of Symmetric Planning (SymPlan). We expand the understanding138

of path planning in neural networks by planning as convolution on steerable feature fields (steerable139

planning). We use that to build steerable value iteration and show it is equivariant.140

4.1 Steerable Planning: planning on steerable feature fields141

We start the discussion based on Value Iteration Networks (VINs, [17]) and use a running example142

of planning on the 2D grid Z2. We aim to understand (1) how VIN-style networks embed planning143
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Construct 
Spatial MDP 

Figure 2: (Left) Construction of spatial MDPs from path planning problems, enabling G-invariant
transition. (Middle) The group acts on a feature field (MDP actions). We need to find the element
in the original field by f(r−1x), and also rotate the arrow by ρ(r), where r ∈ D4. We represent
one-hot actions as arrows (vector field, using ρstd) for visualization. (Right) Equivariance of V 7→ Q
in Bellman operator on feature fields, under 	 90◦ ∈ C4 rotation, which visually explains Theo-
rem 4.1. The example simulates VI for one step (see red circles; minus signs omitted) with true
transition P using 	 N-W-S-E actions. The Q-value field are for 4 actions and can be viewed as
either Z2 → R4 ([14, 16]) or Z2 o C4 → R (on p4 group, [15]). See Appendix H for more details.

and how its idea generalizes, (2) how is symmetry structure defined in path planning and how could144

it be injected into such planning networks.145

Constructing G-invariant transition: spatial MDP. Intuitively, the embedded MDP in a VIN146

is different from the original path planning problem, since (planar) convolutions are translation147

equivariant but there are different obstacles in different regions.148

We found the key insight in VINs is that it implicitly uses an MDP that has translation equivariance.149

The core idea behind the construction is that it converts obstacles (encoded in transition probability150

P , by blocking) into “traps” (encoded in reward R̄, by −∞ reward). This allows to use planar con-151

volutions with translation equivariance, and also enables use to further use steerable convolutions.152

The demonstration of the idea is shown in Figure 2 (Left). We call it spatial MDP, with different153

transition and reward function M̄ = 〈S,A, P̄ , R̄m, γ〉, which converts the “complexity” in the154

transition function P inM to the reward function R̄m in M̄. The state and action space are kept155

the same: state S = Z2 and action A ⊂ Z2 to move ∆s in four directions in a 2D grid. We provide156

the detailed construction of the spatial MDP in Appendix H.1.157

Steerable features fields. We generalize the idea from VIN, by viewing functions (in RL and158

planning) as steerable feature fields, motivated by [11, 12, 14]. This is analogous to pixels on images159

Ω → [255]3, and would allow us to apply convolution on it. The state value function is expressed160

as a field V : S → R, while the Q-value function needs a field with |A| channels: Q : S → R|A|.161

Similarly, a policy field1 has probability logits of selecting |A| actions. For the transition probability162

P (s′|s, a), we can use action to index it as P a(s′|s), similarly for reward Ra(s). The next section163

will show that we can convert the transition function to field and even convolutional filter. Additional164

details are in Appendix H.165

4.2 Symmetric Planning: symmetry by equivariance166

The seemingly slight change in the construction of spatial MDPs brings important symmetry struc-167

ture. The general idea in exploiting symmetry in path planning is to use equivariance to avoid168

explicitly constructing equivalence classes of symmetric states. To this end, we construct value169

iteration over steerable feature fields, and show it is equivariant for path planning.170

In VIN, the convolution is over 2D grid Z2, which is symmetric underD4 (rotations and reflections).171

However, we also know that VIN is already equivariant under translations. To consider all symme-172

tries, as in [14, 16], we understand the group p4m = G = B oH as constructed by a base space173

1We avoid the symbol π for policy since it is used for induced representation in [14, 16].
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B = G/H = (Z2,+) and a fiber groupH = D4, which is a stabilizer subgroup that fixes the origin174

0 ∈ Z2. We could then formally study such symmetry in the spatial MDP, since we construct it to175

ensure that the transition probability function in M̄ is G-invariant. Specifically, we can uniquely176

decompose any g ∈ Z2 oD4 as t ∈ Z2 and r ∈ D4 (and translations act "trivially" on action), so177

P̄ (s′ | s, a) = P̄ (g.s′ | g.s, g.a) ≡ P̄ ((tr).s′ | (tr).s, r.a) , ∀g = tr ∈ Z2 oD4,∀s, a, s′. (1)

Expected value operator as steerable convolution. The equivariance property can be shown step-178

by-step: (1) expected value operation, (2) Bellman operator, and (3) full value iteration. First, we179

use G-invariance to prove that the expected value operator
∑
s′ P (s′|s, a)V (s′) is equivariant.180

Theorem 4.1. If transition is G-invariant, the expected value operator E over Z2 is G-equivariant.181

The proof is in Appendix I.1 and visual understanding is in Figure 2 middle. However, this provides182

intuition but is inadequate since we do not know: (1) how to implement it with CNNs, (2) how to use183

multiple feature channels like VINs, since it shows for scalar-valued transition probability and value184

function (corresponding to trivial representation). To this end, we next prove that we can implement185

value iteration using steerable convolution with general steerable kernels.186

Theorem 4.2. If transition is G-invariant, there exists a (one-argument, isotropic) matrix-valued187

steerable kernel P a(s− s′) (for every action), such that the expected value operator can be written188

as a steerable convolution and is G-equivariant:189

Ea[V ] = P a ? V, [g.[P a ? V ]](s) = [P g.a ? [g.V ]](s), ∀s ∈ Z2,∀g ∈ Z2 oD4. (2)

The full derivation is provided in Appendix I. We write the transition probability as P a(s, s′), and190

we show it only depends on state difference P a(s − s′) (or one-argument kernel [12]) using G-191

invariance, which is the key step to show it is some convolution. Note that we use one kernel P a192

for each action (four directions), and when the group acts on E, it also acts on the action P g.a (and193

state, so technically acting on S × A). Additionally, if the steerable kernel also satisfies the D4-194

steerability constraint [16, 54], the steerable convolution is equivariant under p4m = Z2 oD4. We195

can then extend VINs from Z2 translation equivariance to p4m-equivariance (translations, rotations,196

reflections). The derivation follows the existing work on steerable CNNs [15, 14, 16, 12], while this197

is our goal: to justify the close connection between path planning and steerable convolutions.198

Steerable Bellman operator and value iteration. We can now represent all operations in Bellman199

(optimality) operator on steerable feature fields over Z2 (or steerable Bellman operator) as follows:200

201

Vk+1(s) = max
a

Ra(s) + γ × [P a ? Vk] (s), (3)

where V,Ra, P̄ a are steerable feature fields over Z2. As for the operations, maxa is (max) pooling202

(over group channel), +,× are point-wise operations, and ? is convolution. As the second step,203

the main idea is to prove every operation in Bellman (optimality) operator on steerable fields is204

equivariant, including the nonlinear maxa operator and +,×. Then, iteratively applying Bellman205

operator forms value iteration and is also equivariant, as shown below and proved in Appendix I.4.206

Proposition 4.3. For a spatial MDP with G-invariant transition, the optimal value function can be207

found through G-steerable value iteration.208

Remark. Our framework generalizes the idea behind VINs and enables us to understand its appli-209

cability and restrictions. More importantly, this allows us to integrate symmetry but avoid explicitly210

building equivalence classes and enables planning with symmetry in end-to-end fashion. We em-211

phasize that the symmetry in spatial MDPs is different from symmetric MDPs [7, 3, 9], since our212

reward function is not G-invariant (if not conditioning on reward). Although we focus on Z2, we213

can generalize to path planning on higher-dimensional or even continuous Euclidean spaces (like R3214

space [54] or spatial graphs in R3 [55]), and use equivariant operations on steerable feature fields215

(such as steerable convolutions, pooling, and point-wise non-linearities) from steerable CNNs. We216

refer the readers to Appendix H and to [15, 14, 56, 16] for more details.217

5 Symmetric Planning in Practice218

In this section, we discuss how to achieve Symmetric Planning on 2D grids with E(2)-steerable219

CNNs [16]. We focus on implementing symmetric version of value iteration, SymVIN, and gener-220

alize the methodology to make a symmetric version of a popular follow-up of VIN, GPPN [18].221
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Figure 3: Commutative diagram for the full pipeline of SymVIN on steerable feature fields over Z2

(every grid). If rotating the input map M by πM (g) of any g, the output action A = SymVIN(M)
is guaranteed to be transformed by πA(g), i.e. the entire steerable SymVIN is equivariant under
induced representations πM and πA: SymVIN(πM (g)M) = πA(g)SymVIN(M). We use stacked fea-
ture fields to emphasize that SymVIN supports direct-sum of representations beyond scalar-valued.

Steerable value iteration. We have showed that, value iteration for path planning problems on Z2222

consists of equivariant maps between steerable feature fields. It can be implemented as an equivari-223

ant steerable CNN, with recursively applying two alternating (equivariant) layers:224

Qak(s) = Ram(s) + γ × [P aθ ? Vk] (s), Vk+1(s) = max
a

Qak(s), s ∈ Z2, (4)

where k ∈ [K] indexes iteration, Vk, Qak, R
a
m are steerable feature fields over Z2 output by equiv-225

ariant layers, P aθ is a learned kernel in neural network, and +,× are element-wise operations.226

Pipeline. We follow the pipeline in VIN [17]. The commutative diagram for the full pipeline is227

shown in Figure 3. The path planning task is given by a m ×m spatial binary obstacle occupancy228

map and one-hot goal map, represented as a feature field M : Z2 → {0, 1}2. For the iterative229

process Qak 7→ Vk 7→ Qak+1, the reward field RM is predicted from map M (by a 1× 1 convolution230

layer) and the value field V0 is initialized as zeros. The network output is (logits of) planned actions231

for all locations2, represented as A : Z2 → R|A|, predicted from the final Q-value field QK (by232

another 1 × 1 convolution layer). The number of iterations K and the convolutional kernel size F233

of P aθ are set based on map size M , and the spatial dimension m×m is kept consistent.234

Building Symmetric Value Iteration Networks. Given the pipeline of VIN fully on steerable235

feature fields, we are ready to build equivariant version with E(2)-steerable CNNs [16]. The idea236

is to replace every Conv2d with a steerable convolution layer between steerable feature fields, and237

associate the fields with proper fiber representations ρ(h).238

VINs use ordinary CNNs and can choose the size of intermediate feature maps. The design choices239

in steerable CNNs is the feature fields and fiber representations (or type) for every layer [14, 16].240

The main difference3 in steerable CNNs is that we also need to tell the network how to transform241

every feature field, by specifying fiber representations, as shown in Figure 3.242

Specification of input map and output action. We first specify fiber representations for the input243

and output field of the network: map M and action A. For input occupancy map and goal M :244

Z2 → {0, 1}2, it does notD4 to act on the 2 channels, so we use two copies of trivial representations245

ρM = ρtriv ⊕ ρtriv. For action, the final action output A : Z2 → R|A| is for logits of four actions246

A = (north, west, south, east) for every location. If we use H = C4, it naturally acts on247

the four actions (ordered 	) by cyclically 	 permuting the R4 channels. However, since the D4248

group has 8 elements, we need a quotient representation, see [16] and Appendix J.249

Specification of intermediate fields: value and reward. Then, for the intermediate feature fields:250

Q-values Qk, state value Vk, and reward Rm, we are free to choose fiber representations, as well as251

the width (number of copies). For example, if we want 2 copies of regular representation of D4, the252

feature field has 2× 8 = 16 channels and the stacked representation is 16× 16 (by direct-sum).253

2Technically, it also includes values or actions for obstacles, since the network needs to learn to approximate
the reward RM (s,∆s) = −∞ with enough small reward and avoid obstacles.
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For theQ-value fieldQak(s), we use representation ρQ and its size asCQ. We need at leastCA ≥ |A|254

channels for all actions of Q(s, a) as in VIN and GPPN, then stacked together and denoted as255

Qk ,
⊕

aQ
a
k with dimension Qk : Z2 → RCQ∗CA . Therefore, the representation is direct-sum256 ⊕

ρQ for CA copies. The reward is implemented similarly as RM ,
⊕

aR
a
M and must have same257

dimension and representation to add element-wisely. For state value field, we denote the choose as258

fiber representation as ρV and its size CV . It has size Vk : Z2 → RCV Thus, the steerable kernel259

is matrix-valued with dimension Pθ : Z2 → R(CQ∗CA)×CV . In practice, we found using regular260

representations for all three works the best. It can be viewed as "augmented" state and is related to261

group convolution, detailed in Appendix J.262

Other operations. We now visit the remained (equivariant) operations. (1) The max operation in263

Qk 7→ Vk+1. While we have showed the max operation in Vk+1(s) = maxaQ
a
k(s) is equivariant264

in Theorem 4.3, we need to apply max(-pooling) for all actions along the "representation channel"265

from stacked representations CA ∗ CQ to one CQ. More details are in Appendix J.5. (2) The final266

output layer QK 7→ A. After the final iteration, the Q-value field Qk is fed into the policy layer267

with 1× 1 convolution to convert the action logit field Z2 → R|A|.268

Extended method: Symmetric GPPN. Gated path planning network (GPPN [18]) proposes to use269

LSTM to alleviate the issue of unstable gradient in VINs. Although it does not strictly follow value270

iteration, it still follows the spirit of steerable planning. Thus, we first obtained a fully convolutional271

variant of GPPN from [Redacted for anonymous review], called ConvGPPN. It replaces the MLPs272

in the original LSTM cell with convolutional layers, and then replaces convolutions with equivariant273

steerable convolutions, resulting in a fully equivariant SymGPPN. See Appendix J.3 for details.274

Extended tasks: planning on learned maps with mapper networks. We consider two planning275

tasks on 2D grids: 2D navigation and 2-DOF manipulation. To demonstrate the ability of handling276

symmetry in differentiable planning, we consider more complicated state space input: visual nav-277

igation and workspace manipulation, and discuss how to use mapper networks to convert the state278

input and use end-to-end learned maps, as in [18, 37]. See Appendix J.2 for details.279

6 Experiments280

We experiment VIN, GPPN and our SymPlan methods on four path planning tasks, including using281

given or learned maps. The additional experiments and ablation studies are in Appendix E.282

Environments and datasets. We demonstrate the idea in two major robotics tasks: navigation283

and manipulation. We focus on the 2D regular grid setting for path planning, as adopted in284

prior work [17, 18, 37]. For each task, we consider using either given (2D navigation and 2-285

DOF configuration-space manipulation) or learned maps (visual navigation and 2-DOF workspace286

manipulation). In the latter case, the planner needs to jointly learn a mapper that converts ego-287

centric panoramic images (visual navigation) or workspace states (workspace manipulation) into288

plannable loss, as in [18, 37]. In both cases, we randomly generate training, validation and test289

data of 10K/2K/2K maps for all map sizes, to demonstrate data efficiency and generalization290

ability of symmetric planning. Note that the test maps are unlikely to be symmetric to the train-291

ing maps by any transformation from the symmetry groups G. For all environments, the planning292

domain is the 2D regular grid S = Ω = Z2, and the action space is to move in 4 	 directions4:293

A = (north, west, south, east).294

Methods: planner networks. We compare five planner methods, where two are our SymPlan295

version of their non-equivariant counterparts. Our equivariant implementation is based on Value296

Iteration Networks (VIN, [17]) and Gated Path Planning Networks (GPPN, [18]). We implement297

the equivariant version of VIN, named SymVIN. For GPPN, we first obtained a fully convolutional298

version, named ConvGPPN [Redacted for anonymous review], and furthermore SymGPPN with299

steerable CNNs. All methods use (equivariant) convolutions with circular padding in planning300

in configuration spaces for the manipulation tasks, except GPPN that is not fully convolutional.301

Chaplot et al. [37] propose SPT based on Transformers, while integrating symmetry to Transformers302

is beyond steerable convolutions, thus we do not consider it but still adopt some useful setup.303

4Note that the MDP action space A needs to be compatible with the group action G × A → A. Since the
E2CNN package [16] uses counterclockwise rotations 	 as generators for rotation groups Cn, the action space
needs to be counterclockwise 	.
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Figure 4: (Left) A visual navigation environment rendered from a randomly generated 7 × 7 maze
(Middle), where the hover is the visualization of four views at position (5, 3). (Right) A 2-joint
manipulation task in workspace (topdown) and configuration space (2 DOFs) in 18× 18 resolution.
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Figure 5: Training curves on (Left) 2D navigation with 10K of 15× 15 maps and on (Right) 2DoFs
manipulation with 10K of 18× 18 maps in configuration space. Faded areas indicate standard error.

Training and evaluation. We report success rate and training curves over 3 seeds. The training304

process (on given maps) follows [17, 18], where we train 30 epochs with batch size 32, and use305

kernel size F = 3 by default. The gradient clip threshold is set to 5. The default batch size is 32,306

while we need to reduce for some GPPN variants, since LSTM consumes much more memory.307

6.1 Planning on given maps308

Environmental setup. In the 2D navigation task, the map and goal are randomly generated, where309

the map size is {15, 28, 50}. In 2-DOF manipulation in configuration space, we adopt the setting310

in [37] and train networks to take as input of configuration space, represented by two joints. We311

randomly generate 0 to 5 obstacles in the manipulator workspace. Then the 2 degree-of-freedom312

(DOF) configuration space is constructed from workspace and discretized into 2D grid with sizes313

{18, 36}, corresponding to bins of 20◦ and 10◦, respectively. All methods are trained using the same314

network size, where for equivariant versions, we use regular representations for all layers, which has315

size |D4| = 8. We keep the same parameters for all methods, so all equivariant convolution layers316

with regular representations will have higher embedding sizes. Due to memory constraint, we use317

K = 30 iterations for 2D maze navigation, and K = 27 for manipulation. We use kernel sizes318

F = {3, 5, 5} for m = {15, 28, 50} navigation, and F = {3, 5} for m = {18, 36} manipulation.319

Results. We show the averaged test results for both 2D navigation and C-space manipulation tasks320

on generalizing to unseen maps (Table 1) and the training curves for all methods (Figure 5). For VIN321

series, our SymVIN is much better than the vanilla VIN in terms of generalization and training per-322

formance in both environments, which learns much faster and achieves almost perfect asymptotic323

performance. As for GPPN, we found the fully convolutional variant ConvGPPN actually works324

better than the original one in [18], especially in learning speed. However, SymVIN does fluctu-325

ate in some runs, which seems to come from initialization and label, further studied in Appendix.326

SymGPPN further boosts ConvGPPN and outperforms all other methods. One exception is GPPN327

learns poorly in C-space manipulation. For GPPN, the added circular padding in the convolution328

encoder leads to gradient vanishing problem.329

Additionally, we found using regular representations (for D4 or C4) for state value V : Z2 → RCV330

(and for Q-value) works better than trivial representations. This is counterintuitive since we expect331

the V value to be scalar Z2 → R. One reason is that switching between regular (for Q) and trivial332

(for V ) representation introduces unnecessary bottleneck. Depending on the choice of representa-333

tions, we implement different max-pooling, with details in Appendix J.5. We also empirically found334

using FC only in the final layer QK 7→ A helps stabilize the training a bit. The ablation study on335

this and more are in Appendix E.336

8



Table 1: Averaged test success rate (%) for using 10K/2K/2K dataset for all four types of tasks.
Method Navigation Manipulation

(10K Data) 15× 15 28× 28 50× 50 Visual 18× 18 36× 36 Workspace

VIN 66.97 67.57 57.92 50.83 77.82 84.32 80.44
SymVIN 98.99 98.14 86.20 95.50 99.98 99.36 91.10

GPPN 96.36 95.77 91.84 93.13 2.62 1.68 3.67
ConvGPPN 99.75 99.09 97.21 98.55 99.98 99.95 89.88
SymGPPN 99.98 99.86 99.49 99.78 100.00 99.99 90.50

Remark. Two symmetric planners are both significantly better than their counterparts. Notably,337

we did not include any symmetric maps to the test data that symmetric planners would perform338

much better. There are several potential sources of advantages: (1) SymPlan allows parameter339

sharing across positions and maps and implicitly enables planning in a reduced space: every (s, a, s′)340

seamlessly generalizes to (g.s, g.a, g.s′) for any g ∈ G, (2) thus it uses training data more efficiently,341

(3) it reduces the space of hypothesis class and facilitate generalization to unseen maps.342

6.2 Planning on learned maps: simultaneously planning and mapping343

Environmental setup. For visual navigation, we randomly generate maps using the same strategy344

as before, and then render four egocentric panoramic views for each location from produced 3D345

environments with Gym-MiniWorld [57], since it allows to generate 3D mazes with any layout. For346

m × m maps, all egocentric views for a map is represented by m × m × 4 RGB images. For347

workspace manipulation, we randomly generate 0 to 5 obstacles in workspace as before. We use a348

mapper network to convert the 96 × 96 workspace (image of obstacles) to the m ×m 2 degree-of-349

freedom (DOF) configuration space (2D occupancy grid). In both environments, the setup is similar350

to Section 6.1, while we only use m = 15 maps but longer 100 epochs for visual navigation and351

m = 18 maps still with 30 epochs for workspace manipulation.352

Methods: mapper networks and setup. For visual navigation, we follow the mapper network353

setup in [18]. A mapper network converts every image into a 256-dimensional embedding m×m×354

4× 256 and then predicts map layout m×m× 1. For workspace manipulation, we use U-net [58]355

with residual-connection [59] as a mapper. See Section E for details.356

Results. The results are also shown in Table 1, denoted as Visual (navigation, 15 × 15) and357

Workspace (manipulation, 18 × 18). In visual navigation, the trends are similar to 2D case: two358

symmetric planners both train much faster. Besides vanilla VIN, all approaches finally converge to359

near-optimal successful rate (around 95%), while the validation and test results show large gaps.360

SymGPPN has almost no generalization gap, while VIN does not generalize well to new 3D visual361

navigation environments. Our SymVIN improves test successful rate from less than 50% to 90%362

and is comparable with GPPN. Since the input is raw images and a mapper is used to learn end-to-363

end, it potentially causes one major source of generalization gap for some approaches. In workspace364

manipulation, the results are also analogous to C-space, while ours advantages over baselines are365

smaller. In our inspection, we found the mapper network is the bottleneck, since the mapping for366

obstacles from workspace to C-space is nontrivial to learn.367

Remark. The SymPlan models demonstrate end-to-end planning and learning ability, potentially368

enabling further applications to other tasks as a differentiable component for planning. The addi-369

tional results and ablation studies are provided in Appendix E.370

7 Discussion371

In this work, we study the symmetry in 2D path planning problem, and build a framework using372

the theory of steerable CNNs to prove that value iteration in path planning is actually a form of373

steerable CNN (on 2D grids). Although we focus on Z2, we can generalize to path planning on374

higher-dimensional or even continuous Euclidean spaces [54, 55], and use equivariant operations on375

steerable feature fields (such as steerable convolutions, pooling, and point-wise non-linearities) from376

steerable CNNs. We practically show that the SymPlan algorithms exactly motivated by the theory377

provide great improvement. We hope the framework along with the design of practical algorithms378

can provide a new pathway to exploiting symmetry structure in differentiable planning.379
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A Outline594

The appendix is organized as follows. Blue text highlights new content in revision for rebuttal.595

1. A temporary section for new figures and results for rebuttal.596

2. A preliminary version of a section on Symmetric Planning with less prerequisites on equiv-597

ariant networks.598

3. Additional experimental setup and empirical results. (This section is moved here previously599

at the end of appendix.)600

4. Discussion on the considered symmetry, as well as limitations and extensions.601

5. Additional technical background and concepts on steerable CNNs and group CNNs, useful602

for understanding how to apply our setup to other problems and setup.603

6. More details and interpretation on the steerable planning framework.604

7. Full derivation and proofs.605

8. Other practice implementation details.606

B A temporary section for new figures and results607

This temporary section is a collection of all new figures and results for the rebuttal purpose. All the608

content will be merged into the corresponding sections in the future version.609

B.1 Updated environment figures610

To emphasize the tasks, we update the figures for the environments in our experiments, along with611

demonstration of the learned model.612

We show the figures for Configuration-space and Workspace manipulation in Figure 6, and the613

figures for 2D and Visual Navigation in Figure 7.614

Figure 6: A set of visualization for a 2-joint manipulation task. The obstacles are randomly gener-
ated. (1) The 2-joint manipulation task shown in top-down workspace with 96× 96 resolution. This
is used as the input to the Workspace Manipulation task. (2) The predicted configuration space in
resolution 18 × 18 from a mapper module, which is jointly optimized with a planner network. (3)
The ground truth configuration space from a handcraft algorithm in resolution 18× 18. This is used
as input to the Configuration-space (C-space) Manipulation task and as target in the auxiliary loss
for the Workspace Manipulation task (as done in SPT [37]). (4) The predicted policy (overlaid with
C-space obstacle for visualization) from an end-to-end trained SymVIN model that uses a mapper to
take the top-down workspace image and plans on a learned map. The red block is the goal position.

B.2 Results on generalization to larger maps615

To better demonstrate the empirical difference, we conduct new experiment on generalization to616

larger maps. We hope this can alleviate some concern on (1) scalability and (2) performance gap617

between SymGPPN and ConvGPPN.618

We experiment all methods on map size 15× 15 through 99× 99, averaging over 3 seeds (3 model619

checkpoints) for each method and 1000 maps for each size. Note that all models are trained on620

15× 15 with K = 30.621
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Figure 7: A set of visualization for 2D navigation and visual navigation. The maze is randomly
generated. (1, top) The 3D visual navigation environment generated by an illustrative 7 × 7 map,
where we highlight the panoramic view at a position (5, 3) with four RGB images (resolution 32×
32 × 3). The entire observation tensor for this 7 × 7 example visual navigation environment is
7 × 7 × 4 × 32 × 32 × 3. This is used as the input to the Visual Navigation task. (2) Another
predicted map in resolution 15 × 15 from a mapper module, which is jointly optimized with a
planner network. We show the visualization a different map used in actual training. (3) The ground
truth map in resolution 15× 15. This is also used as input to the 2D Navigation task and as target in
the auxiliary loss for the Visual Navigation task (as done in GPPN). (4) The predicted policy from
an end-to-end trained SymVIN model that uses a mapper to take the observation images (formed as
a tensor) and plans on a learned map. The red block is the goal position.

Between 15 × 15 and 49 × 49 we use all odd-size maps, and between 51 × 51 and 99 × 99 we622

use interval of 4 (51 × 51 → 55 × 55 ...). We only use odd size maps because for the even size623

maps the maze generation algorithm would cause non-symmetric pattern (missing right and bottom624

boundary).625

Note that we disable backward pass during evaluation. However, we observe that GPPN variants do626

use much more memory if backward pass is enabled because (1) they rely on the costly computation627

of LSTM, and (2) the number of parameters is also significantly larger. The training and inference628

time used by GPPN variants is also significantly longer. We omit the consideration of resource and629

time issue and focus on the final generalization results.630

We focus on comparing SymPlan methods with non-equivariant baselines, by grouping them based631

on VIN or GPPN. The results are shown in Figure 8.632

Fixed K. For fixed K setup in Figure 8 (left), we keep number of iterations to be K = 30 and633

kernel size F = 3 for all methods.634

For SymVIN, it far surpasses VIN for all sizes and preserves the gap throughout the evaluation. Ad-635

ditionally, SymVIN has slightly higher variance across three random seeds (three separately trained636

models).637
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Figure 8: Results for generalization on larger maps for all methods. (Left) Fixed K = 30 iterations.
(Left) Variable K iterations, where K =

√
2 ·M and M is the generalization map size (x-axis).

Among GPPN and its variants, SymGPPN significantly outperforms both GPPN and ConvGPPN.638

Interestingly, ConvGPPN has sharper drop with map size than both SymGPPN and ConvGPPN and639

thus has increasingly larger gap with SymGPPN and finally even got surpassed by GPPN. Across640

random seeds, the three trained models of ConvGPPN give unexpectedly high variance compared to641

GPPN and SymGPPN.642

Variable K. We also experiment all methods in the same setting but with variable number of643

iterations K =
√

2 ·M , where M is the generalization map size (x-axis). The trend is very different644

from fixed K setup.645

SymVIN generalizes extremely well compared to VIN, although the variance is greater. GPPN646

seems to diverge for larger variable K since it is even worse than fixed K = 30 in all map sizes.647

ConvGPPN somehow helps convergence, while it fluctuates for different seeds, and SymGPPN648

is even better and more stable. Surprisingly, SymVIN is even better than ConvGPPN, although649

injecting symmetry (into SymVIN) does not explicitly deal with convergence.650

C A Guide to Symmetric Planning651

To address the common concern on the accessibility issue for technical section, as a step to solve652

this, we write a section on explaining the SymVIN method with PyTorch-style pseudocode, since it653

directly corresponds to what we propose in Section 4 and 5. We try to relate (1) existing concepts654

with VIN, (2) what we propose in Section 4 and 5 for SymVIN, and (3) actual PyTorch implemen-655

tation of VIN and SymVIN aligned line-by-line based on semantic correspondence.656

We will consider to have another short section on intuitively explaining our Symmetric Planning657

framework and practical considerations in the next few days.658

C.1 PyTorch-style pseudocode659

We provide the key Python code snippets to demonstrate how easy it is to implement SymVIN, our660

symmetric version of VIN [17].661

In the current Section 5 (SymPlan practice), we heavily use the concepts from Steerable CNNs.662

Thanks to the equivariant network community and the e2cnn package, the actual implementation663

is compact and closely corresponds to their non-equivariant counterpart, VIN, line-by-line. Thus,664

the ultimate goal here is to illustrate that, whatever concepts we have in regular CNNs (e.g., have665

whatever channels we want), we can can use steerable CNNs that incorporate desired extra symmetry666

(of D4 rotation+reflection or C4 rotation).667

We highlight the implementation of the value iteration procedure in VIN and SymVIN:668

V := max
a

Ra + γ × P a ∗ V. (5)

Note that we use actual code snippets to avoid hiding any details.669
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1 import torch
2
3
4
5
6
7
8
9

10
11
12 # Define regular 2D convolution
13 q_conv = torch.nn.Conv2d(
14 in_channels =1,
15 out_channels =2 * q_size ,
16 kernel_size=F, stride=1, bias=False
17 )

Listing 1: Define ‘expected value‘ convolution
layer for VIN.

1 import torch
2 import e2cnn
3
4 # Define the symmetry group to be D4
5 gspace = e2cnn.gspaces.FlipRot2dOnR2(N=4)
6 # Define feature (fiber) representations
7 field_type_q_in = e2cnn.nn.FieldType(
8 gspace=gspace ,
9 representations =2 * q_size * [gspace.

regular_repr]
10 )
11 # Define steerable convolution
12 q_r2conv = e2cnn.nn.R2Conv(
13 in_type=field_type_q_in ,
14 out_type=field_type_q_out ,
15 kernel_size=F, stride=1, bias=False
16 )

Listing 2: Define ‘expected value‘ (steerable)
convolution layer for SymVIN.

Defining (steerable) convolution layer. First, we show the definition of the key convolution layer670

for a key operation in VIN and SymVIN: expected value operator, in Listing 1 and 2.671

As proved in Theorem 4.2, the expected value operator can be executed by a steerable convolution672

layer for (2D) path planning. This serves as the theoretical foundation on how we should use a673

steerable layer here.674

For the left side, a regular 2D convolution is defined for VIN. The right side defines a steerable675

convolution layer, using the library e2cnn from [16]. It provides high-level abstraction for building676

equivariant 2D steerable convolution networks. As a user, we only need to specify how the feature677

fields transform (as shown in Figure 3), and it will solve the G-steerability constraints, process what678

needs to be trained for equivariant layers, etc. We use name q_r2conv to highlight the difference.679

Value iteration procedure. Second, we compare the for loop for value iteration updates in VIN680

and SymVIN, where the former one has regular 2D convolution Conv2D (Listing 3), and the latter681

one uses steerable convolution [16] (Listing 4).682

The lines are aligned based on semantic correspondence. The e2cnn layers, including steerable con-683

volution layers, operate on its GeometricTensor data structure, which is to wrap a PyTorch tensor.684

We denote them with _geo suffix. It only additionally needs to specify how this tensor (feature field)685

transforms under a group (e.g., D4), i.e. the user needs to specify a group representation for it.686

tensor_directsum is used to concatenate two GeometricTensor’s (feature fields) and compute687

their associated representations (by direct-sum).688

Thus, the e2cnn steerable convolution layer on the right side q_r2conv can be used as a regular689

PyTorch layer, while the input and output are GeometricTensor.690

We also define the max operation as a customized max-pooling layer, named q_max_pool. The691

implementation is similar to the left side of VIN and needs to additionally guarantee equivariance,692

and the detail is omitted.693

Note that for readability, we assume we use regular representations for the Q-value field Q and the694

state-value field V . They are empirically found to work the best. This corresponds to the definition695

in field_type_q_in in line 9 in the SymVIN definition listing and the comments in line 16-17 in696

the steerable VI procedure listing for SymVIN.697

Other components are omitted.698

D Simplified Version: Symmetric Planning699

This is a new preliminary version during the rebuttal period that aims to introduce symmetric plan-700

ning in a more intuitive way, with minimum prerequisites of equivariant networks. This section is701

intended to be an alternative and more intuitive version to Section 4 (SymPlan framework) and Sec-702

18



1 # Input: maze and goal map , #iterations K
2
3
4
5
6 x = torch.cat([maze_map , goal_map], dim =1)
7
8 r = r_conv(x)
9

10 # Init value function V
11 v = torch.zeros(r.size())
12
13
14 for _ in range(K):
15 # Concat and convolve V with P
16 rv = torch.cat([r, v], dim =1)
17 q = q_conv(rv)
18
19 # Max over action channel
20 # > Q: batch_size x q_size x W x H
21 # > V: batch_size x 1 x W x H
22 q = q.view(-1, q_size , W, H)
23 v, _ = torch.max(q, dim=1)
24 v = v.view(-1, W, H)
25
26 # Output: ’q’ (to produce policy map)

Listing 3: The central value iteration procedure
for VIN. Some variable names are adjusted
accordingly for readability. W and H are width
and height for 2D map.

1 # Input: maze and goal map , #iterations K
2
3 from e2cnn.nn import GeometricTensor
4 from e2cnn.nn import tensor_directsum
5
6 x = torch.cat([maze_map , goal_map], dim =1)
7 x_geo = GeometricTensor(x, type=field_type_x)
8 r_geo = r_r2conv(x_geo)
9

10 # Init V and wrap V in e2cnn ’geometric tensor ’
11 v_raw = torch.zeros(r_geo.size())
12 v_geo = GeometricTensor(v_raw , field_type_v)
13
14 for _ in range(K):
15 # Concat (direct -sum) and convolve V with P
16 rv_geo = tensor_directsum ([r_geo , v_geo ])
17 q_geo = q_r2conv(rv_geo)
18
19 # Max over group channel
20 # > Q: batch_size x (|G| * q_size) x W x H
21 # > V: batch_size x (|G| * 1) x W x H
22 v_geo = q_max_pool(q_geo)
23
24
25
26 # Output: ’q_geo ’ (to produce policy map)

Listing 4: The equivariant steerable value
iteration procedure for SymVIN. Lines are
aligned by semantic correspondence. Definition
of other field types are similar and thus omitted.

tion 5 (SymPlan in practice). We would appreciate feedback and consider to make further revision703

to this section and the organization of the entire paper.704

D.1 Overview705

In this work, we aim to exploit the inherent symmetry in a broadly existed problem: path planning.706

Intuitively, since a rotated or reflected 2D map are still another instance of 2D map, such as in707

Figure 1, their policies and optimal paths are related. This unveils an inherent symmetry property of708

the path planning problem on the 2D grid that we could exploit.709

In our work, we provide a rigorous algorithmic framework that can provably make use of symmetry710

in an efficient manner. In this section, we will first introduce the algorithm we are based on: Value711

Iteration Networks (VINs) [17], and use it as foundation to build our algorithm: Symmetric VIN.712

Finally, we provide intuition to the theoretical guarantees on how we make use of symmetry.713

D.2 Value Iteration Network: Background and Interpretation714

Value Iteration Network (VIN) [17] is an example of a differentiable planning algorithm. It empir-715

ically found that, for 2D path planning, value iteration can be implemented by a deep convolution716

network.717

Background: VIN. Value iteration is an instance of a dynamic programming (DP) method to718

solve Markov decision processes (MDPs). It iteratively applies the Bellman (optimality) operator719

until convergence, which is based on the following Bellman (optimality) equation:720

Q(s, a) = R(s, a) + γ
∑
s′

P (s′|s, a)V (s′), V (s) = max
a

Q(s, a) (6)

Tamar et al. [17] used a convolution network to parameterize value iteration. It jointly learns in a721

latent MDP on 2D grid, which has the latent reward function R̄ : Z2 → R|A| and value function722

V̄ : Z2 → R, and applies value iteration on that MDP:723

Q̄
(k)
ā,i′,j′ = R̄ā,i,j +

∑
i,j

WV
ā,i,j V̄

(k−1)
i′−i,j′−j = R̄ā,i,j + Conv2D(V̄ ;WV ), V̄

(k)
i,j = max

ā
Q̄

(k)
ā,i′,j′ (7)

Later, we generalize the idea of VIN that (1) represents reward and value functions as fields on724

2D grid, and (2) realizes value iteration by operations on the fields. Our final goal is to use VIN725
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Figure 9: (This is a copy of Figure 3.) The commutative diagram of Symmetric Value Iteration
Network (SymVIN). Every row is a full computation graph of VIN. Every column is to rotate field
by 	 90◦. The key message: if we rotate the map (from M to g.M ), to guarantee the final policy
function to also be equivalently rotated (from A to g.A), we shall guarantee every transformation
(e.g., Qk 7→ Vk and Vk 7→ Qk+1) in value iteration to also be equivariant (g.f(x) = f(g.x), for
every pair of columns).

to demonstrate a principled method for incorporating symmetry in differentiable planning. After726

reviewing the basics of VIN, we will next summarize the reasoning of choosing VIN.727

D.3 Symmetric Value Iteration Network: A Practical Symmetric Planning Algorithm728

Why do we choose VIN? There are two reasons behind the choice of VIN.729

1. The expected value operator in value iteration
∑
s′ P (s′|s, a)V (s′) is linear in value func-730

tion. As we show in Theorem 4.1, it is also equivariant for (2D) path planning, this means731

that it is a linear equivariant operator. According to Cohen et al. [12], any linear equiv-732

ariant operator (on spaces such as 2D grid) has one-to-one correspondence to a (group733

equivariant) convolution operator.734

2. Value iteration, or Bellman (optimality) operator, is fully convolutional, i.e. only relies735

on operating on functions (“fields”) over Z2, such as value function, reward function, and736

transition functions: Vk+1(s) = maxaR
a(s) + γ× [P a ? Vk] (s). This enables us to inject737

symmetry by enforcing equivariance within convolution. For example, for a 2D map in738

Figure 1, the 4 corner states are symmetric under any one of the eight transformations in739

D4, and we can enforce those 4 states to have the same value if we rotate or flip the map740

(D4-equivariance). This avoids the need to find if a new state is symmetric to any existing741

state, which is shown to be NP-hard [8].742

In summary, VIN satisfies both desiderata: (1) it uses convolution as the backbone, and (2) it operates743

on fields. Furthermore, we find VIN is empirically and conceptually the simplest differentiable744

planning algorithm that satisfies them, which leads to our decision.745

How to inject symmetry? VIN uses a regular 2D convolutional network (Equation 7), which has746

translation equivariance [15, 13]. More concretely, a VIN will output the same value function for747

the same map patches that only differ by 2D translation. We omit how to characterize translation748

equivariance here, since it requires a different mechanism to handle and does not decrease the search749

space nor reduce a path planning MDP to an easier problem.750

Beyond translation, we are more interested in rotation and reflection symmetries. Intuitively, as in751

Figure 1, if we find the optimal solution to a map, it automatically generalizes the solution to all 8752

transformed maps (4 rotations times 2 reflections, including identity transformation). This can be753

characterized by equivariance of a planning algorithm Plan, such as value iteration VI, visualized754

in Figure 9: g.Plan(M) = Plan(g.M), where M is a maze map, and g is the symmetry group D4755

under which 2D grid is invariant.756

More importantly, symmetry also helps training of differentiable planning algorithms. Intuitively,757

symmetry in path planning poses additional constraint to its search space: if the goal is in the north,758
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go up; if in the east, go right. In other words, the knowledge can be shared between symmetric cases,759

or the path planning is effectively reduced by symmetry to a smaller one. This property can also be760

depicted by equivariance of Bellman operators T , or a step of value iteration: g.T [V0] = T [g.V0].761

If we use VI(M) to denote applying Bellman operators on arbitrary initialization until convergence762

T ∞[V0], value iteration is also equivariant, as demonstrated in Figure 9:763

g.VI(M) ≡ g.T ∞[V0] = T ∞[g.V0] ≡ VI(g.M). (8)

Thus, we inject equivariance into value iteration w.r.t. rotation and reflection, in addition to trans-764

lation, through steerable convolution (network) from Cohen and Welling [14], which exactly765

matches our criteria. Cohen et al. [12] prove that steerable convolution is the most general linear766

equivariant map under some conditions, which value iteration satisfies. Weiler and Cesa [16] build767

E(2)-Steerable CNNs for 2D space, and we use their package e2cnn in our implementation. In768

practice, to inject symmetry into VIN, we simply need to replace the translation-equivariant Conv2D769

with SteerableConv:770

Q̄
(k)
ā,i′,j′ = R̄ā,i,j + SteerableConv(V̄ ;WV ), V̄

(k)
i,j = max

ā
Q̄

(k)
ā,i′,j′ . (9)

We formally justify our design in Section D.4 below and provide more technical details in Section 4.771

D.4 Theoretical Justification: Why does it work?772

In the Section D.3, we show how to exploit symmetry in path planning by equivariance from con-773

volution via intuition. The goal of this new section is to (1) connect the theoretical justification with774

the algorithmic design, and (2) provide intuition for the justification. Even through we focus on775

a specific task, we hope that the underlying guidelines on integrating symmetry into planning are776

useful for broader planning algorithms and problems as well.777

This version is for the purposes of rebuttal and preview, so we may refer some details to the original778

Section 4. We will consider further revision depending on how to form the method section.779

Overview. There are numerous types of symmetry in various planning tasks. We study symmetry780

in path planning as an example, because it is a straightforward planning problem, and its solutions781

have been intensively studied in robotics and artificial intelligence [53, 1]. However, even for this782

problem, the symmetry has not been effectively exploited in its planning algorithms, such as Dijk-783

stra’s algorithm, A*, or RRT, because of NP-hard orbit finding [8]. Additionally, we focus on value784

iteration because it is both widely use and connects closely with convolution [14].785

Theory: symmetry in planning. If we want to exploit symmetry in a task to improve planning,786

there are two major steps: (1) characterize the symmetry in the task, and (2) incorporate correspond-787

ing symmetry into the planning algorithm. The theoretical results in Section 4.2 mainly characterize788

the symmetry and direct us to a feasible planning algorithm.789

The symmetry in tasks or MDPs can be specified by the equivariance property of the transition and790

reward function, studied in Ravindran and Barto [3], van der Pol et al. [32]:791

P̄ (s′ | s, a) = P̄ (g.s′ | g.s, g.a), ∀g ∈ G,∀s, a, s′ (10)

R̄M (s, a) = R̄g.M (g.s, g.a), ∀g ∈ G,∀s, a (11)

Note that how the group G acts on states and actions is decided by the space S orA, which has been792

discussed in Equation 1 in Section 4.2. We emphasize that the equivariance property of the reward793

function is different from prior work [3, 32]: in our case, the reward function encodes obstacles as794

well, and thus depends on map input M . Intuitively, using Figure 1 as an example, if a position s is795

rotated g.s, to find how the correct original reward R, the input map M must also be rotated g.M .796

More details in Section 4.2 and Section H.797

As for exploiting the symmetry in planning algorithms, we focus on value iteration and the VIN798

algorithm. We first prove in Theorem 4.1 that value iteration for path planning respects the equiv-799

ariance property. This confirms that value iteration is a feasible method to incorporate symmetry.800

The next result in Theorem 4.2 further proves that value iteration is a general form of convolution801

(steerable convolution), motivating the use of steerable CNNs by Cohen and Welling [14] to replace802

regular CNNs in VIN.803

x804
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Retrospect. We study how to inject symmetry into VIN for (2D) path planning, and expect the805

task-specific technical details are useful for two types of readers. (i) Using VIN. If one uses VIN for806

differentiable planning, the resulting algorithms SymVIN or SymGPPN can be a plug-in alternative,807

as a part in a larger end-to-end system. (ii) Studying path planning. The proposed framework808

characterizes the symmetry in (2D) path planning, so it is possible to apply the underlying ideas to809

other domains. For example, it is possible to extend to higher-dimensional continuous Euclidean810

spaces.811

This concludes the section. We appreciate any feedback for this new simplified section on imple-812

mentation and theory of symmetric planning. We will keep improving it and better integrate with813

the current "detailed" version in the future iterations.814

E Experiments: Details and Additional Results (moved)815

E.1 Details: Setup816

Action space. Note that the MDP action space A needs to be compatible with the group action817

G × A → A. Since the E2CNN package [16] uses counterclockwise rotations as generators for818

rotation groups Cn, the action space needs to be counterclockwise.819

Mapper training: manipulation. During training, we pre-train the mapper and the planner sep-820

arately for 15 epochs. Where the mapper takes manipulator workspace and outputs configuration821

space. The mapper is trained to minimize the binary cross entropy between output and ground truth822

configurations space. The planner is trained in the same way as described in Section 6.1. After823

pre-training, we switch the input to the planner from ground truth configuration space to the one824

from the mapper. During testing, we follow the pipeline in [37] that the mapper-planner only have825

access to the manipulator workspace.826

E.2 Details: Environments.827

Manipulation. For planning in configuration space, the configuration space of the 2 DoFs ma-828

nipulator has no constraints in the {0, π} boundaries, i.e., no joint limits. To reflect this nature829

of the configuration space in manipulation tasks, we use circular padding before convolution op-830

eration. The circular padding is applied to convolution layers in VIN, SymVIN, ConvGPPN, and831

SymGPPN. Moreover, in GPPN, there is a convolution encoder before the LSTM layer. We add the832

circular padding in the convolution layers in GPPN as well.833

In 2-DOF manipulation in configuration space, we adopt the setting in [37] and train networks834

to take as input of configuration space, represented by two joints. We randomly generate 0 to 5835

obstacles in the manipulator workspace. Then the 2 degree-of-freedom (DOF) configuration space836

is constructed from workspace and discretized into 2D grid with sizes {18, 36}, corresponding to837

bins of 20◦ and 10◦, respectively.838

We allow each joint to rotate over 2π, so the configuration space of 2-DOF manipulation forms a839

torus T2. Thus, the both boundaries need to be connected when generating action demonstrations,840

and (equivariant) convolutions need to be circular (with padding mode) to wrap around for all meth-841

ods. We allow each joint to rotate over 2π, so the both boundaries in configuration space need842

to be connected when generating action demonstrations, and (equivariant) convolutions need to be843

circular (with padding mode) to wrap around for all methods.844

E.3 Details: Model Architecture845

We try to mimic the setup in VIN and GPPN [18].846

For non-SymPlan related parameters, we use learning rate of 10−3, batch size of 32 if possible847

(GPPN variants need smaller), RMSprop optimizer.848

For SymPlan parameters, we use 150 hidden channels (or 150 trivial representations for SymPlan849

methods) to process the input map. We use 100 hidden channels for Q-value for VIN (or 100 regular850

representations for SymVIN), and use 40 hidden channels for Q-value for GPPN and ConvGPPN851
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(or 40 regular representations for SymGPPN on 15×15, and 20 for larger maps because of memory852

constraint).853

E.4 Visualization of learned models854

We visualize a trained VIN and a SymVIN, evaluated on a 15× 15 map and its rotated version. For855

non-symmetric VIN in Figure 10, the learned policy is obviously not equivariant under rotation.856

We also visualize SymVIN on larger map sizes: 28×28 and 50×50, to demonstrate its performance857

and equivariance.858

Figure 10: A trained VIN evaluated on a 15× 15 map and its rotated version. It is obvious that the
learned policy is not equivariant under rotation.

Figure 11: A trained SymVIN evaluated on a 15× 15 map and its rotated version.

E.5 Further Analysis859

Additional training curves. We also provide other training curves that we only show test numbers860

in the main text.861

Training efficiency with less data. Since the supervision is still dense, we experiment on training862

with even smaller dataset to experiment in more extreme setup. We experiment how symmetry may863

affect the training efficiency of Symmetric Planners by further reducing the size of training dataset.864

We compare on two environments: 2D navigation and visual navigation, with training/validation/test865

size of 1K/200/200, for all methods.866
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Figure 12: A fully trained SymVIN evaluated on a 28× 28 map and its rotated version.

Figure 13: A fully trained SymVIN evaluated on a 50× 50 map and its rotated version.
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Figure 14: (Left) Accuracy evaluated on unseen test maps. The x-axis is the width of the map, and
the y-axis is the accuracy, reported on every map size and every size and every chose symmetry
group G. (Right) Visual navigation 15× 15 with 10K data.

Choose of symmetry groups for navigation. One important benefit of partially equivariant net-867

work is that, we do not need to design the group representation of MDP action space ρA(g) for868

different group or action space. Thus, we experiment several G-equivariant variants with different869

group equivariance: (discrete rotation group) C2, C4, C8, C16, and (dihedral group) D2, D4, D8,870

all based on E(2)-steerable CNN [16]. For all intermediate layers, we use regular representations871

ρreg(g) of each group, followed by a final policy layer with non-equivariant 1× 1 convolution.872

The results are reported in the Figure 14 (left). We only compare VIN (denoted as "none" symmetry)873

against our E(2)-VIN (other symmetry group option) on 2D navigation with 15× 15 maps.874
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Figure 15: Training curves for (Left) 28× 28 and (Right) 50× 50.
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Figure 16: Training curves for 15×15 2D navigation 1K data (Left) training and (Right) validation
successful rate.
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Figure 17: Training curves for 15 × 15 visual navigation 1K data (Left) training and (Right) vali-
dation successful rate.

Table 2: Fiber representations
(Fiber representation) SymVIN

Default 98.45
Hidden: trivial to regular 99.07

State-value ρV : regular to trivial 63.08
Q-value ρQ: regular to trivial 21.30

ρQ and ρV : both trivial 2.814

In general, the planners equipped with any G group equivariance outperform the vanilla non-875

equivariant VIN, and D4-equivariant steerable CNN performs the best on most map sizes. Addi-876

tionally, since the environment has actions in 8 directions (4 diagonals), C8 or D8 groups seem to877

take advantage of that and have slightly higher accuracy on some map sizes, while C16 is over-878

constrained compared to the true symmetry G = D4 and be detrimental to performance. The879

non-equivariant VIN also experiences higher variance on large maps.880

Choosing fiber representations. As we use steerable convolutions [16] to build symmetric plan-881

ners, we are free to choose the representations for feature fields, where intermediate equivariant con-882

volutional layers will be equivariant between them f(ρin(g)x) = ρout(g)f(x). We found represen-883

tations for some feature fields are critical to the performance: mainly V : S → R andQ : S → R|A|.884

We use the best setting as default, and ablate every option. As shown in Table 2, changing ρV or ρQ885

to trivial representation would result in much worse results.886
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Fully vs. Partially equivariance for symmetric planners. One seemingly minor but critical887

design choice in our SymPlan networks is the choice of the final policy layer, which maps Q-values888

S → R|A| to policy logits S → R|A|. Fully equivariant is expected to perform better, but it has some889

points worth to mention. (1) We experience unstable training at the beginning, where the loss can890

go up to 106 in the first epoch, while we did not observe it in non-equivariant or partially equivariant891

counterparts. However, this only slightly affects training.892

In summary, we found even though fully equivariant version can perform slightly better in the best893

tuned setting, on average setting, partially equivariant version is more robust and the gap is much894

larger, as shown in the follow table, which an example of averaging over three choices of represen-895

tations introduced in the last paragraph. On average partially equivariant version is much better. In896

our experiments, partially equivariant version also is easier to tune.897

Table 3: Fully vs. Partially equivariance
(Equivariance) SymVIN

Partially equivariant averaged over all representations 91.04
Fully equivariant averaged over all representations 42.61

F Additional Discussion898

F.1 Limitations and Extensions899

Assumption on known domain structure. As in VIN, although the framework of steerable plan-900

ning can potentially handle different domains, one important hidden assumption is that the under-901

lying domain Ω (state space), is known. In other words, we fix the structure of learned transition902

kernels p(s′ | s, a) and estimate coefficients of it. One potential method is to use Transformers that903

learn attention weights to all states in S, which has been partially explored in SPT [37]. Additionally,904

it is also possible to treat unknown MDPs as learned transition graphs, as explored in XLVIN [38].905

We leave the consideration of symmetry in unknown underlying domains for future work.906

The curse of dimensionality. The paradigm of steerable planning still requires full expansion907

in computing value iteration (opposite to sampling-based), since we realize the symmetric planner908

using group equivariant convolutions (essentially summation or integral). Convolutions on high-909

dimensional space could suffer from the curse of dimensionality for higher dimensional domains,910

and are vastly under-explored. This is a primary reason why we need sampling-based planning911

algorithms. If the domain (state-action transition graph) is sparsely connected, value iteration can912

still scale up to higher dimensions. It is also unclear either when steerable planning would fail, or913

how sampling-based algorithms could be integrated with the symmetric planning paradigm.914

F.2 The considered symmetry in spatial MDPs915

We need to differentiate between two types of symmetry in MDPs. Let’s take spatial graph as916

illustrative example to understand the potential symmetry from a higher level, which means that the917

nodes V in the graph have spatial coordinates Zn or Rn. Our 2D path planning is a special case of918

spatial graph, where the actions can only move to adjacent spatial nodes.919

Let the graph denoted as G = 〈V, E〉. E is the set of edges connecting two states with an action.920

One type of symmetry is the symmetry of the graph itself. For the grid case, it means that after D4921

rotation or reflection, the map is unchanged.922

Another type of symmetry comes from the isometries of the space. For a spatial graph, we can rotate923

it freely in a space, while the relative positions are unchanged. For our grid case, it is shown in the924

Figure 1 that rotating a map resulting in the rotated policy. However, the map or policy itself can925

never be equal under any transformation in D4.926

In other words, the first type is symmetry within a MDP (rely on the property of the MDP itself927

M, or Aut(M)), and the second type is symmetry between MDPs (only rely on the property of the928

underlying spatial space Z2, or Aut(Z2)).929
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Figure 18: Visualization of the permutation representations of D4 group for every element g ∈ D4

(4 rotations each row and 2 reflections each column). They are (1) the trivial representation, (2) the
regular representation, (3) the quotient representation (quotienting out rotations), (4) the quotient
representation (quotienting out reflections).

Nevertheless, we could input map M and somehow treat symmetric states between MDPs as one930

state. See the proofs section for more details.931

G Additional Background and Concepts932

G.1 Group representations: visual understanding933

A group representation is a (linear) group action that defines how a group acts on some space. Cohen934

and Welling [15, 14], Weiler and Cesa [16] provide more formal introduction to them in the context935

of equivariant neural networks. We provide visual understanding and refer the readers to them for936

comprehensive account.937

To visually understand how the groupD4 acts on some vector space, we visualize the trivial, regular,938

and quotient (quotienting out reflections sr2) representations, which are permutation matrices. If939

we apply such a representation ρ(g)(g ∈ D4) to a vector, the elements get cyclically permuted. See940

Figure 18.941

The quotient representation that quotients out reflections and has dimension 4 × 4 is what we need942

to use on the 4-direction action space.943

G.2 Geometric Deep Learning944

We review another set of important concepts that motivate our formulation of steerable planning:945

geometric deep learning and the theories on connecting equivariance and convolution [11, 12, 13].946

Bronstein et al. [11] use x for feature fields while Cohen and Welling [14], Cohen et al. [12], Weiler947

and Cesa [16] use f .948

Convolutional feature fields. The signals are taken from set C = RD on some structured domain949

Ω, and all mappings from the domain to signals forms the space of C-valued signals X (Ω, C) = {f :950

Ω → C}, or X (Ω) for abbreviation. For instance, for RGB images, the domain is the 2D n × n951

27



grid Ω = Zn × Zn, and every pixel can take RGB values C = R3 at each point in the domain952

u ∈ Ω, represented by a mapping x : Zn × Zn → R3. A function on images thus operates on953

3n2-dimensional inputs.954

It is argued that the underlying geometric structure of domains Ω plays key role in alleviating the955

curse of dimensionality, such as convolution networks in computer vision, and this framework is956

named Geometric Deep Learning. We refer the readers to Geometric Deep Learning [11] for more957

details, and to more rigorous theories on the relation between equivariant maps and convolutions958

in [12] (vector fields through induced representations) and [13] (scalar fields through trivial repre-959

sentations).960

Group convolution. Convolutions are shift-equivariant operations, and vice versa. This is the961

special case for Ω = R, which can be generalized to any group G (that we can integrate or sum962

over). The group convolution for signals on Ω is then defined5 as963

(f ? ψ)(g) = 〈f, ρ(g)ψ〉 =

∫
Ω

f(u)ψ(g−1u)du, (12)

where ψ(u) is shifted copies of a filter, usually locally supported on a subset of Ω and padded964

outside. Note that although x takes u ∈ Ω, the feature map (x ? ψ) takes as input the elements965

g ∈ G instead of points on the domain u ∈ Ω. All following group convolution layers take G:966

X (G)→ X (G). In the grid case, the domain Ω is homogeneous space of the groupG, i.e. the group967

G acts transitively: for any two points u, v ∈ Ω there exists a symmetry g ∈ G to reach u = gv.968

Analogous to classic shift-equivariant convolutions, the generalized group convolution is G-969

equivariant [12]. It is observed that 〈x, ρ(g)θ〉 = 〈ρ(g−1)x, θ〉, and from the defining property970

of group representations ρ(h−1)ρ(g) = ρ(h−1g), the G-equivariance of group convolution fol-971

lows [11]:972

(ρ(h)x ? θ)(g) = 〈ρ(h)x, ρ(g)θ〉 =
〈
x, ρ(h−1g)θ

〉
= ρ(h)(x ? θ)(g) (13)

Steerable convolution kernels. Steerable convolutions extend group convolutions to more general973

setup and decouple the computation cost with the group size [14, 56]. For example, E(2)-steerable974

CNNs [16] apply it for E(2) group, which is semi-direct product of translations R2 and a fiber975

group H , where H is a group of transformations that fixes the origin and is O(2) or its subgroups.976

The representation on the signals/fields is induced from a representation of the fiber group H . Use977

R2 as example, a steerable kernel only needs to be H-equivariant by satisfying the following con-978

straint [16]:979

ψ(hx) = ρout (h)ψ(x)ρin (h−1) ∀h ∈ H,x ∈ R2. (14)

G.3 Steerable CNNs980

We still use the running example on Z2 and group p4m = Z2 oD4.981

Induced representations. We follow [14, 12] to use π for induced representations. We still use982

feature fields over Z2 as example.983

As shown in Figure 2 middle, to transform a feature field f : Z2 → RC on base Z2 with group984

p4m = Z2 oD4, we need the induced representation [14, 12]. The induced representation in this985

case is denoted as π(g) , indZ2oD4

D4
ρ(g) (for all g), which means how the group action of D4986

transforms a feature field on Z2 oD4.987

It acts on the feature field with two parts: (1) on the base space Z2 and (2) on the fibers (feature988

channels RC) by fiber group H = D4 [14, 16]. More specifically, applying a translation t ∈ Z2 and989

a transformation r ∈ D4 to some field f , we get π(tr)f [14, 16]:990

f(x) 7→ [π(tr)f ] (x) , ρ(r) ·
[
f
(
(tr)−1x

)]
. (15)

5The definition of group convolution needs to assume that (1) signals X (Ω) are in a Hilbert space (to define
an inner product 〈x, θ〉 =

∫
Ω
x(u)θ(u)du) and (2) the group G is locally compact (so a Haar measure exists

and "shift" of filter can be defined).
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ρ(r) is the fiber representation that transforms the fibers RC , and (tr)−1x finds the element before991

group action (or equivalently transforming the base space Z2). Thus, π only depends on the fiber992

representation ρ but not the latter part, thus named induced representation by ρ.993

Steerable convolution vs. group convolution. The steerable convolution on Z2 The understand-994

ing of this point helps to understand how a group acts on various feature fields and the design of995

state space for path planning problems. We use the discrete group p4 = Z2 oC4 as example, which996

consists of Z2 translations and 90◦ rotations. The only difference with p4m is p4 does not have997

reflections.998

The group convolution with filter ψ and signal x on grid (or p ∈ Z2), which outputs signals (a999

function) on group p41000

[ψ ? x](t, r) :=
∑
p∈Z2

ψ((t, r)−1p) x(p). (16)

A group G has a natural action on the functions over its elements; if x : G → R and g ∈ G, the1001

function g.x is defined as [g.x](h) := x(g−1 · h).1002

For example: The group action of a rotation r ∈ C4 on the space of functions over p4 is1003

[r.y](p, s) := y(r−1(p, s)) = y(r−1p, r−1s), (17)
where r−1p spatially rotates the pixels, r−1s cyclically permutes the 4 channels.1004

The G-space (functions over p4) with a natural action of p4 on it:1005

[(t, r).y](p, s) := y((t, r)−1 · (p, s)) = y(r−1(p− t), r−1s) (18)

The group convolution in discrete case is defined as1006

[ψ ? x](g) :=
∑
h∈H

ψ(g−1 · h) x(h). (19)

The group convolution with filter ψ and signal x on p4 group is given by:1007

[ψ ? x](t, r) :=
∑
s∈C4

∑
p∈Z2

ψ((t, r)−1(p, s)) x(p, s). (20)

Using the fact1008

ψ((t, r)−1(p, s)) = ψ(r−1(p− t, s)) = [r.ψ](p− t, s), (21)
the convolution can be equivalently written into1009

[ψ ? x](t, r) :=
∑
s∈C4

∑
p∈Z2

[r.ψ](p− t, s) x(p, s)

 . (22)

So
(∑

p∈Z2 [r.ψ](p− t, s) x(p, s)
)

can be implemented in usual shift-equivariant convolution1010

CONV2D.1011

The inner sum
∑

p∈Z2 is equivalently for the sum in steerable convolution, and the outer sum
∑
s∈C4

1012

implement rotation-equivariant convolution that satisfies H-steerability kernel constraint. Here, the1013

outer sum is essentially using the regular fiber representation of C4.1014

In other words, group convolution on p4 = Z2 oC4 group is equivalent to steerable convolution on1015

base space Z2 with the fiber group of C4 with regular representation.1016

Stack of feature fields. Analogous to ordinary CNNs, a feature space in steerable CNNs can con-1017

sist of multiple feature fields fi : Z2 → Rci . The feature fields are stacked f =
⊕

i fi together1018

by concatenating the individual feature fields fi (along the fiber channel), which transforms under1019

the directly sum ρ =
⊕

i ρi of individual (fiber) representations. Every layer will be equivariant1020

between input and output field fin, fout under induced representations πin, πout. For a steerable con-1021

volution between more than one-dimensional feature fields, the kernel is matrix-valued [12, 16].1022

5Technically, we still need to solve the linear equivariance constraint in Eq. 35 to enable weight-sharing for
equivariance, while Weiler and Cesa [16] have implemented it for 2D case.
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H Symmetric Planning Framework: Additional Details1023

H.1 Path planning in neural networks1024

We provide the detailed construction of doing path planning in neural networks in the Section 4.1025

This further explains the visualization in Figure 2 left.1026

We use the running example of planning on the 2D grid Z2. We aim to understand (1) how VIN-1027

style networks embed planning and how its idea generalizes, (2) how is symmetry structure defined1028

in path planning and how could it be injected into such planning networks. Recall that we aim1029

to understand (1) how VIN-style networks embed planning and how its idea generalizes, (2) how1030

is symmetry structure defined in path planning and how could it be injected into such planning1031

networks.1032

Path planning as MDPs. To answer the above two questions, we first need to understand how1033

a VIN embeds a path planning problem into a convolutional network as some embedded MDP.1034

Intuitively, the embedded MDP in a VIN is different from the original path planning problem, since1035

(planar) convolutions are translation equivariant but there are different obstacles in different regions.1036

For path planning on the 2D grid S = Z2, the objective is to avoid some obstacle region Cobs ⊂ Z21037

and navigate to the goal region Cgoal through free space C\Cobs. An action a = ∆s ∈ A is to1038

move from the current state s to a next free state s′ = s + ∆s, where for now we limit it to be in1039

four directions: A =. Assuming deterministic transition, the agent moves to s′ with probability 1 if1040

s+ ∆s ∈ C\Cobs. If it hits an obstacle, it stays at s if s+ ∆s ∈ Cobs: P (s+ ∆s | s,∆s) = 0 and1041

P (s | s,∆s) = 1. Every move has a constant negative reward R(s, a) = −1 to encourage shortest1042

path. We call this ground path planning MDP, a 5-tupleM = 〈S,A, P,R, γ〉.1043

Constructing embedded MDPs. However, such transition function is not translation-invariant,1044

i.e. at different position, the transition probabilities are not related by any symmetry: P (s′|s, a) 6=1045

P (g.s′|g.s, g.a). Instead, we could always construct a "symmetric" MDP that has equivalent optimal1046

value and policy for path planning problems, which is implicitly realized in VINs. The idea is to1047

move the information of obstacles from transition function to reward function: when we hit some1048

action s + ∆s ∈ Cobs, we instead allow transition P̄ (s+ ∆s | s,∆s) = 1 (with all other s′ as 01049

probability) while set a "trap" with negative infinity reward R̄m (s,∆s) = −∞. The reward function1050

needs the information from the occupancy map M , indicating obstacles Cobs and free space. For the1051

free region, the reward is still a constant R̄M (s,∆s) = −1, indicating the cost of movement.1052

We call it the embedded MDP, with different transition and reward function M̄ = 〈S,A, P̄ , R̄M , γ〉,1053

which converts the “complexity” in the transition function P in M to the reward function R̄m in1054

M̄. Here, map M shall also be treated as an “input”, thus later we will derive how the group acts1055

on the map g.M . It has the same optimal policy and value as the ground MDPM, since the optimal1056

policies in both MDPs will avoid obstacles inM or trap cells in M̄. It could be easily verified by1057

simulating value iteration backward in time from the goal position.1058

The transition probability P̄ of the embedded MDP M̄ is for an “empty” maze and thus translation-1059

invariant. Note that the reward function R̄ is not not necessarily invariant. This construction is not1060

limited to 2D grid and generalizes to continuous state space or even higher dimensional space, such1061

as R6 configuration space for 6-DOF manipulation.1062

Note, all of this is what we use to conceptually understand how a VIN is possible to learn. The1063

reward cannot be negative infinity, but the network will learn it to be smaller than all desired Q-1064

values.1065

H.2 Understanding steerable planning1066

How do we deal with potential symmetry in path planning? how do we characterize it? We try to1067

understand symmetric planning (steerable planning after integrating symmetry with equivariance)1068

and how it is difference classic planning algorithms, such as A*, for planning under symmetry.1069

5We avoid the symbol π for policy since it is used for induced representation in [14, 16].
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Steerable planning. Recall that we generalize the idea of VIN by considering it as a planning1070

network that composes of mappings between steerable feature fields.1071

The critical point is that, convolutions directly operate on local patches of pixels and never directly1072

touch coordinates of pixels. In analogy, this avoids a critical drawback in other explicit planning1073

algorithms: in sampling-based planning, a trajectory (s1, a1, s2, a2, . . .) is sampled and inevitable1074

represented by states Ω = S. However, to find another symmetric state g.s, we potentially need to1075

compare it against all known states S ′ ⊂ S with all symmetries g ∈ G. On high level, an implicit1076

planner can avoid such symmetry breaking and is more easily compatible with symmetry by using1077

equivariant constraints.1078

We can use MDP homomorphism to understand this [3, 32].1079

MDP homomorphisms. An MDP homomorphism h : M → M is a mapping from one MDP1080

M = 〈S,A, P,R, γ〉 to anotherM = 〈S,A, P ,R, γ〉 [3, 32]. h consists of a tuple of surjective1081

maps h = 〈φ, {αs | s ∈ S}〉, where φ : S → S is the state mapping and αs : A → A is the1082

state-dependent action mapping. The mappings are constructed to satisfy the following conditions:1083

R (φ(s), αs(a)) , R(s, a) ,

P (φ (s′) | φ(s), αs(a)) ,
∑

s′′∈φ−1(φ(s′))

P (s′′ | s, a) , (23)

for all s, s′ ∈ S and for all a ∈ A.1084

We call the reduced MDPM the homomorphic image ofM under h. If h = 〈φ, {αs | s ∈ S}〉 has1085

bijective maps φ and {αs}, we call h an MDP isomorphism. Given MDP homomorphism h, (s, a)1086

and (s′, a′) are said to be h-equivariant if σ(s) = σ (s′) and αs(a) = αs′ (a
′).1087

Symmetry-induced MDP homomorphisms. Given group G, an MDP homomorphism h is said1088

to be group structured if any state-action pair (s, a) and its transformed counterpart g.(s, a) are1089

mapped to the same abstract state-action pair: (φ(s), αs(a)) = (φ(g.s), αg.s(g.a)), for all s ∈1090

S, a ∈ A, g ∈ G. For convenience, we denote g.(s, a) as (g.s, g.a), where g.a implicitly6 depends1091

on state s. Applied to the transition and reward functions, the transition function P is G-invariant1092

if P satisfies P (g.s′|g.s, g.a) = P (s′|s, a), and reward function R is G-invariant if R(g.s, g.a) =1093

R(s, a), for all s ∈ S, a ∈ A, g ∈ G.1094

However, this only fits the type of symmetry in [9, 10]. And also, they cannot handle invariance to1095

translation Z2. In our case, we need to augment the reward function with map M input:1096

Rg.M (g.s, g.a) = RM (s, a), (24)

for all s ∈ S, a ∈ A, g ∈ G = p4m.1097

This means that, at least for rotations and reflections D4, the MDPs constructed from transformed1098

maps {g.M} are MDP isomorphic to each other.1099

I Symmetric Planning Framework: Proofs1100

We show the derivation and proofs for all theoretical results in this section.1101

We follow the notation in [12] to use ? for (one-argument) convolution and · for (two-argument)1102

multiplication:1103

Ea[V ](s) = [P a · V ](s) ≡
∑
s′

P a (s′ | s) · V (s′) (25)

I.1 Proof: equivariance of scalar-valued expected value operation1104

We present the Theorem 4.1 here and its formal definition.1105

6The group operation acting on action spaceA depends on state, since G actually acts on the product space
S × A: (g, (s, a)) 7→ g.(s, a), while we denote it as (g.s, g.a) for consistency with h = 〈φ, {αs | s ∈ S}〉.
As a bibliographical note, in van der Pol et al. [32], the group acting on state and action space is denoted as
state transformation Lg : S → S and state-dependent action transformation Ks

g : A → A.
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Theorem I.1. If transition is G-invariant, the expected value operator E over Z2 is G-equivariant:

[g.Ea[V ]] (s) = [Eg.a[g.V ]] (s), for all g = tr ∈ Z2 oD4.

Proof. E is the expected value operator. We also write the transition probability as1106

Recall the G-invariance condition of transition probability, the group element g acts on s, a, s′:1107

P̄ (s′ | s, a) = P̄ (g.s′ | g.s, g.a) ≡ P̄ ((tr).s′ | (tr).s, r.a) , ∀g = tr ∈ Z2 oD4,∀s, a, s′, (26)

where we can uniquely decompose any g ∈ Z2 oD4 as t ∈ Z2 and r ∈ D4 [14]. Note that, since1108

the action is the difference between states a = ∆s = s′ − s, the translation part t acts trivially on it,1109

so g.a = (tr).a = r.a for all r ∈ D4.1110

We transform the feature field and show its equivariance:1111

[g.Ea[V ]](s) ≡ [g.[P a · V ]](s) (27)

≡
∑
s′

ρtriv(r)P a
(
s′ | (tr)−1.s

)
· V (s′) (28)

=
∑
s′

ρtriv(r)P r.a ((tr).s′ | s) · V (s′) (29)

=
∑
s̃′

ρtriv(r)P r.a (s̃′ | s) · V
(
(tr)−1s̃′

)
(30)

=
∑
s̃′

P r.a (s̃′ | s) · ρtriv(r)V
(
(tr)−1s̃′

)
(31)

≡ [P r.a · [g.V ]](s) (32)
≡ [Er.a[g.V ]](s). (33)

We use the trivial representation ρtriv(g) = Id1×1 = 1 to emphasize that (1) the group element g acts1112

on feature fields P a and V , and (2) both feature fields P a and V are scalar-valued and correspond1113

to the one-dimensional trivial representation of r ∈ D4.1114

In the third line, we use the G-invariance of transition probability.1115

The fourth line uses substitution s̃′ , (tr).s′, for all s′ ∈ Z2 and tr ∈ Z2oD4. This is an one-to-one1116

mapping and the summation does does not change.1117

1118

I.2 Proof: expected value operator as steerable convolution1119

In this section, we derive how to cast expected value operator as steerable convolution. The equiv-1120

ariance proof is in the next section.1121

In Theorem 4.1, we show equivariance of value iteration in 2D path planning, while it is only for1122

the case that feature fields P a and V are scalar-valued and correspond to one-dimensional trivial1123

representation of r ∈ D4.1124

Here, we provide the derivation for Theorem 4.2 show that steerable CNNs [14] can achieve value1125

iteration since we could construct the G-invariant transition probability as a steerable convolutional1126

kernel. This generalizes Theorem 4.1 from scalar-valued kernel (for transition probability) with triv-1127

ial representation to matrix-valued kernel with any combination of representations, enabling using1128

stack (direct-sum) of feature fields and representations.1129

We state Theorem 4.2 here for completeness:1130

Theorem I.2. If transition is G-invariant, there exists a (one-argument, isotropic) matrix-valued1131

steerable kernel P a(s− s′) (for every action), such that the expected value operator can be written1132

as a steerable convolution and is G-equivariant:1133

Ea[V ] = P a ? V, [g.[P a ? V ]](s) = [P g.a ? [g.V ]](s), ∀s ∈ Z2,∀g ∈ Z2 oD4. (34)
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Steerable kernels. In our earlier definition, ψa and fin are transition probability and value func-1134

tion, which are both real-valued ψa : Z2 → R, fin : Z2 → R. However, this is a special case1135

which corresponds to use one-dimensional trivial representation of the fiber group D4. In the gen-1136

eral case in steerable CNNs [14, 16], we can choose the feature fields ψa : Z2 → RCout×Cin and1137

fin : Z2 → RCin and their fiber representations, which we will introduce the group representations1138

of D4 and how to choose in practice in the next section.1139

Weiler et al. [54] show that convolutions with steerable kernels ψa : Z2 → RCout×Cin is the most1140

general equivariant linear map between steerable feature space, transforming under ρin and ρout. In1141

analogy to the continuous version7 in [16], the convolution is equivariant iff the kernel satisfies a1142

H-steerability kernel constraint:1143

ψa(hs) = ρout(h)ψa(s)ρin(h−1) h ∈ H = D4, s ∈ Z2. (35)

Expected value operation as steerable convolution. The foremost step is to show that the ex-1144

pected value operation is a form of convolution and is also G-equivariant. By definition, if we want1145

to write a (linear) operator as a form of convolution, we need one-argument kernel. Cohen et al. [12]1146

show that every linear equivariant operator is some convolution and provide more details. For our1147

case, this is formally shown as follows.1148

Proposition I.3. If the transition probability is G-invariant, it can be expressed as an (one-1149

argument) kernel P a(s′|s) = P a(s′ − s) that only depends on the difference s′ − s.1150

Proof. The form of our proof is similar to [12], while its direction is different from us. We construct1151

a MDP such that the transition probability kernel is G-invariant, while Cohen et al. [12] assume the1152

linear operator ψ · f is linear equivariant operator on a homogeneous space, and then derive that the1153

kernel is G-invariant and expressible as one-argument kernel. Additionally, our kernel ψa(s, s′) and1154

ψa(s− s′) both live on the base space B = Z2 but not on the group G = Z2 oD4.1155

We show that the transition probability only depends on the difference ∆s = s′−s, so we can define1156

the two-argument kernel P a(s′|s) on S ×S by an one-argument kernel P a(s′− s) (for every action1157

a) on S = Z2, without loss of generality:1158

P a(s′ − s) ≡ P a(0, s′ − s) (36)

= P g.a(g.0, g.(s′ − s)) (37)

= P r.a((rs).0, (rs).(s′ − s)) (38)

= P r.a(r.s, r.(s′ − s+ s)) (39)

= P r.a(r.s, r.s′) (40)

= P a(s, s′), (41)

where the second step usesG-invariance with g = sr, understood as the composition of a translation1159

s ∈ Z2 and a transformation in r ∈ D4.1160

1161

Additionally, we can also derive that, for the one-argument kernel, if we rotate state difference1162

r.(s′ − s), the probability is the same for rotated action r.a.1163

P a(s′ − s) = P r.a(r.(s′ − s)), for all r ∈ D4, s, s
′ ∈ Z2 (42)

The expected value operator with two-argument kernel can be then written as1164

E[V ](s) ≡ [P a · V ](s) =
∑
s′

P a(s′|s)V (s′) =
∑
s′

P a(s′ − s)V (s′) ≡ [P a ? V ](s). (43)

Note that we do not differentiate between cross-correlation (s′ − s) and convolution (s− s′).1165

7Weiler and Cesa [16] use letter G to denote the stabilizer subgroup H ≤ O(2) of E(2).
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I.3 Proof: equivariance of expected future value1166

Our derivation follows the existing work on group convolution and steerable convolution net-1167

works [15, 14, 16, 12]. However, the goal of providing the proof is not just for completeness,1168

but instead to emphasize the close connection between how we formulate our planning problem and1169

the literature of steerable CNNs, which explains and justifies our formulation.1170

Additionally, there are several subtle differences worth to mention. (1) Throughout the paper, we1171

do not discuss kernels or fields that live on a group G to make it more approachable. Nevertheless,1172

group convolutions are a special case of steerable convolutions with fiber representation ρ as regular1173

representation. (2) We use Z2 as running example. Some prior work uses R2 or Z2, but they are1174

merely just differ in integral and summation. (3) The definition of convolution and cross-correlation1175

might be defined and used interchangeably in the literature of (equivariant) CNNs.1176

Notation. To keep notation clear and consistent with the literature [14, 12, 16], we denote the1177

transition probability P̄ (s′|s, a) , ψa(s, s′) ∈ R (one kernel for an action) and value function as1178

V (s′) , fin(s′) ∈ R, and the resulting expected value as faout(s) =
∑
s′ ψ

a(s, s′)fin(s′) (given a1179

specific action a).1180

Transformation laws: induced representation. For some group acting on the base space Z2, the1181

signals f : Z2 → Rc are transformed like [14]:1182

[π(g)f ](x) = f(g−1x) (44)

Apply a translation t and a transformation r ∈ D4 to f , we get π(tr)f . The transformation law on1183

the input space fin is [14, 16]:1184

f(x) 7→ [π(tr)f ] (x) , ρ(r) ·
[
f
(
(tr)−1x

)]
(45)

The transformation law of the output space after applying πin on input fin is given by [14]:1185

[ψ ? f ] (x) 7→ [ψ ? [π(tr)f ]] (x) , ρ(r) ·
[
[ψ ? f ]

(
(tr)−1x

)]
. (46)

In our case, the output space is faout : Z2 → RCout and the input space is fin : Z2 → RCin . Intuitively,1186

if we rotate a vector field (fibers represent arrows) by the induced representation π(tr) of f , we also1187

need to rotate the direction of arrows by ρ(r), r ∈ D4.1188

Equivariance. Now we prove the steerable convolution is equivariant:1189

[ψa ? [πin(g)fin]] (s) = [πout(g)faout] (s) ∀s ∈ S,∀g ∈ G. (47)

The induced representation of input field fin is induced by the fiber representation ρin, expressed by1190

πin , indGHρin = indZ2oD4

D4
ρin, where ρin is the fiber representation of group H = D4. The induced1191

representation of output field πout is analogously from ρout.1192

Weiler and Cesa [16] proved equivariance of steerable convolutions for R2 case, while we include the1193

proof under our setup for completeness. The definition in [16] uses a form of cross-correlation and1194

we use convolution, while it is usually referred to interchangeably in the literature and is equivalent.1195

Cohen and Welling [14], Weiler et al. [54], Weiler and Cesa [16], Cohen et al. [12], Cohen [56]1196

provide more details and we refer the readers to them for more comprehensive account.1197

The convolution on discrete grids Z2 with input field fin transformed by the induced representation1198

πin gives:1199
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Figure 19: We attach a copy of the commutative diagram of SymVIN to show the equivariance
of steerable value iteration. Commutative diagram for the full pipeline of SymVIN on steerable
feature fields over Z2 (every grid). If rotating the input map M by πM (g) of any g, the output action
A = SymVIN(M) is guaranteed to be transformed by πA(g), i.e. the entire steerable SymVIN is
equivariant under induced representations πM and πA: SymVIN(πM (g)M) = πA(g)SymVIN(M).
We use stacked feature fields to emphasize that SymVIN supports direct-sum of representations
beyond scalar-valued.

[ψa ? [πin(rt)fin]](s) =
∑
s′∈Z2

ψa(s− s′)[πin(rt)fin](s′)

=
∑
s′∈Z2

ψa(s− s′)ρin(r)fin(r−1(s′ − t))

=
∑
s′∈Z2

ρout(r)ψ
a(r−1(s− s′))ρin(r)−1ρin(r)fin(r−1(s′ − t))

= ρout(r)
∑
s′∈Z2

ψa(r−1(s− s′))fin(r−1(s′ − t))

= ρout(r)
∑
s̃∈Z2

ψa(r−1(s− t)− s̃)fin(s̃)

= ρout(r)fout(r
−1(s− t))

= [πout(rt)f
a
out] (s),

(48)

where s′ ∈ S = Z2, and thus satisfies the equivariance condition:1200

[ψa ? [πin(rt)fin]] (s) = [πout(rt)f
a
out] (s),∀s ∈ Z2,∀rt ∈ Z2 oD4. (49)

1. Definition of ?1201

2. Transformation law of the induced representation πin [14, 16]1202

3. Kernel steerability ψa(s) = ρout(h)ψa(h−1s)ρin(h−1) [16]1203

4. Move and cancel1204

5. Substitutes s̃ = r−1(s′ − t), r−1s′ = r−1t + s̃, so r−1(s − s′) = r−1(s − t) − s̃.1205

Since r ∈ D4 and s − s′ ∈ Z2, the result is still in p4m, it is one-to-one correspondence1206

p4m × Z2 → Z2, and the summation does not change. Weiler and Cesa [16] analogously1207

considers the continuous case, where D4 is orthogonal transformations so the Jacobian is1208

always 1.1209

6. Definition of ?1210

7. Transform law of the induced representation πout1211

I.4 Proof: equivariance of steerable value iteration1212

As the third and final step, we would like to show that the full steerable value iteration pipeline1213

is equivariant under G = Z2 o D4. We need to show that every operation in the steerable value1214

iteration is equivariant.1215
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The key is to prove that maxa is an equivariant non-linearity over feature fields, which follows1216

Section D.2 in [16].1217

Step 1: V 7→ Q. Here, we prove the equivariance of Qak(s) = R̄aM (s) + γ ×
[
P̄ aθ ? Vk

]
(s). First,1218

let the group acts on both sides:1219

Qak(s) = R̄aM (s) + γ ×
[
P̄ aθ ? Vk

]
(s) (50)

⇐⇒ [πout(g)Qak](s) = [πout(g)R̄aM ](s) + γ ×
[
πout(g)

[
P̄ aθ ? Vk

]]
(s) (51)

⇐⇒ [πout(g)Qak](s) = [πout(g)R̄aM ](s) + γ ×
[
P̄ aθ ? [πin(g)Vk]

]
(s) (52)

⇐⇒ Qg.ak (g−1s) = R̄g.ag.M (g−1s) + γ ×
[
P̄ g.aθ ? Vk

]
(g−1s) (53)

⇐⇒ Qãk(s̃) = R̄ãπM(g)M (s̃) + γ ×
[
P̄ ãθ ? Vk

]
(s̃) (54)

The the last step we substitute s̃ = g−1s and ã = g.a.1220

M : Z2 → {0, 1}2 is the concatenation of maze occupancy map and goal map, which also lives on1221

Z2. We use two copies of trivial representations as fiber representation ρM, and denote the induced1222

representation of the field M as πM.1223

Then, we prove the equivariance: if we transform the occupancy map (and goal map), the value1224

iteration should have both input V and output Q transformed. Since this is an iterative process, the1225

only input to the value iteration is actually the occupancy map M : Z2 → {0, 1}2.1226

Before that, we observe that the reward also has G-invariance when we have map as input:1227

R̄aM (s) = R̄g.ag.M (g.s). (55)

Additionally, since the reward R̄aM (s) means the reward at given position in mapM after executing1228

action a, when we transform the map, we also need to transform the action: R̄g.ag.M (s).1229

Since it is iterative process, let the Q-map being transformed by g:1230

[g.Qak](s) = Qak(g−1s) (56)

= R̄aM (g−1s) + γ ×
[
P̄ aθ ? Vk

]
(g−1s) (57)

= R̄g.ag.M (s) + γ ×
[
P̄ aθ ? Vk

]
(g−1s) (58)

= R̄g.ag.M (s) + γ ×
[
P̄ g.aθ ? [g.Vk]

]
(s) (59)

The second last step uses the G-invariance condition R̄aM (s) = R̄g.ag.M (g.s). The last step uses the1231

equivariance of steerable convolution.1232

It should be understood as: (1) transforming map g.M and action g.a, is always equal to (2) trans-1233

forming values [g.Qak] and [g.Vk]. This proves the equivariance visually shown in Figure 19.1234

Step 2: Q 7→ V . The second step is to show for Vk+1(s) = maxaQ
a
k(s).1235

Intuitively, we sum over every channel of each representation. For example, if we have N copies1236

of the regular representation with size |D4| = 8, we transform the tensor (N × 8) × m × m to1237

(1 × 8) × m × m along the N channel. Thus, how we use the 8 × 8 regular representation to1238

transform the N × 8 channels still holds for 1× 8, which implies equivariance. The m×m spatial1239

map channels form the base space Z2 and are transformed as usual (spatially rotated).1240

Weiler and Cesa [16] provide detailed illustration and proofs for equivariance of different types of1241

non-linearities.1242

Step 3: multiple iterations. Since each layer is equivariant (under induced representations), Co-1243

hen and Welling [15], Kondor and Trivedi [13], Cohen et al. [12] show that stacking multiple equiv-1244

ariant layers is also equivariant. Thus, we know iteratively applying step 1 and 2 (equivariant1245

steerable Bellman operator) is also equivariant (steerable value iteration).1246
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Figure 20: The U-net architecture we used as manipulation mapper.

J Practice and Implementation Details1247

J.1 Note1248

We provide additional practical and implementation details, and leave results in the next section.1249

J.2 Building Mapper Networks1250

For visual navigation. For navigation, we follow the setting in GPPN [18]. The input is m ×m1251

panoramic egocentric RGB images in 4 directions of resolution 32×32×3, which forms a tensor of1252

m×m×4×32×32×3. A mapper network converts every image into a 256-dimensional embedding1253

and results in a tensor in shape m×m× 4× 256 and then predicts map layout m×m× 1.1254

For the first image encoding part, we use a CNN with first layer of 32 filters of size 8× 8 and stride1255

of 4 × 4, and second layer with 64 filters of size 4 × 4 and stride of 2 × 2, with a final linear layer1256

of size 256.1257

The second obstacle prediction part, the first layer has 64 filters and the second layer has 1 filter, all1258

with filter size 3× 3 and stride 1× 1.1259

For workspace manipulation. For workspace manipulation, we use U-net [58] with residual-1260

connection [59] as a mapper, see Figure.20. The input is 96 × 96 top-down occupancy grid of the1261

workspace with obstacles, and the target is to output 18 × 18 configuration space as the maps for1262

planning.1263

During training, we pre-train the mapper and the planner separately for 15 epochs. Where the1264

mapper takes manipulator workspace and outputs configuration space. The mapper is trained to1265

minimize the binary cross entropy between output and ground truth configurations space. The plan-1266

ner is trained in the same way as described in Section 6.1. After pre-training, we switch the input to1267

the planner from ground truth configuration space to the one from the mapper. During testing, we1268

follow the pipeline in [37] that the mapper-planner only have access to the manipulator workspace.1269

J.3 SymGPPN1270

ConvGPPN [Redacted for anonymous review] is inspired by VIN and GPPN. To avoid the training1271

issues in VIN, GPPN proposes to use LSTM to alleviate them. In particular, it does not use max1272

pooling in the VIN. Instead, it uses a CNN and LSTM to mimic the value iteration process. Con-1273

vGPPN, on the other hand, integrates CNN into LSTM, resulting in a single component convLSTM1274

for value iteration. We found that ConvGPPN performs better than GPPN in most cases. Based on1275

ConvGPPN, SymGPPN replaces each convolutional layer with steerable convolutional layer.1276

J.4 Understand group conv and "augmented state"1277

We derive the relationship between group convolution and steerable convolution in Section G.3.1278

The augmented state Z2 o D4 → R can be similarly treated on the group p4m = Z2 o D4. It is1279

equivalent to using regular representation on the base space Z2 as Z2 → R8.1280
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J.5 Implementation of max operation1281

Here, we consider how to implement the max operation in Vk+1(s) = maxaQ
a
k(s). The max is1282

taken over every state, so the computation mainly depends on our choice of fiber representation.1283

For example, if we use trivial representations for both input and output, the input would be Qk :1284

Z2 → R1∗CA and the output is state-value Vk : Z2 → R. This recovers the default value iteration1285

since we take max over RCA vector.1286

In steerable CNNs, we can use stack of fiber representations. We can choose from regular-regular,1287

trivial-trivial, and regular-trivial (trivial-regular is not considered).1288

We already covered trivial representations for both input and output, they would be Qk : Z2 →1289

RCQ∗CA and Vk : Z2 → RCV with CQ = CV = 1, since every channel would need a trivial1290

representation.1291

If we use regular representation for Q and trivial for V , they are Qk : Z2 → RCQ∗CA and Vk :1292

Z2 → RCV with CQ = |D4| = 8 and CV = 1. It degenerates that we just take max over all1293

CQ ∗ CA channels.1294

For both using regular representations, we need to make sure they use the same fiber group (such as1295

D4 or C4), so CQ = CV . If using D4, we have Qk : Z2 → R8∗CA and Vk : Z2 → R8, and we1296

take max over every CA channels (for every location) and have 8 channels left, which are used as1297

Z2 → R8.1298

Empirically, we found using regular representations for both works the best overall.1299

38


	Introduction
	Related work
	Preliminaries
	Symmetric Planning Framework
	Steerable Planning: planning on steerable feature fields
	Symmetric Planning: symmetry by equivariance

	Symmetric Planning in Practice
	Experiments
	Planning on given maps
	Planning on learned maps: simultaneously planning and mapping

	Discussion
	Outline
	blue A temporary section for new figures and results
	blue Updated environment figures
	blue Results on generalization to larger maps

	blue A Guide to Symmetric Planning
	blue PyTorch-style pseudocode

	blue Simplified Version: Symmetric Planning
	blue Overview
	blue Value Iteration Network: Background and Interpretation
	blue Symmetric Value Iteration Network: A Practical Symmetric Planning Algorithm
	blue Theoretical Justification: Why does it work?

	Experiments: Details and Additional Results blue (moved)
	Details: Setup
	Details: Environments.
	Details: Model Architecture
	Visualization of learned models
	Further Analysis

	Additional Discussion
	Limitations and Extensions
	The considered symmetry in spatial MDPs

	Additional Background and Concepts
	Group representations: visual understanding
	Geometric Deep Learning
	Steerable CNNs

	Symmetric Planning Framework: Additional Details
	Path planning in neural networks
	Understanding steerable planning

	Symmetric Planning Framework: Proofs
	Proof: equivariance of scalar-valued expected value operation
	Proof: expected value operator as steerable convolution
	Proof: equivariance of expected future value
	Proof: equivariance of steerable value iteration

	Practice and Implementation Details
	Note
	Building Mapper Networks
	SymGPPN
	Understand group conv and "augmented state"
	Implementation of max operation


