
Published as a conference paper at ICLR 2025

SUPPLEMENTARY FOR:
PREDICATE HIERARCHIES IMPROVE FEW-SHOT
STATE CLASSIFICATION

The appendix is organized as the following. In Appendix A, we include additional PHIER results,
details, and discussion. In Appendix B, we describe implementation of baseline methods, including
supervised models, pretrained large vision language models, and ablation variants. In Appendix C,
we present preliminaries on hyperbolic geometry. In Appendix D, we detail prompts used to extract
knowledge of predicates from LLMs. Finally, in Appendix E, we list all states in our datasets, and
show examples from the BEHAVIOR Vision Suite Ge et al. (2024).

A PHIER RESULTS AND DETAILS

A.1 MODEL DETAILS

PHIER’s image and text encoders are initialized with pretrained CLIP (Radford et al., 2021) and
BERT (Devlin, 2018) weights, respectively. The hyperbolic linear layers are initialized following the
approach of Shimizu et al. (2020), with the weights drawn from a normal distribution centered at
zero with a standard deviation (2nm)→

1
2 , where m and n are the input and output sizes of the layer,

and the biases set to the zero vector. The linear layer in the small MLP is initialized by the standard
Kaiming initialization. All of the parameters in PHIER are trainable and updated during training.

PHIER disentangles the conditioning of the image on the full state classification query into two
distinct ones: one that identifies the relevant objects and another that focuses on key features for
the given predicate. While we use MaskCLIP to identify the relevant entities, PHIER’s contribution
lies in the decomposition of the query into object and predicate components, enabling it to faithfully
identify the relevant entities and extract features based on the predicate.

A.2 COMPARISON ON MANUALLY COLLECTED REAL-WORLD DATASET

We collect a small real-world dataset with 100 examples, consisting of 4 examples for each of the
out-of-distribution BEHAVIOR states, to test our method’s ability to perform zero-shot real-world
transfer after training on simulated datasets alone. See Figure 4 for examples. In Table 5, we
observe similar trends as in the BEHAVIOR Vision Suite evaluation in the main text, even with a
simpler dataset. PHIER significantly outperforms prior supervised baselines. However, as expected,
pre-trained models trained on large-scale real-world data outperform PHIER.

Open(drawer) Open(microwave)
OnTop(coffee
cup, table)

OnTop(plate,
table)

Inside(apple,
cabinet)

Inside(coffee
cup, drawer)

Real world

Figure 4: Examples from our manually collected real-world dataset.

A.3 ABLATION STUDY ON EXAMPLE COUNT

We study the effect of varying the number of examples used in the few-shot setting. We added
new ablation experiments with 0, 1, 2, 3, 4, 5, and 10-shot generalization performance on both
CALVIN and BEHAVIOR environments. The results in Figure 5 show that PHIER consistently
outperforms prior works across all numbers of examples. Notably, in the CALVIN environment,
PHIER’s performance plateaus as the number of examples increases, indicating that the method
requires only a few examples to adapt effectively to unseen scenarios.

14

Published as a conference paper at ICLR 2025

Table 5: We present zero-shot generalization results of PHIER and prior works on a real-world test
set, when trained only on the BEHAVIOR dataset. PHIER outperforms all prior supervised models.

All Unseen Combination Novel Predicate

PHIER (Ours) 0.62 0.64 0.60

Re-Attention (Guo et al., 2020) 0.41 0.45 0.37
CoarseFine (Nguyen et al., 2022) 0.53 0.52 0.54
BUTD (Anderson et al., 2018) 0.44 0.42 0.46
RelViT (Ma et al., 2022) 0.55 0.59 0.51
CLIP (Shen et al., 2021) 0.55 0.65 0.45
FiLM (Perez et al., 2018) 0.49 0.51 0.47

GPT-4V (OpenAI, 2023) 0.72 0.74 0.70
BLIP-2 (Li et al., 2023b) 0.62 0.66 0.58
ViperGPT (Surı́s et al., 2023) 0.55 0.52 0.58

Number of Examples

A
cc

ur
ac

y

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10

Ours

Re-Attention

CoarseFine

BUTD

RelViT

CLIP

FiLM

Few-Shot Ablation: CALVIN

 Number of Examples

A
cc

ur
ac

y

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10

Ours

Re-Attention

CoarseFine

BUTD

RelViT

CLIP

FiLM

Few-Shot Ablation: BEHAVIOR

Figure 5: Ablations varying number of examples given in few-shot setting for CALVIN and BEHAV-
IOR environments.

A.4 ABLATION STUDY WITH REMOVED COMPONENTS

We add an ablation study that evaluates the impact of removing individual components of PHIER to
evaluate their contributions. We compare PHIER with four variants, (1) without the object-centric
encoder, (2) without the hyperbolic latent space, (3) without the norm regularization loss, and (4)
without the predicate triplet loss. We report results in Table 6. We see that without our object-
centric design, performance drops significantly in both ID and OOD settings, emphasizing the
importance of object-centric encoders for improved representation and reasoning. In addition, we
show that removing each of the self-supervised losses leads to much weaker generalization capability.
Finally, we observe reduced generalization performance without PHIER ’s hyperbolic latent space and
hyperbolic norm regularization loss, demonstrating that the hyperbolic space facilitates better handling
of hierarchical relationships. These results validate that each component contributes meaningfully to
PHIER’s performance, particularly in improving OOD generalization.

A.5 FEW-SHOT GENERALIZATION TO NOVEL OBJECTS

We expand our CALVIN and BEHAVIOR experiments to evaluate accuracy on few-shot generalization
on novel objects in Table 7. The queries with these novel objects are listed in Table 8. As in our
experiments on unseen combinations and novel predicates, we observe that PHIER significantly
outperforms prior baselines on unseen objects. Specifically, PHIER improves upon the top-performing
prior work by 21.8 percent points on CALVIN and 13.5 percent point on BEHAVIOR. These results
demonstrate that PHIER improves generalization to both novel objects and predicates, further
highlighting the benefit of our object-centric encoder and inferred predicate hierarchy.

15

Published as a conference paper at ICLR 2025

Table 6: Ablations of each component of PHIER and its effect on few-shot generalization.

CALVIN BEHAVIOR
ID → OOD → ID-OOD ↑ ID → OOD → ID-OOD ↑

PHIER (Ours) 0.945 0.899 0.046 0.859 0.820 0.039

- Object-centric encoder 0.786 0.704 0.082 0.703 0.659 0.044
- Predicate triplet loss 0.867 0.601 0.266 0.774 0.624 0.150
- Norm regularization loss 0.914 0.823 0.091 0.834 0.782 0.052
- Hyperbolic metric 0.903 0.784 0.119 0.803 0.761 0.042

Table 7: We present novel object generalization results of PHIER and prior works on CALVIN and
BEHAVIOR environments.

CALVIN BEHAVIOR

PHIER (Ours) 0.851 0.781

Re-Attention 0.633 0.608
CoarseFine 0.562 0.632
BUTD 0.584 0.646
RelViT 0.497 0.642
CLIP 0.506 0.595
FiLM 0.411 0.521

Table 8: All states with novel objects (bolded) in the CALVIN and BEHAVIOR datasets.

Dataset Predicate Object 1 Object 2

CALVIN

OnTop red block table
Stacked red block blue block
Stacked red block pink block

TurnedOn led –

BEHAVIOR

Inside box bottom cabinet
Inside can bottom cabinet
OnTop bottle breakfast table
OnTop bottle chair
OnTop box breakfast table
OnTop bread breakfast table
OnTop can chair
Open refrigerator –

A.6 VISUALIZATIONS ON THE INFERRED PREDICATE HIERARCHY

In Figure 6, we visualize the joint image-predicate space for BEHAVIOR on the Poincaré disk,
highlighting the hierarchical semantic structure captured by PHIER’s embeddings. By grouping the
joint image-predicate embeddings by predicate, we uncover the inferred predicate hierarchy. For
instance, we see that embeddings for NextTo are positioned closer to the origin compared to those
for OnLeft, accurately reflecting their hierarchical relationship—–OnLeft is a more specific case
of NextTo. Furthermore, embeddings for Touching are nearest to the origin, consistent with its
role as the most general predicate. For example, when one object is Inside or OnTop of another,
they are inherently Touching. Similarly, objects that are NextTo or OnLeft are also frequently
Touching. This visualization demonstrates that PHIER captures not only semantic structure but
also nuanced hierarchical relationships between predicates.

We further analyze the embeddings for novel predicates after few-shot learning with only five
examples. Notably, even with such limited data, PHIER successfully integrates these novel predicates

16

Published as a conference paper at ICLR 2025

into the latent space and aligns them with their learned counterparts in semantically consistent regions
(e.g., OnRight is near OnLeft). By aligning these predicates in similar regions, PHIER is able to
leverage its existing knowledge of relevant features for learned predicates (e.g., OnLeft) to reason
about novel predicates (e.g., OnRight). This alignment highlights that PHIER effectively encodes
the relationships between pairwise predicates in the latent space, enabling generalization to novel
predicates with minimal examples.

In-Distribution Predicates Novel Predicates

Dimension 1

D
im

en
sio

n
2

0.00 0.50-0.50-1.00 1.00
-1.00

-0.50

0.00

0.50

1.00

Predicates Predicates
Inside
Open
OnLeft
OnTop
NextTo
Touching

Dimension 1
D

im
en

sio
n

2
0.00 0.50-0.50-1.00 1.00

-1.00

-0.50

0.00

0.50

1.00

Contains
Closed
OnRight
Under

Figure 6: Visualizations of the joint image-predicate space for BEHAVIOR on the Poincaré disk,
revealing that PHIER learns a meaningful predicate hierarchy. The novel predicate embeddings are
visualized after few-shot learning with 5 examples.

A.7 IN-DISTRIBUTION PERFORMANCE

Here, we discuss the in-distribution performance of PHIER in Table 1 of the main text. We note
that in the in-distribution (ID) setting of CALVIN, PHIER outperforms all prior works except Re-
Attention, with only a small margin of 1.4%. In the out-of-distribution (OOD) setting, which is
our primary focus, PHIER outperforms Re-Attention by a significant 22.5%. Similarly, on ID
BEHAVIOR, PHIER performs comparably to top-performing prior works, surpassing all except
RelViT by 0.7%; however, in the OOD setting we focus on, PHIER outperforms RelViT by 8.3%.
We highlight that PHIER performs comparably to top-performing prior works in the ID setting, while
significantly improving the OOD performance. We focus on the few-shot generalization task and
design our method to enforce bottlenecked representations (via a joint image-predicate space), while
acknowledging that this might include tradeoffs on ID performance to avoid overfitting to the train
distribution.

We also analyze specific cases where PHIER underperforms on ID examples. For instance, in
CALVIN, we hypothesize that PHIER may struggle with tasks that the baselines may memorize
due to their less constrained representations. We show an example in Figure 7, and note that for
the ID query, TurnedOn(lightbulb), Re-Attention correctly predicts True, while PHIER
predicts False. However, for the out-of-distribution query, TurnedOff(lightbulb), which is
linguistically similar but semantically opposite, PHIER generalizes successfully while Re-Attention
struggles to adapt. We conjecture that Re-Attention may predict that TurnedOn(lightbulb) is
True based solely on the existence of the bulb at the location, instead of learning that the state of
the lightbulb depends on its color (yellow is on and white is off). In contrast, we see that although
PHIER’s constrained representation may slightly limit learning capacity for ID settings, PHIER has
the potential to conduct better compositional reasoning in OOD scenarios, where PHIER significantly
outperforms baselines.

A.8 OBJECT-CENTRIC ENCODER PERFORMANCE

We see empirically that PHIER’s object-centric encoder performs well even on environments with
significant distribution shifts, such as CALVIN. In Figure 8, we show an example of how the encoder
localizes objects in CALVIN. To adapt to environments with even larger distribution shifts where the

17

Published as a conference paper at ICLR 2025

In-Distribution Query
TurnedOn(lightbulb)

Out-Of-Distribution Query
TurnedOff(lightbulb)

Figure 7: An example of the ID query, TurnedOn(lightbulb), and OOD query with a novel
predicate, TurnedOff(lightbulb).

performance may decrease, we note that PHIER’s object-centric encoder can be finetuned with more
data as well.

Input
Image Red Block Blue Block

Masked Images

Figure 8: PHIER’s object-centric encoder in the CALVIN environment.

18

Published as a conference paper at ICLR 2025

B BASELINE DETAILS

For all of our baseline methods, we preprocess our input queries by converting the states into questions
using the following templates:

• For unary states: “Is the {object} {predicate}”

• For binary states: “Is the {object 1} {predicate} the {object 2}”

B.1 SUPERVISED METHODS

We train all of the supervised baselines on the same training data as our method. Below, we describe
each baseline and provide implementation details:

BUTD (Anderson et al., 2018). BUTD uses bottom-up attention to extract image features for
important image regions and then top-down attention to focus on image regions based on the input
query. We follow the original method, using Faster R-CNN pretrained on Visual Genome to extract
bottom-up features for the top 36 image regions. For the text features, we embed the preprocessed
text queries using 300-dimension word embeddings, initialized with pretrained GloVe vectors, and a
GRU. The image and text features are then fed into model, based on the PyTorch implementation of
the BUTD model for VQA (Yu et al., 2020)*.

CLIP (Shen et al., 2021). We use pretrained CLIP vision and text encoders to extract features for
the input image and query, respectively. These features are concatenated and passed through a small
2-layer network with a hidden layer of dimension 256 for state classification.

CoarseFine (Nguyen et al., 2022). Coarse to Fine learns to reason about scenes with complex
semantic information by extracting image and text features at multiple levels of granularity. We
follow the official implementation of the Coarse to Fine reasoning framework and use Faster R-
CNN to extract image-level features and GRU with 300-dimensional GloVe embeddings to extract
question-level features, which are then fed into the model†.

FiLM (Perez et al., 2018). FiLM conditions an input image on text by applying learned transforma-
tions to the image features. We use a pretrained ViT-16 image encoder and BERT text encoder to
extract image and query features. Then, a FiLM layer is applied to condition the image features on
the query features, and the conditioned features are passed through a small 2-layer network with a
hidden layer of dimension 256 for final prediction.

Re-Attention (Guo et al., 2020). Re-Attention introduces an attention mechanism to re-attend to
objects in the images, based on the answer to the question. We follow the original implementation by
using a Faster R-CNN model pretrained on the Visual Genome dataset to extract object-level image
features, and 512-dimensional LSTM initialized with 300-dimensional GloVe embeddings to extract
query features ‡.

RelViT (Ma et al., 2022). RelViT enhances the reasoning ability of vision transformers by introducing
a concept-feature dictionary that enables efficient image feature retrieval during training. This
supports a global task to promote relational reasoning and a local task to learn semantic object-centric
correspondences. We use the official implementation, with Faster R-CNN to extract image region
features, MCAN-Small as our VQA model, and the ImageNet1K-pretrained PVTv2b2 as our vision
backbone §.

SORNet (Yuan et al., 2022). SORNet extracts object-centric representations from input RGB images,
conditioned on a set of object queries represented as images of the objects, to enable generalization to
unseen objects on various spatial reasoning tasks. It performs state classification by training readout
networks to predict spatial relations based on the object embeddings. For a fair comparison to our
method and other baselines, we use MDETR (Kamath et al., 2021) to detect regions corresponding to
object text, resize then to 32 ↓ 32, and then use them as the input object images to train SORNet.

*https://github.com/MILVLG/bottom-up-attention.pytorch
†https://github.com/aioz-ai/CFR VQA
‡https://github.com/gwy-nk/Re-Attention
§https://github.com/NVlabs/RelViT

19

Published as a conference paper at ICLR 2025

We train readout networks for each training state in our dataset ¶. Since SORNet requires training a
separate network for each predicate, we only evaluate it on in-distribution states.

B.2 PRETRAINED LARGE VISION LANGUAGE MODELS (VLM)

All of the pretrained large VLM baselines are evaluated inference-only.

BLIP-2 (Li et al., 2023b). We use BLIP-2 leveraging the OPT-2.7b language model and treat VQA
as an open-ended answer generation problem. The input image is provided along with a query using
the following format: “Question: {state query as a question} Answer:”

GPT-4V (OpenAI, 2023). We provide GPT-4V with the input image and a prompt based on the
following template:

Prompt Template For GPT-4V Inference

Given an image of a scene, you will answer a question regarding the states

and relationships of objects in the scene. The question is the following:

{state query as a question}

You need to carefully examine the image, thoughtfully consider the objects

in the scene, and analyze their states and relationships before answering

the question.

Provide your answer as True or False, and strictly follow this response

format:

Answer: [insert your answer as True or False here]

Reasoning: [insert your reasoning here]

Figure 9: Prompt template for GPT-4V experiments.

ViperGPT (Surı́s et al., 2023). We use the official ViperGPT implementation with Blip-2 Flan-T5
XXL as the pretrained model and GPT-4 for code generation. Our data is formatted according to the
ViperGPT specifications, with the input image and query as a question.

B.3 ABLATION DETAILS

Here, we provide a clear breakdown of our ablation model architectures from Table 4 and explain
how we add each component.

Supervised model. We start with a supervised baseline model, which uses an image encoder
and text incoder initialized with CLIP and BERT weights, respectively.The embeddings from
both encoders are concatenated and passed through a small MLP with three linear layers for
classification, and the full model is trained with a binary cross-entropy loss based on the ground
truth labels (True or False). We then progressively add each component of PHIER.
+ Object-centric encoder. First, we incorporate the object-centric encoder by replacing the image
encoder, text encoder, and concatenation step with our proposed object-centric encoder, while
retaining the MLP and loss.

+ Predicate triplet loss. Next, we introduce the predicate triplet loss by adding this term to the total
loss function without changing the architecture.

+ Norm regularization loss. We further add the norm regularization loss to get the total loss function
with all components, as described in Section 3

+ Hyperbolic metric. Finally, we lift the scene representation to hyperbolic space using an exponential
map and replace the first two linear layers in the MLP with two hyperbolic linear layers of the same
size. We also use the Poincaré distance metric instead of the Euclidean metric in the self-supervised
losses, yielding our final model (PHIER).

¶https://github.com/wentaoyuan/sornet

20

Published as a conference paper at ICLR 2025

C HYPERBOLIC GEOMETRY PRELIMINARY

We briefly introduce the Poincaré ball model of hyperbolic space and hyperbolic neural networks.
For a more detailed explanation, we refer the reader to Cannon et al. (1997) and Ganea et al. (2018).

As discussed in the main text, the Poincaré ball is a d-dimensional ball of radius 1, Pd = {x ↔

Rn : ||x|| < 1}, where || · || is the Euclidean norm. The ball is equipped with the metric tensor
gp = (ωx)2ge, where ωx = 2

1→||x||2 is the conformal factor and ge is the Euclidean metric tensor
(i.e., the Euclidean dot product). This induces the Poincaré distance dp between two points x, y ↔ Pd

as follows:

dp(x, y) = cosh→1

(
1 + 2

||x↗ y||2

(1↗ ||x||2)(1↗ ||y||2)

)

Möbius addition. On the Poincaré ball, Euclidean operations such as addition and multiplication
have equivalents to ensure that all operations remain within the hyperbolic space and respect its
geometry. Instead of using standard Euclidean addition, Möbius addition is used, which ensures that
the sum of two points on the Poincaré ball still lies within the ball. The Möbius addition for any two
points x, y ↔ Pd is defined as:

x↘ y :=
(1 + 2≃x, y⇐+ ||y||2)x+ (1↗ ||x||)2y

1 + 2≃x, y⇐+ ||x||2||y||2

Exponential and logarithmic maps. To perform operations in hyperbolic space, we use exponential
and logarithmic maps to map Euclidean vectors to the hyperbolic space, and vice versa. For any point
z ↔ Pd, the closed form expression of the exponential and logarithmic maps centered around z are
defined as:

expz(y) = z ↘

(
tanh

(
ωz||v||

2

)
v

||v||

)

logz(y) =
2

ωz
tanh→1(||↗ z ↘ y||)

↗z ↘ y

||↗ z ↘ y||

In practice, we use the maps centered at 0, exp0 and log0, to transition between Euclidean space and
the Poincaré ball.

Hyperbolic neural networks. Ganea et al. (2018) proposes hyperbolic neural networks by defining
hyperbolic equivalents of linear maps and bias translations. The hyperbolic linear map M↑ : Rn

⇒

Rm of any point x ↔ Pd on the Poincaré ball is defined as:

M↑(x) = (1/
⇑
c) tanh

(
||Mx||

||x||
tanh→1 (⇑c||x||

)) Mx

||Mx||

The translation of a point x ↔ Pd by a bias b ↔ Pd as:

x↘ b = expx

(
ω0

ωx
log0(c)

)

The hyperbolic linear layer is then defined as M↑(x)↘ b. To build a hyperbolic neural network, one
simply has to map representations to the Poincaré ball using exp0, apply hyperbolic linear layers,
and then map back to Euclidean space using log0.

Disk area of hyperbolic space.
We provide further details on why the exponential growth of the disc area in hyperbolic space provides
a natural and efficient way to represent trees. Note that for a regular tree with a constant branching
factor b, the number of nodes increases exponentially with the distance from the root, as (b+ 1)b↓→1.
We can embed trees in hyperbolic space, as they mirror this exponential growth. For instance, in
a two-dimensional hyperbolic space with constant curvature K = ↗1, the circumference of a disc
with radiuds r is 2ε sinh r while the area of a disc is 2ε(cosh r ↗ 1). Since sinh r = 1

2 (e
r
↗ e→r)

and coshr = 1
2 (e

r + e→r), both the circumference and area of the disc grow exponentially with the
radius.

This exponential growth allows us to efficiently embed tree structures in hyperbolic space: nodes that
are ⇓ levels from the root can be placed on the hyperbolic disc with a radius proportional to its level

21

Published as a conference paper at ICLR 2025

⇓, while nodes less than ⇓ levels within the sphere. Thus, we see how this property allows hyperbolic
space to serve as a continuous representation of discrete trees.

Connection between hyperbolic space and hierarchical structure. We highlight several prominent
prior works who have made theoretical connections between hyperbolic space and trees. Mathematical
works such as Gromov (1987), Dyubina & Polterovich (2001), and Hamann (2018) prove that any
finite tree can be embedded into a finite hyperbolic space with approximately preserved distances.
A key property of hyperbolic space is its exponentially growing distance, and they show that this
underlying property makes hyperbolic space well-suited to model hierarchical structures. Furthermore,
works such as Sala et al. (2018) and Chami et al. (2020) propose concrete approaches to embed any
tree in hyperbolic space with arbitrarily low distortion, establishing upper upper and lower bounds for
distortion and further demonstrating the effectiveness of hyperbolic space for hierarchical modeling.

Notably, Nickel & Kiela (2017) were among the first to explore learning hierarchical representations
in hyperbolic space. They found that for data with latent hierarchies, embeddings on the Poincaré ball
outperform Euclidean embeddings significantly in terms of representation capacity and generalization
ability. Since then, hyperbolic spaces have been increasingly explored for modeling hierarchies
across various domains, including NLP (Ganea et al., 2018; Nickel & Kiela, 2018; Tifrea et al.,
2018) and computer vision (Khrulkov et al., 2020; Ermolov et al., 2022), with substantial empirical
evidence supporting its efficiency and suitability for modeling hierarchical structures in comparison
to Euclidean space. We believe that these prior works provide strong theoretical justification and
empirical support for the connection between hyperbolic space and hierarchical structure, which
inspires our method.

Implementation. We implement our hyperbolic encoder using the Geoopt package (Kochurov et al.,
2020), which provides functions and optimization methods for hyperbolic space ||.

||https://github.com/geoopt/geoopt

22

Published as a conference paper at ICLR 2025

D LLM PROMPTS FOR SELF-SUPERVISED LOSSES

Here, we present the prompt templates used to extract explicit knowledge of predicates from LLMs.
In Figure 10, we describe the prompt used to determine the assignment (anchor, positive predicate,
and negative negative) for a given triplet of predicates, used in the predicate triplet loss. In Figure 11,
we show the prompt used to determine the hierarchy among a predicate triplet based on specificity, for
the norm regularization loss. We query the LLM once before training starts to retrieve the predicate
triplet pairs and hierarchy, hence training is not affected by LLM queries.

Prompt Template For Predicate Triplet Assignment

You are given an anchor text query that describes a state of a scene. Given

two other text queries describing the state of a scene, you will help

determine which of the two queries is more similar to the anchor query.

Consider the semantic meaning of the states and the specific aspects of

the scene they describe. Additionally, think about how many objects and

what kinds of object properties and features you would need to verify if

evaluating these states against an image.

The anchor query is the following: {anchor}

The other two queries are:

Query 1: {query1}
Query 2: {query2}

You must choose one of the queries as your answer. Respond using the

following format:

Answer: [Query 1 or Query 2]

Figure 10: Prompt template for inferring the predicate relations among a triplet with GPT-4.

Prompt Template For Triplet Hierarchy Ranking

You are an expert in scene understanding and state hierarchy determination.

Given three text descriptions each outlining a potential state of a

scene, your task is to establish a hierarchy among these descriptions by

identifying which one is the most general, which is the most specific, and

which lies in between.

Consider the following when determining the hierarchy:

- The variety and number of objects required by the state.

- The important features of the objects and/or relationships between the

objects.

- The level of detail provided about the scene.

- The semantic meaning of each description.

Your goal is to rank these descriptions in order of specificity, from least

specific (1) to most specific (3).

The three descriptions are:

1. {anchor}
2. {query1}
3. {query2}

You must provide your ranking using the following format:

Least Specific: [content of Description 1, 2, or 3]

Intermediate Specific: [content of Description 1, 2, or 3]

Most Specific: [content of Description 1, 2, or 3]

Figure 11: Prompt template for inferring the hierarchy among a triplet with GPT-4.

23

Published as a conference paper at ICLR 2025

E DATASET DETAILS

E.1 DATASET STATES

In Tables 9 and 10, we provide all of the states included in the CALVIN and BEHAVIOR datasets.

Table 9: All states included in the CALVIN dataset.

State Type Predicate Object 1 Object 2

ID Lifted blue block –
ID OnRight slider –
ID Open drawer –
ID TurnedOn lightbulb –
ID Inside blue block drawer
ID Inside pink block drawer
ID OnTop blue block table
ID Stacked blue block pink block
ID Stacked blue block red block

OOD Closed drawer –
OOD Lifted pink block –
OOD OnLeft slider –
OOD TurnedOff lightbulb –
OOD Inside blue block slider
OOD OnTop pink block table
OOD Stacked pink block blue block
OOD Under table blue block

E.2 BEHAVIOR VISION SUITE VISUALIZATIONS

We include additional examples from BEHAVIOR Vision Suite Ge et al. (2024) in Figure 12.

Open
(cabinet)

Under
(can, table)

Inside
(cup, drawer)

Inside
(cup, cabinet)

OnTop
(bread, chair)

OnTop
(bottle, table)

Figure 12: Visualizations of state classification tasks from the real-world BEHAVIOR Vision Suite
dataset.

24

Published as a conference paper at ICLR 2025

Table 10: All states included in the BEHAVIOR dataset.

State Type Predicate Object 1 Object 2

ID Open bottom cabinet –
ID Open drawer –
ID Open microwave –
ID Open oven –
ID Open top cabinet –
ID Inside apple top cabinet
ID Inside club sandwich microwave
ID Inside pizza microwave
ID Inside plate bottom cabinet
ID Inside plate bottom cabinet no top
ID NextTo apple coffee cup
ID NextTo coffee cup cola bottle
ID NextTo croissant cheesecake
ID NextTo pizza microwave
ID NextTo plate coffee cup
ID OnLeft apple coffee cup
ID OnLeft coffee cup cola bottle
ID OnLeft croissant cheesecake
ID OnLeft pizza microwave
ID OnLeft plate coffee cup
ID OnTop apple plate
ID OnTop cheesecake plate
ID OnTop coffee cup breakfast table
ID OnTop cola bottle countertop
ID OnTop plate breakfast table
ID Touching apple plate
ID Touching cheesecake plate
ID Touching coffee cup breakfast table
ID Touching cola bottle breakfast table
ID Touching croissant plate

OOD Closed bottom cabinet –
OOD Closed drawer –
OOD Closed microwave –
OOD Closed top cabinet –
OOD Contains bottom cabinet plate
OOD Contains drawer plate
OOD Contains top cabinet drawer
OOD Inside apple microwave
OOD Inside coffee cup top cabinet
OOD Inside plate microwave
OOD NextTo apple plate
OOD NextTo plate microwave
OOD OnTop coffee cup plate
OOD OnTop apple breakfast table
OOD OnTop apple microwave
OOD OnLeft apple plate
OOD OnLeft coffee cup apple
OOD OnRight apple coffee cup
OOD OnRight coffee cup cola bottle
OOD OnRight plate coffee cup
OOD Touching apple breakfast table
OOD Touching coffee cup plate
OOD Under breakfast table coffee cup
OOD Under breakfast table plate
OOD Under plate apple

25

	Introduction
	Related Work
	Method
	Object-Centric Image Encoder
	Self-Supervised Learning
	Hyperbolic Image-Predicate Latent Space
	Training Loss

	Dataset
	Results
	Implementation
	Comparison to Prior Work
	Ablations
	Discussion

	Conclusion
	PHIER Results and Details
	Model Details
	Comparison on Manually Collected Real-world Dataset
	Ablation Study on Example Count
	Ablation Study with Removed Components
	Few-shot Generalization to Novel Objects
	Visualizations on the Inferred Predicate Hierarchy
	In-Distribution Performance
	Object-centric Encoder Performance

	Baseline Details
	Supervised Methods
	Pretrained Large Vision Language Models (VLM)
	Ablation Details

	Hyperbolic Geometry Preliminary
	LLM Prompts for Self-Supervised Losses
	Dataset Details
	Dataset States
	BEHAVIOR Vision Suite Visualizations

