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ABSTRACT

Many offline reinforcement learning algorithms are underpinned by f -divergence
regularization, but their sample complexity defined with respect to regularized
objectives still lacks tight analyses, especially in terms of concrete data cover-
age conditions. In this paper, we study the exact concentrability requirements to
achieve the Θ̃(ϵ−1) sample complexity for offline f -divergence-regularized con-
textual bandits. For reverse Kullback–Leibler (KL) divergence, arguably the most
commonly used one, we achieve an Õ(ϵ−1) sample complexity under single-
policy concentrability for the first time via a novel pessimism-based analysis,
surpassing existing Õ(ϵ−1) bound under all-policy concentrability and Õ(ϵ−2)
bound under single-policy concentrability. We also propose a near-matching lower
bound, demonstrating that a multiplicative dependency on single-policy concen-
trability is necessary to maximally exploit the curvature property of reverse KL.
Moreover, for f -divergences with strongly convex f , to which reverse KL does
not belong, we show that the sharp sample complexity Θ̃(ϵ−1) is achievable even
without pessimistic estimation or single-policy concentrability. We further cor-
roborate our theoretical insights with numerical experiments and extend our anal-
ysis to contextual dueling bandits. We believe these results take a significant step
towards a comprehensive understanding of objectives with f -divergence regular-
ization.

1 INTRODUCTION

Due to the data-hungry and instable nature of reinforcement learning (RL), divergences that are
straightforward to estimate via Monte Carlo or amenable to constrained optimization stand out from
numerous candidates (Rényi, 1961; Csiszár, 1967; Müller, 1997; Basseville, 2013) as regularizers;
the former family is typically f -divergence (Rényi, 1961) because any of them is an expectation,
for which empirical average is a good proxy (Levine, 2018; Levine et al., 2020); and the latter class
subsumes those with nice positive curvatures (e.g., Bregman divergence (Bregman, 1967) induced
by strongly convex functions). In particular, Kullback-Leibler (KL) divergence is the only one at
the intersection of f -divergence and Bregman divergence (Jiao et al., 2014, Theorem 5), indicating
its theoretical advantage among common choices from both computational and statistical aspects.
Also, the KL-regularized RL objective is arguably the most popular one in practice:

J(π) = Eπ[r]− η−1KL(π∥πref), (1.1)

where r is the reward, πref is a reference policy, KL(π∥πref) is the reverse KL divergence, and η > 0
is the inverse temperature. When πref is uniform, (1.1) reduces to the entropy-regularized objec-
tive that encourages diverse actions and enhances robustness (Williams, 1992; Ziebart et al., 2008;
Levine & Koltun, 2013; Levine et al., 2016; Haarnoja et al., 2018; Richemond et al., 2024; Liu et al.,
2024). KL regularization has also been widely used in the RL fine-tuning of large language models
(Ouyang et al., 2022; Rafailov et al., 2023), where πref is the base model. Given its widespread
use, there has been a surge of interest in understanding the role of KL regularization in RL by both
empirical studies (Ahmed et al., 2019; Liu et al., 2019) and theoretical analysis (Geist et al., 2019;
Vieillard et al., 2020; Kozuno et al., 2022). There are also lines of research on KL regularization in
online learning (Cai et al., 2020; He et al., 2022; Ji et al., 2023) and convex optimization (Neu et al.,
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Table 1: Comparison of sample complexity bounds for finding ϵ-optimal policy for offline contextual
bandits with KL- and (strongly convex) f -divergence regularization. Constants and polylog factors
are omitted here except the metric entropy logN . “Reverse-KL” stands for KL-regularized contex-
tual bandits and “f -divergence w/ s.c., f” for the counterpart with an α-strongly convex f . The two
existing upper bounds are adapted from the implicit form in Xiong et al. (2024, Theorem 3.1) and
Zhao et al. (2024, Theorem 3.3 and Theorem 4.4), of which the detailed adaptions are deferred to
Appendix A. The relationship between D2

π∗ and Cπ∗
is detailed in Section 2.1.

Regularizer Xiong et al. (2024) Zhao et al. (2024) This work

Reverse KL Upper dϵ−2 ηD2ϵ−1 logN ηD2
π∗ϵ−1 logN

Lower - ηϵ−1 logN ηCπ∗
ϵ−1 logN

f -divergence
w/ s.c. f

Upper - - α−1ηϵ−1 logN
Lower - - α−1ηϵ−1 logN

2017). However, most of these works still study the unregularized reward maximization objective,
against which the sample complexity is at least Ω(ϵ−2).1

Several recent papers (Xiong et al., 2024; Xie et al., 2024; Zhao et al., 2024; Foster et al., 2025;
Aminian et al., 2025) switched the focus to analyzing the sub-optimality defined via the regularized
objective (1.1), under which an Ω(ϵ−1) sample complexity is possible (Zhao et al., 2024, Theo-
rem 3.6). However, even restricted to the pure i.i.d. setting, existing analyses in this vein either
result in still Õ(ϵ−2) bounds (Xiong et al., 2024; Xie et al., 2024) or has stringent (local) all-policy
concentrability dependencies in their upper bounds (Zhao et al., 2024; Aminian et al., 2025).2 Thus,
there are by far no tight bounds in terms of both the dependency of ϵ−1 and data coverage conditions
for KL-regularized offline decision making. In addition, all analyses above set KL as the right target
by default; but reverse KL is the f -divergence with f(x) = x log x, which is merely convex. There-
fore, it is also unknown whether f -divergence regularizers with even nicer (e.g., strongly convex) f ,
whose performance against the reward maximization objective are provably promising (Zhan et al.,
2022; Gabbianelli et al., 2024; Huang et al., 2025b), can enjoy a better coverage dependency in their
sample complexity when the corresponding regularized objectives serve as the performance metric.
Because data coverage (i.e., concentrability) conditions captures the crucial distributional shift issue
in offline RL (Levine et al., 2020), the aforementioned perspectives motivate a pivotal open problem:

What is the weakest coverage condition required for offline learning to be near-optimal with
respect to f -divergence-regularized objectives?

We attack this problem by showing near-optimal sample complexity with matching concentrability
dependencies for two representative subclasses of f -divergence. First, for contextual bandits with
KL regularization, we achieve a near-optimal sample complexity guarantee with linear dependence
on single-policy coverage ratio. Our novel lower bound further indicates that this multiplicative
dependency on single-policy concentrability is necessary. Surprisingly, for f -divergence with α-
strongly-convex f , we prove nearly matching sample complexity bounds of Θ̃(α−1ηϵ−1), eliminat-
ing the dependence on coverage for the first time. For the ease of comparison, we adapt existing
counterparts under our notation to the offline setting and summarize them in Table 1.

1.1 CONTRIBUTIONS

• For KL regularization, we propose a pessimism-based algorithm achieving the tight sample com-
plexity under single-policy concentrability. We also obtain a lower bound that linearly scale with
the density-ratio-based single-policy concentrability. Both results strictly improves upon previous
works (Zhao et al., 2024; Foster et al., 2025) in the offline setting, showing that single-policy
concentrability is both sufficient and necessary to achieve the Θ̃(ϵ−1) sample complexity.

• Technically speaking, our analysis exploits the strong convexity of KL and pessimism of the re-
ward estimator, to refine a mean-value-type risk upper bound (Lemma 2.14) to its, which in turn
leads to a novel moment-based analysis, effectively bypassing the need for uniform control over

1See Appendix A.1 for detailed reasons.
2See Section 2.1 for details on coverage conditions.
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the discrepancy between any two functions in the function class. To the best of our knowledge,
this machinery has not been used in the standard analysis of existing offline RL algorithms and
may be of independent interest.

• For f -divergence-regularized objectives with strongly convex f , we design a truly lightweight
algorithm free of pessimism-based gadgets and still obtain the Θ̃(ϵ−1) sample complexity certified
by a matching lower bound without coverage conditions.

• We verify the statistical rates above in numerical experiments, and demonstrate the versatility of
all algorithmic and constructive proof ideas above by extending them to f -divergence-regularized
contextual dueling bandits (CDBs), achieving similar Θ̃(ϵ−1) sample complexity bounds. More-
over, all algorithms are applicable for reward function classes with small metric entropy.

1.2 KEY RELATED WORK

We review two key lines of theoretical progress that are relevant to our algorithm design and analysis.

Pessimism in offline RL. The principle of pessimism has been underpinning offline RL for both
the tabular (Rashidinejad et al., 2021) and function approximation (Jin et al., 2021) settings under the
name of lower confidence bound (LCB). For contextual bandits, it is behind the adaptively optimal
sample complexity analysis (Li et al., 2022). Shi et al. (2022) proposed a LCB-based model-free
algorithm for tabular RL with near-optimal guarantee. Jin et al. (2021); Xiong et al. (2022); Di et al.
(2024) utilized LCB in conjunction with the classic least-square value iteration paradigm to derive
Õ(ϵ−2) sample complexity results for model-free RL with function approximation. The line of work
from Rashidinejad et al. (2021); Xie et al. (2021b) to Li et al. (2024) settled the sample complexity
of tabular model-based RL via pessimistic estimators exploiting the variance information. It is
also possible to leverage the idea of pessimism to design model-based algorithms under general
function approximation that are at least statistically efficient (Xie et al., 2021a; Uehara & Sun, 2021;
Wang et al., 2024). The principle of pessimism has also been applied in counterfactual empirical
risk minimization (Swaminathan & Joachims, 2015; London & Sandler, 2019) and offline policy
learning (Sakhi et al., 2023; 2024), which are orthogonal to our contributions.

However, in terms of risk decomposition, to the best of our knowledge, none of these pessimism-
based analyses really goes beyond the performance difference lemma (Foster & Rakhlin, 2023,
Lemma 13) or simulation lemma (Foster & Rakhlin, 2023, Lemma 23); both of which are not
able to capture the strong concavity of KL-regularized objectives even in the bandit setting. The
algorithmic idea of using pessimistic least-square estimators under general function approximation
in Jin et al. (2021); Di et al. (2024) is similar to ours, but their sub-optimality gap is bounded by the
sum of bonuses, which cannot directly lead to the desired sample complexity of our objective.

Offline CDBs. CDBs (Dudı́k et al., 2015) is the contextual extension of dueling bandits in the
classic literature of online learning from pairwise comparisons (Yue et al., 2012; Zoghi et al., 2014).
Since the empirical breakthrough of preference-based RL fine-tuning of LLMs (Ouyang et al., 2022),
the theory of offline CDBs has received more attention under linear function approximation (Zhu
et al., 2023; Xiong et al., 2024) and general function approximation (Zhan et al., 2022; Zhao et al.,
2024; Song et al., 2024; Huang et al., 2025b). Preference models without stochastic transitivity
(Munos et al., 2023; Ye et al., 2024; Wu et al., 2024; Zhang et al., 2024) are beyond the scope of
this work, namely, our preference labels are assumed to follow the Bradley-Terry Model (Bradley &
Terry, 1952).

Notation. The sets S and A are assumed to be countable throughout the paper. For nonnegative
sequences {xn} and {yn}, we write xn = O(yn) if lim supn→∞ xn/yn < ∞, yn = Ω(xn) if
xn = O(yn), and yn = Θ(xn) if xn = O(yn) and xn = Ω(yn). We further employ Õ(·), Ω̃(·),
and Θ̃ to hide polylog factors. For countable X and Y , we denote the family of probability kernels
from X to Y by ∆(Y|X ). For g : X → R, its infinity norm is denoted by ∥g∥∞ := supx∈X |g(x)|.
For a pair of probability measures P ≪ Q on the same space and function f : R+ → R, their
f -divergence is Df (P∥Q) :=

∫
f( dP/ dQ) dQ. Specifically, when f(x) = x log x, f -divergence

becomes KL divergence denoted as KL (P∥Q) :=
∫
log( dP/dQ) dP , and when f(x) = |x−1|/2,

it becomes the total variation (TV) distance, which is denoted as TV (P∥Q) := 0.5
∫
|dP − dQ|.

We use supp(P ) to denote the support set of P .
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2 KL-REGULARIZED CONTEXTUAL BANDITS

In this section, we introduce a pessimism-based algorithm, PCB-KL, for offline KL-regularized
contextual bandits. We then showcase our novel analysis techniques for PCB-KL, which couples
the algorithmic pessimism with the curvature property of KL-regularized objectives.

2.1 PROBLEM SETUP

We consider contextual bandit, which is denoted by a tuple (S,A, r, πref). Specifically, S is the
context space, A is the action space and r : S × A → [0, 1] is the reward function. In the offline
setting, the agent only has access to an i.i.d. dataset D = {(si, ai, ri)}ni=1. Here s′is are states
sampled from ρ ∈ ∆(S), ai ∈ A is the action taken from a behavior policy, and ri is the observed
reward given by ri = r(si, ai) + εi, where εt is 1-sub-Gaussian (Lattimore & Szepesvári, 2020,
Definition 5.2). In this work, we consider the KL-regularized objective

Jη(π) := E(s,a)∼ρ×π

[
r(s, a)− η−1 log

π(a|s)
πref(a|s)

]
, (2.1)

where πref is a known reference policy and the “inverse temperature” η controls the intensity of reg-
ularization. For simplicity, we assume that πref is also the behavior policy that generates the dataset
D, which is similar to the type of “behavior regularization” studied in Zhan et al. (2022). The unique
optimal policy π∗

η := argmaxπ∈∆(A|S) Jη(π) is given by (See, e.g., Zhang 2023, Proposition 7.16)3

π∗(·|s) ∝ πref(·|s) exp
(
η · r(s, ·)

)
,∀s ∈ S. (2.2)

A policy π is said to be ϵ-optimal if SubOptRKL(π) := J(π∗) − J(π) ≤ ϵ and the goal of the
agent is to find one such policy using D. Note that SubOptRKL(·) is defined through (2.1) and thus
depends on η. To ensure that ϵ-optimality is achievable, we assume that r lies in a known function
class G ⊂ (S × A → [0, 1]), from which the agent obtains an estimator r̂. More specifically, we
work with general function approximation under realizability, which is as follows.

Assumption 2.1. For this known function class G ⊂ (S ×A → [0, 1]), ∃g∗ ∈ G with g∗ = r.

We also employ the standard notion of covering number (Wainwright, 2019, Definition 5.1) as the
complexity measure of the reward function class G.

Definition 2.2 (ϵ-net and covering number). Given a function class G ⊂ (S × A → R), a finite
set G(ϵ) ⊂ G is an ϵ-net of G w.r.t. ∥ · ∥∞, if for any g ∈ G, there exists g′ ∈ G(ϵ) such that
∥g − g′∥∞ ≤ ϵ. The ϵ-covering number is the smallest cardinality NG(ϵ) of such G(ϵ).
Assumption 2.3. For any ϵc > 0, the ϵc-covering number NG(ϵc) of G is poly(ϵ−1

c ).

Assumption 2.3 allowing logNG(ϵ) to be roughly negligible is arguably mild. For example, when
G is the class of linear functions of dimension d and radius R, the covering number is NG(ϵ) =
O((1 +Rϵ−1)d) (Jin et al., 2020, Lemma D.6), which satisfies Assumption 2.3.

Concentrability. The data quality of D collected by πref is typically characterized by concen-
trability in offline RL (Farahmand et al., 2010; Chen & Jiang, 2019; Jiang & Xie, 2024), which
quantifies the ability of the behavioral policy to generate diverse actions. We first define the density-
ratio-based concentrability as follows.

Definition 2.4 (Density-ratio-based concentrability). For policy class Π, refer-
ence policy πref , the density-ratio-based all-policy concentrability CΠ is CΠ :=
supπ∈Π,s∈S,a∈A π(a|s)/πref(a|s), whose single-policy counterpart under the optimal policy
π∗ is Cπ∗

:= sups∈S,a∈A π∗(a|s)/πref(a|s).

In the definition above, small all-policy concentrability intuitively corresponds to supp(πref) cover-
ing all possible inputs. On the other hand, small single-policy concentrability means that supp(πref)
only subsumes supp(π∗). In this paper, in addition to density-ratio-based concentrability, we also
adopt the following D2-based concentrabilites to better capturing the nature of function class G. In
detail, we start with the D2-divergence as follows.

3We suppress Jη into J and π∗
η into π∗ when they are clear in context in the following presentation.
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Definition 2.5. Given a function class G ⊂ (S × A → R) and a fixed policy π, define the D2-
divergence D2

G((s, a);π) as

sup
g,h∈G

(
g(s, a)− h(s, a)

)2
E(s′,a′)∼ρ×π[(g(s′, a′)− h(s′, a′))2]

.

The “eluder dimension”-type Definition 2.5 is directly inspired by Di et al. (2024); Zhao et al.
(2024), the intuition behind which is that given (s, a) ∈ S × A, a small D2-divergence indicates
that for two functions g and h, if they are close under the behavior policy π, then they will also
be close on such pair (s, a). Therefore, the D2-divergence quantifies how well the estimation on
dataset collected by the behavior policy π can be generalized to a specific state-action pair.
Remark 2.6. For the tabular setting, a direct computation yields D2(s, a) = (ρ(s)πref(a|s))−1,
which can be estimated by the visitation frequency empirically. Under linear function approxima-
tion, it is well known that D2(s, a) = ∥ϕ(s, a)∥2Σ−1 under mild conditions of the parameter space,
where Σ = Eρ×πrefϕ(s, a)ϕ(s, a)⊤ is the covariance matrix, which can be estimated by empirical
covariance matrices in practice, potentially with ridge regularization. For more general function
classes like neural networks, the D2 can also be efficiently approximated by heuristics as discussed
in Xiong et al. (2024); Gupta et al. (2024); Xu et al. (2025).

We are now ready to define the two notions of concentrability conditions.
Assumption 2.7 (All-policy concentrability). Given a reference policy πref , there exists D < ∞
such that D2 = sup(s,a)∈S×A D2

G((s, a);π
ref).

Assumption 2.7 indicates that the errors on any state-action pairs can be bounded by the error on the
samples from ρ× π up to a factor D, whose relaxed counterpart under the same πref is as follows.
Assumption 2.8 (Single-policy concentrability). D2

π∗ := E(s,a)∼ρ×π∗D2
G((s, a);π

ref) <∞.

Assumption 2.8 indicates that the errors on the distributions of state-action pairs ρ × π∗ can be
bounded by the error on the samples from ρ× πref up to some constant. For both types, the single-
policy concentrability assumption is strictly weaker than the all-policy concentrability assumption.
However, in general, the two quantities characterizing single-policy concentrability Cπ∗

and D2
π∗

cannot be bounded by each other up to constant factors. In particular, we have D2
π∗ ≤ |S||A|Cπ∗

,
indicating that Cπ∗

subsumes D2
π∗ when |S| and |A| can be seen as constants.

2.2 ALGORITHM

In this subsection, we present an offline bandit algorithm, KL-PCB, for KL-regularized contextual
bandits in Algorithm 1. KL-PCB first leverages least-square estimator to find a function ḡ ∈ G
that minimizes its risk on the offline dataset. In Zhao et al. (2024), such ḡ is directly applied to
construct the estimated policy. In contrast, we construct a pessimistic estimator of g∗ following the
well-known pessimism principle in offline RL (Jin et al., 2021). Specifically, we define the bonus

term Γn through the confidence radius β =
√

128 log
(
2NG(ϵ)/δ

)
/3n+ 18ϵ as

Γn(s, a) = βDG
(
(s, a), πref

)
,∀(s, a) ∈ S ×A. (2.3)

We then obtain our pessimistic estimation ĝ by setting ĝ = ḡ − Γn, which is less than g∗ with high
probability. Formally, let the event E(δ) given δ > 0 defined as

E(δ) :=
{
sup(s,a)∈S×A

[∣∣ḡ − g∗
∣∣− Γn

]
(s, a) ≤ 0

}
, (2.4)

on which the least square estimation ḡ obtained in Line 1 of Algorithm 1 does not deviate too much
from the true function g∗ and therefore ĝ is a pessimistic estimation of g∗. We have the following
lemma indicating that this event holds with high probability.
Lemma 2.9. For all δ > 0, E(δ) holds with probability at least 1− δ.

After obtaining the pessimistic estimation, KL-PCB output the policy π̂, which maximizes the esti-
mated objective

Ĵ(π) = E(s,a)∼ρ×π

[
ĝ(s, a)− η−1 log

π(a|s)
πref(a|s)

]
,
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Algorithm 1 Offline KL-Regularized Pessimistic Contextual Bandits (KL-PCB)

Require: regularization η, reference policy πref , offline dataset D, function class G
1: Least square estimation of reward function ḡ ∈ argming∈G

∑
(si,ai,ri)∈D

(
g(si, ai)− ri

)2
2: Let ĝ ← ḡ − Γn, where Γn is the bonus term in (2.3)

Ensure: π̂(a|s) ∝ πref(a|s) exp
(
η · ĝ(s, a)

)

the maximizer of which is the counterpart of (2.2), i.e.,

π̂(a|s) ∝ πref(a|s) exp
(
η · ĝ(s, a)

)
.

2.3 THEORETICAL RESULTS

The sample complexity for KL-regularized contextual bandits is settled in this subsection. We first
give the upper bound of KL-PCB.

Theorem 2.10. Under Assumption 2.8, for sufficiently small ϵ ∈ (0, 1), if we set Γn as in (2.3),
then n = Õ

(
ηD2

π∗ϵ−1 logNG(ϵ)
)

suffices to guarantee the output policy π̂ of Algorithm 1 to be
ϵ-optimal with probability at least 1− δ.

Previously, Zhao et al. (2024) achieved an Õ(ϵ−1) sample complexity under Assumption 2.7. As
a comparison, KL-PCB achieves the same Õ(ϵ−1) sample complexity but only requiring Assump-
tion 2.8, which is weaker than Assumption 2.7. We also provide the sample complexity lower bound
of KL-regularized contextual bandits in the following theorem, which, together with Theorem 2.10,
demonstrates that single-policy concentrability is both necessary and sufficient for near-optimal of-
fline learning evaluated by KL-regularized objectives.

Theorem 2.11. For ∀S ≥ 1, η > 4 log 2, C∗ ∈ (2, exp(η/4)], and any algorithm
Alg, there is a KL-regularized contextual bandit with Cπ∗ ≤ C∗ such that Alg requires
Ω
(
min{ηϵ−1, ϵ−2}C∗ logNG(ϵ)

)
samples to find an ϵ-optimal policy for sufficiently small ϵ.

Previously, Zhao et al. (2024) provided a sample complexity lower bound of Ω(η logNG(ϵ)/ϵ) under
KL regularization. Foster et al. (2025) also provided a lower bound of Ω(Cπ∗

) for KL-regularized
objective to show the necessity of coverage. Compared to their results, our result shows that the
multiplicative dependency on Cπ∗

is necessary for the first time.

Remark 2.12. Theorem 2.11 shows that when ϵ is sufficiently small, any algorithm for offline
KL-regularized contextual bandits requires at least Ω(ηCπ∗

)ϵ−1 logNG(ϵ)) samples to output an
ϵ-optimal policy. The presence of exp(poly(η)) in the range of C∗ is inevitable, since we always
have Cπ∗ ≤ exp(η) in reverse KL regularized bandits with bounded rewards.

Remark 2.13. As discussed before, we might have some easy instances with D2
π∗ ≤ Cπ∗

,
where KL-PCB outperforms the lower bound. This does not volates Theorem 2.11 since Theo-
rem 2.11 only guarantees that there exist some hard instances that all algorithms require at least
Ω(min{ηϵ−1, ϵ−2}C∗ logNG(ϵ)) samples.

2.4 PROOF OVERVIEW OF THEOREM 2.10

In this section, we summarize the novel techniques in the proof of Theorem 2.10, which is de-
ferred to Appendix B.4. At a high level, if we consider the regularized objective (1.1) multi-arm
bandits, then P 7→ KL (P∥Q) is 1-strongly convex w.r.t. TV (·∥·) (Polyanskiy & Wu, 2025, Exer-
cise I.37), and thus J(π) is strongly concave. Therefore, J(π∗)−J(π̂) is possible to be of the order
[TV (π∗∥π̂)]2 ≈ Õ(n−1), pretending that π∗ is the unconstrained maximizer. In detail, we follow
the regret decomposition in Zhao et al. (2024), which is encompassed by the following lemma.

Lemma 2.14. Let g : S × A → R, ∃γ ∈ [0, 1] such that for gγ = γg + (1 − γ)g∗ and πγ(·|s) ∝
πref(·|s) exp

(
ηgγ(s, ·)

)
,∀s ∈ S, then the sub-optimality gap can be bounded as follows

J(π∗)− J(πg) ≤ ηE(s,a)∼ρ×πγ

[(
g∗ − g

)2
(s, a)

]
.
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In Zhao et al. (2024), because the g in Lemma 2.14 is substituted with only the least-square estimator
ḡ with no extra structures, the reliance on the “mid-point” policy πγ can only be controlled all-policy
concentrability. However, our g is the pessimistic estimator ĝ of g∗ in Algorithm 1, and thus the
presence of πγ can be eliminated for free: let G(γ) := Eρ×πγ

[(
ĝ − g∗

)2
(s, a)

]
and △(s, a) :=(

ĝ − g∗)(s, a) ≤ 0, then a direct computation (detailed in the proof of Lemma B.3) yields

G′(γ) = ηEρ

[
Eπγ

[
△3(s, a)

]
− Eπγ

[
△2(s, a)

]
Eπγ

[
△(s, a)

]]
≤ 0. (2.5)

This gives J(π∗) − J(π̂) ≤ ηEρ×π∗
[
(ĝ − g∗)2(s, a)

]
, which can be bounded with single-policy

concentrability while still achieves the sharp dependency ϵ−1 on ϵ. Here, (2.5) holds due to a
moment-based machinery in Lemma 2.15.
Lemma 2.15. If P(X ≤ 0) = 1 and E|X|3 <∞, then E[X3]− E[X2]E[X] ≤ 0.

The intuition behind Lemma 2.15 is natural: X and X2 cannot be positively correlated. Moreover, to
the best of our knowledge, we are the first to unveil this moment-based structure in our non-standard
pessimism-based analysis, from which the sharp upper bound follows. While pessimism is widely
adopted to derive near-optimal statistical rates under single-policy concentrability in offline RL with
reward maximization as the goal (See, e.g., Jin et al. (2021); Xiong et al. (2022)), the standard
pessimism-based pipeline is not sharp enough for bounding the SubOptRKL(π̂) defined through
regularized objectives, the reason of which is detailed in the last paragraph of Appendix A.1.

3 f -DIVERGENCE-REGULARIZED CONTEXTUAL BANDITS

As discussed in Section 2, the fast rate implied by Theorems 2.10 and 2.11 is primarily achieved due
to the strong convexity of π 7→ KL(π∥πref). However, KL is just an instance of f -divergence with
f(x) = x log x, which is only locally strongly convex but not strongly convex. Motivated by this
observation, we further examine f -divergence regularization with strongly convex f , which may
introduce a more favorable curvature in the performance metric of offline learning in principle.

3.1 PROBLEM SETUP

We study a contextual bandit setting similar to that in Section 2.1. In this section, we consider the
following f -divergence regularized objective

Jη,Df
(π) := E(s,a)∼ρ×π[r(s, a)]− η−1Es∼ρ

[
Df

(
π(·|s)∥πref(·|s)

)]
, (3.1)

where η is the regularization intensity and Df (p∥q) := Ea∼q

[
f
(
p(a)/q(a)

)]
is the f -divergence.

Let the optimal policy be π∗
η,Df

:= argmaxπ∈∆(A|S) Jη,Df
(π) and we re-define the learning objec-

tive as searching for a policy π with SubOptfdiv(π) := J(π∗) − J(π) ≤ ϵ.4 We consider those
functions f : (0,+∞)→ R with a nice positive curvature condition in Assumption 3.1.
Assumption 3.1. f is α-strongly convex, twice continuously differentiable, and f(1) = 0.

Many elementary functions like quadratic polynomials naturally satisfy Assumption 3.1. For in-
stance, the 1-strongly convex f(x) = (x− 1)2/2 induces Df (P∥Q) = χ2(P∥Q), which is the χ2-
divergence recently considered in RL literature (see e.g., Zhan et al. (2022); Huang et al. (2025b);
Amortila et al. (2024)). This regularization exhibits a promising theoretical potential for relaxing
the data coverage requirement for efficient offline policy learning (Huang et al., 2025b) and to be ef-
fective in preventing reward hacking (Laidlaw et al., 2025) against unregularized objectives. These
favorable benefits are primary due to the observation that strongly convex f ’s impose a stronger
penalization on actions out of the coverage of πref .

3.2 ALGORITHM AND MAIN RESULTS

In this subsection, we present an offline learning algorithm for f -divergence regularized bandit,
f -CB, in Algorithm 2. Algorithm 2 first leverages least-square estimator to find a function ḡ ∈ G
that minimizes its risk on the offline dataset. The algorithm then uses the least squares estimation ḡ
to construct the output policy π̂. Compared to Algorithm 1, f -CB does not require any procedure to
construct pessimistic reward estimation, whose sample complexity upper bound is given as follows.

4We again suppress Jη,Df (·) into J(·) and π∗
η,Df

into π∗ when there is no confusion.
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Algorithm 2 Offline f -divergence Regularized Contextual Bandits (f -CB)

Require: regularization η, reference policy πref , function class G, offline dataset D
1: Least square estimation ḡ ∈ argming∈G

∑
(si,ai,ri)∈D

(
g(si, ai)− ri

)2
2: Compute the optimal policy under the least-square reward estimator ḡ for s ∈ S as

π̂(·|s)← argmax
π(·|s)∈∆(A)

⟨π(·|s), ḡ(s, ·)⟩+ η−1Df

(
π(·|s)∥πref(·|s)

)
Ensure: π̂

Theorem 3.2. Under Assumption 3.1, for sufficiently small ϵ ∈ (0, 1), with probability at least
1 − δ, n = Õ(α−1ηϵ−1 logNG(ϵ)) is sufficient to guarantee the output policy π̂ of f -CB to be
ϵ-optimal.

Remark 3.3. Compared to the D2
π∗ dependency in Theorem 2.10, Theorem 3.2 shows that the

sample complexity of Algorithm 2 gets rid of the dependency on any data coverage conditions when
f is strongly convex. Intuitively, this is because the f -divergence regularization in this case is much
stronger, so that both π∗ and π̂ are close enough to πref .

The following hardness result justify the near-optimality of Theorem 3.2 for f -divergence-
regularized contextual bandits.

Theorem 3.4. For any ϵ ∈ (0, 1), α > 0, η > 0, S > 32/3 · log 2, sufficiently small ϵ, and algorithm
Alg, there is an α-strongly-convex function f and an f -divergence-regularized contextual bandit
instance such that Alg requires at least Ω

(
α−1ηϵ−1 logNG(ϵ)

)
samples to return an ϵ-optimal policy.

3.3 PROOF OVERVIEW OF THEOREM 3.2

We provide an overview of key analysis techniques for proving Theorem 3.2. Unlike KL-
regularization, the π∗ under f -divergence might not have a closed form. This means that the proof
of Lemma 2.14, which relies on the closed form of π∗, cannot be directly adopted. Therefore,
we address this from a dual-Bregman perspective. For the simplicity of presentation, we consider
multi-armed bandits here and omit the subscript for context s.

We consider the function H(π) = η−1Df (π∥πref), which is the regularizer in the objective. Then
its convex conjugate is given by H∗(r) = supπ∈∆d{⟨π, r⟩−Hs(π)}, which is exactly the expected
reward obtained by the optimal policy given reward function r. One observation is that when f is
strongly convex, the induced f -divergence, and therefore the function H is also strongly convex.
Therefore, let πr = argmaxπ{⟨π, r⟩ −Hs(π)} given some reward function r, the strong convexity
of H(π) gives that ∇H∗(r) = πr. This leads to the following regret decomposition, which is one
of our key observations:

J(π∗)− J(π̂) = Ea∼π∗ [g∗(a)]− Ea∼π̂[g
∗(a)]− η−1

[
Df (π

∗∥πref)−Df (π̂∥πref)
]

= H∗(g∗)−H∗(ḡ)− ⟨π̂, g∗ − ḡ⟩
= H∗(g∗)−H∗(ḡ)− ⟨∇H∗(ḡ), g∗ − ḡ⟩ ,

which is the Bregman divergence of the dual function H∗ and therefore can be bounded by (g∗ −
ḡ)⊤H∗(g̃)(g∗ − ḡ) for some g̃. By Proposition 3.2 in Penot (1994), when H is strongly convex, we
can bound H∗(g̃) as follows

H∗(g̃) ⪯
(
∇2H(πg̃)

)−1 ⪯ α−1ηdiag
(
πref(a1), · · · , πref(a|A|)

)
,

which enables us to bound (g∗− ḡ)⊤H∗(g̃)(g∗− ḡ) by α−1ηEπref [(g∗− ĝ)2]. Since Eπref [(g∗− ĝ)2]
is not related to the optimal π∗, the upper bound is independent of any notion of concentrability.

4 NUMERICAL EXPERIMENTS

We empirically check in this section the correctness of our matching bounds for KL and f -
divergence on the simplest testbed: two-armed bandit, i.e., A = {0, 1}. We use one hard instance
constructed in the proof of Theorem 2.11 (Appendix B.5) for the simulation under KL and one

8
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Figure 1: The empirical relation between log2 n and log2 SubOpt. The fitted rate means the slope
of log2 n ∼ log2 SubOpt estimated via linear regression. Here n is the sample size. Every point is
the average over 100 independent trials.

hard instance constructed in the proof of Theorem 3.4 (Appendix C.2) for the simulation under
f -divergence with f(x) = α(x− 1)2/2.

Recall that the dependency on ϵ in all sample complexity bounds above is Θ̃(ϵ−1), and thus both
SubOptRKL and SubOptfdiv should be roughly proportional to n−1 as a function of the sample
size n, which can be verified from the linear regression between log2 n and log2 SubOpt; i.e.,
the estimated slope should be approximately −1. Therefore, the two fitted rates in Figure 1(a)
indicates that KL-PCB indeed achieves the near-optimal statistical rate n−1 under different πref ’s
and the counterparts in the LHS of Figure 1(b) indicates the near-optimality of f -CB empirically.
The contrast between Figure 1(a) and the LHS of Figure 1(b) also corroborates that the sample
complexity against the KL-regularized objective positively depend on the concentrability, while that
against the χ2-divergence-regularized objective does not vary with the coverage condition of πref .
Moreover, on top of the hard instance for f -divergence, we further set α = 215/n to numerically
examine the scaling of SubOptfdiv w.r.t. the strong convexity modulus α. As shown on the RHS of
Figure 1(b), SubOptfdiv remains stable as n goes up given nα ≡ 215; therefore, Figure 1(b) also
empirically verified that SubOptfdiv is inversely proportional to α.

5 CONCLUSION AND FUTURE WORK

In this work, we take the first step towards fully understanding the statistical efficiency with respect
to f -divergence-regularized objectives of offline policy learning by sharp analyses for two empir-
ically relevant subclasses. (1) We are the first to show that single-policy concentrability is nearly
the right coverage condition for reverse KL to achieve the fast Θ̃(ϵ−1) sample complexity. The
novel techniques in algorithm analysis leverages the curvature of KL-regularized objectives and in-
tegrates pessimism with a newly identified moment-based observation, enabling a neat refinement
of a mean-value-type argument to the extreme; which are decoupled from tricky algorithmic tweaks,
and thus might be of independent interest. (2) If strong convexity is further imposed on f , our fast
Θ̃(ϵ−1) sample complexity is provably free of any coverage dependency. Unlike those for KL, the
upper bound arguments for strongly convex f do not rely on specific closed-form solutions of the
regularized objective maximizer.

All techniques in this work can be generalized beyond vanilla absolute reward feedback, as certified
by CDBs, which is detailed in Appendix D under a slightly different notion of D2 tailored for
pairwise comparison feedback. However, for reverse-KL regularization, the D2

π∗ in the upper bound
and the Cπ∗

in the lower bound still does not perfectly match. Also, for general f -divergence
other than reverse-KL, our analyses require f to be twice-continuously differentiable and strongly
convex. Fully closing the gap under reverse-KL regularization and extending the analysis to general
f -divergences are interesting directions for future work.

9
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLMs as a tool to refine our writing and correct grammatical errors.
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A ADDITIONAL REVIEW OF EXISTING RESULTS

Additional notations. Besides the notation introduced in Section 1, we will use the following
notations in Appendix. We denote [N ] := {1, · · · , N} for any positive integer N . Boldfaced lower
case (resp. upper case) letters are reserved for vectors (resp. matrices). Given a positive definite
Σ ∈ Rd×d and x ∈ Rd, we denote the vector’s Euclidean norm by ∥x∥2 and define ∥x∥Σ =√
x⊤Σx. We use Bern(p) to denote Bernoulli distribution with expectation p and Unif(X ) for the

uniform distribution on finite set X . For x ∈ R|A|, we denote ∥x∥1 =
∑

a∈A |xa|. We also denote
xn = Ω(yn) by xn ≳ yn in Appendix. We use dH for Hamming distance.

A.1 PREVIOUS ATTEMPTS ON UNDERSTANDING KL-REGULARIZED RL

There has been a surge of interest in understanding the principle behind KL-regularized RL. Ahmed
et al. (2019); Liu et al. (2019) studied by ablation the effect of entropy regularization on the stability
of policy improvement in policy optimization, the regret of which has been rigorously settled under
the classic online mirror descent framework (Cai et al., 2020; He et al., 2022; Ji et al., 2023). Neu
et al. (2017) unified popular KL-regularized policy optimization algorithms under a convex opti-
mization framework, but the interplay with the data was left untouched. A series of work (Geist

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

et al., 2019; Vieillard et al., 2020; Kozuno et al., 2022) then analyzed the sample complexity of
algorithms using KL/entropy-type proximal terms with respect to the previous iteration or/and en-
tropy regularizer with improved dependence on the effective horizon in discounted Markov decision
processes. However, the performance metric in these studies is still the unregularized reward max-
imization objective, under which the sample complexity for finding an ϵ-optimal policy is at least
equal to the statistical limit Ω(ϵ−2).

Convergence under regularized objectives. Several recent studies (Xie et al., 2024; Xiong et al.,
2024; Zhao et al., 2024; 2025; Foster et al., 2025) switched the focus to analyzing the sub-optimality
guarantee with respect to the regularized objective (1.1). In particular, Xie et al. (2024) stud-
ied token-level Markov decision processes (MDPs) and proposed a KL-regularized RL algorithm
named XPO, which achieves Õ(ϵ−2) sample complexity under their notion of all-policy concentra-
bility. Xiong et al. (2024) proposed an Offline GSHF algorithm via the principle of pessimism in the
face of uncertainty, and proved Õ(ϵ−2) sample complexity under single-policy concentrability (See
Section 2.1 for detailed definitions of concentrability). On the other hand, the sharp analysis in Zhao
et al. (2024) yields the optimal sample complexity Õ(ϵ−1), but requires all-policy concentrability
(Zhao et al., 2024, Definition 2.6), i.e., the behavior policy πref is required to cover the entire func-
tion class for all possible policies. Zhao et al. (2025) considered the online episodic MDP setting,
which inherently does not need any notion of data coverage and thus their results are not directly
adaptable to our offline setting. Foster et al. (2025) considered an interesting hybrid setting in which
the n state-action pairs are still from the offline dataset but Ω(n) online reward queries and policy
switches are allowed; in contrast, in our setting, all reward signals are obtained in a purely offline
manner.

Previous analyses and results in detail. Here, we briefly discuss the direct adaptation of previous
sample complexity analysis and results (with respect to KL-regularized objectives) to our setting and
demonstrate the reason why theirs cannot imply an Õ(ϵ−1) sample complexity without all-policy
concentrability. In previous analysis of pessimism for unregularized objectives (Jin et al., 2021;
Xiong et al., 2022), the sub-optimality gap is decomposed via the performance difference lemma as
follows

J(π∗)− J(π̂) = Ea∼π∗ [g∗(a)]− Ea∼π̂[g
∗(a)]− η−1KL(π∗∥πref) + η−1KL(π̂∥πref)

≤ Ea∼π∗ [g∗(a)]− Ea∼π̂[ĝ(a)]− η−1KL(π∗∥πref) + η−1KL(π̂∥πref)

≤ Ea∼π∗ [g∗(a)]− Ea∼π∗ [ĝ(a)]− η−1KL(π∗∥πref) + η−1KL(π∗∥πref)

= Ea∼π∗ [g∗(a)− ĝ(a)],

where the first inequality holds due to pessimism and last inequality holds due to π̂ is optimal for
ĝ. Notably, the KL-regularization term is canceled out in the analysis, leading to a loose sample
complexity Õ(ϵ−2) since the curvature of KL-divergence is not exploited. Specifically, under linear
function approximation, this performance gap, obtained by Xiong et al. (2024) becomes

J(π∗)− J(π) ≤
∥∥Eρ×π∗ [ϕ(s, a)]− ν

∥∥
Σ−1

off
=: RHS,

where ν is the reference vector, ϕ(s, a) ∈ Rd is the feature map, and Σoff =∑n
i=1 ϕ(si, ai)ϕ(si, ai)

⊤ is the sample covariance matrix. However, we can show that RHS can
be bounded from below by∥∥E(s,a)∼ρ×π∗ [ϕ(s, a)]− ν

∥∥√λmin(Σ
−1
off ) =

∥∥E(s,a)∼ρ×π∗ [ϕ(s, a)]− ν
∥∥λmax(Σoff)

−1/2

≥
∥∥E(s,a)∼ρ×π∗ [ϕ(s, a)]− ν

∥∥tr(Σoff)
−1/2

=
∥∥E(s,a)∼ρ×π∗ [ϕ(s, a)]− ν

∥∥( n∑
i=1

∥ϕ(si, ai)∥22
)−1/2

= Ω(n−1/2),

where λmin and λmax is the minimum and maximum eigenvalue of a matrix, the first inequality
holds due to the fact that x⊤Σx ≥ ∥x∥22λmin(Σ) and the second inequality holds due to λmax(Σ) ≤
tr(Σ). Zhao et al. (2024) proposed a two-stage learning algorithm and obtained an Õ(ϵ−1) sample
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complexity for online KL-regularized bandits. The algorithm can be adopted to offline learning by
removing the second stage5 and treat the samples from first stage as the offline dataset. An analogous
analysis gives a sample complexity of Õ(D2ϵ−1), where D2 is the all-policy concentrability.

B MISSING PROOFS FROM SECTION 2

B.1 PROOF OF LEMMA 2.9

We first provide the following lemmas of concentration.
Lemma B.1 (Zhao et al. 2024, Lemma C.1). For any policy π and state-action pairs {(si, ai)}mi=1
generated i.i.d. from ρ× π, and ϵc < 1, with probability at least 1− δ, for any g1 and g2 we have

Eρ×π

[(
g1(s, a)− g2(s, a)

)2] ≤ 2

n

n∑
i=1

(
g1(si, ai)− g2(si, ai)

)2
+

32

3n
log(2NG(ϵc)/δ) + 10ϵc,

where NG(ϵc) is the ϵc-covering number of G.
Lemma B.2 (Zhao et al. 2024, Lemma C.2). For arbitrary policy π and dataset {(si, ai, ri)}mi=1
generated i.i.d., from the product of π, ρ and the Bradley-Terry Model; let ḡ be the least square
estimator of g∗, then for any 0 < ϵc < 1 and δ > 0, with probability at least 1− δ we have

n∑
i=1

(
ḡ(si, ai)− g∗(si, ai)

)2 ≤ 16 log(aNG(ϵc)/δ) + 4nϵc.

Now we are ready to prove Lemma 2.9.

Proof of Lemma 2.9. We have the following inequality(
ḡ(s, a)− g∗(s, a)

)2
=

(
ḡ(s, a)− g∗(s, a)

)2
Eπref

[(
ḡ(s, a)− g∗(s, a)

)2]Eπref

[(
ḡ(s, a)− g∗(s, a)

)2]
≤ sup

g1,g2∈G

(
g1(s, a)− g2(s, a)

)2
Eπref

[(
g1(s, a)− g2(s, a)

)2]Eπref

[(
ḡ(s, a)− g∗(s, a)

)2]
= D2

G((s, a), π
ref)Eπref

[(
ḡ(s, a)− g∗(s, a)

)2]
, (B.1)

where the inequality holds by taking supremum to g1, g2 ∈ G. Now we have

Eπref

[(
ḡ(s, a)− g∗(s, a)

)2] ≤ 2

n

n∑
i=1

(
ḡ(si, ai)− g∗(si, ai)

)2
+

32

3n
log(2NG(ϵc)/δ) + 10ϵc

≤ 2

n

[
16 log(NG(ϵc)/δ) + 4nϵc

]
+

32

3n
log(2NG(ϵc)/δ) + 10ϵc

=
128

3n
log(2NG(ϵc)/δ) + 18ϵc, (B.2)

where the first inequality holds due to Lemma B.1 and second holds due to Lemma B.2. Plug-
ging (B.2) into (B.1) and setting ϵc = O(n−1) complete the proof.

B.2 PROOF OF LEMMA 2.14

This proof is extracted from the proof of Zhao et al. (2024, Theorem 3.3) and we present it here for
completeness. By definition of our objective in (2.1), we have
J(π∗)− J(πg)

= E(s,a)∼ρ×π∗

[
g∗(s, a)− η−1 log

π∗(a|s)
πref(a|s)

]
− E(s,a)∼ρ×πg

[
g∗(s, a)− 1

η
log

πg(a|s)
πref(a|s)

]
=

1

η
E(s,a)∼ρ×π∗

[
log

πref(a|s) · exp
(
ηg∗(s, a)

)
π∗(a|s)

]
− 1

η
E(s,a)∼ρ×πg

[
log

πref(a|s) · exp
(
ηg∗(s, a)

)
πg(a|s)

]
=

1

η
Es∼ρ

[
logZg∗(s)

]
− 1

η
Es∼ρ

[
logZg(s)

]
− Es∼ρ

[∑
a∈A

πg(a|s) ·
(
g∗(s, a)− f(s, a)

)]
,

5This can be done by setting the n in their paper to 0.
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where for all g ∈ G we define Zg(·) as follows,

Zg(·) :=
∑
a∈A

πref(a|·) exp
(
ηg(·, a)

)
.

We further denote ∆(s, a) = g(s, a)−g∗(s, a) and Hs(g) = logZg(s)−η
∑

a∈A πg(a|s) ·∆(s, a).
It worth noticing that η−1Es∼ρ[Hs(g

∗)−Hs(g)] = J(π∗)− J(πg). Now we take derivative of H
with respect to ∆(s, a),
∂Hs(g)

∂∆(s, a)
=

∂

∂∆(s, a)

[
logZg(s)− η

∑
a∈A

πg(a|s) ·∆(s, a)

]
=

1

Zg(s)
· πref(a|s) exp

(
η · g(s, a)

)
· η − η · πg(a|s)

− η2 ·∆(s, a) ·
πref(a|s) · exp

(
η · g(s, a)

)
Zg(s)

+ η2 ·∆(s, a) ·
[
πref(a|s) · exp

(
η · g(s, a)

)]2
[Zg(s)]2

+ η
∑

a′∈A\{a}

πref(a′|x) · exp
(
η · g(s, a′)

)
Zg(s)

· η ·∆(s, a′) ·
πref(a|s) · exp

(
η · g(s, a)

)
Zg(s)

= −η2πg(a|s)∆(s, a) + η2[πg(a|s)]2 ·∆(s, a) + η2
∑

a′∈A\{a}

πg(a
′|x)πg(a|s)∆(s, a′).

Therefore, by mean value theorem, there exists γ ∈ [0, 1] and gγ = γg + (1− γ)g∗ such that

Hs(g)−Hs(g
∗) = −η2γ

∑
a∈A

πgγ (a|s)∆(s, a)2 + γη2
∑
a1∈A

∑
a2∈A

πgγ (a1|x)πgγ (a2|x)∆(s, a1)∆(s, a2)

= −η2γEa∼πgγ

[(
g∗(s, a)− g(s, a)

)2]
+ γη2

(
Ea∼πgγ

[(
g∗(s, a)− g(s, a)

)])2
≥ −η2Ea∼πgγ

[(
g∗(s, a)− g(s, a)

)2]
,

where the inequality holds by omitting the second term and γ ≤ 1. Now taking expectation over ρ,
we have

J(π∗)− J(πg) = η−1Es∼ρ[Hs(g
∗)−Hs(g)]

≤ ηE(s,a)∼ρgγ

[(
g∗(s, a)− g(s, a)

)2]
,

which concludes the proof.

B.3 PROOF OF LEMMA 2.15

Proof of Lemma 2.15. We define Y = −X . Then it suffices to show that the covariance between Y
and Y 2 is

Cov(Y, Y 2) = E[Y 3]− E[Y 2]E[Y ]

≥
(
E[Y 2]

)3/2 − E[Y 2]E[Y ]

=
(
E[Y 2]

)(√
E[Y 2]− E[Y ]

)
≥ 0,

where both inequalities follow from Jensen’s inequality.

B.4 PROOF OF THEOREM 2.10

To start with, we first define the following quantities. For all γ ∈ [0, 1], we define gγ := γĝ + (1−
γ)g∗ and denote

πγ(·|s) ∝ πref(·|s) exp
(
ηgγ(s, ·)

)
,∀s ∈ S;

G(γ) := Eρ×πγ

[(
ĝ − g∗

)2
(s, a)

]
.

The key to our analysis is the monotonicity of the function G(γ) in γ, which is formally stated in
the following lemma.
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Lemma B.3. On event E , 0 ∈ argmaxγ∈[0,1] G(γ).

Proof. For simplicity, we use △(s, a) to denote
(
ĝ − g∗)(s, a) in this proof. Then we know that

△(s, a) ≤ 0 for all (s, a) ∈ S × A on event E . The most direct way to prove is to take derivative
of G with respect to γ, which corresponds to the policy gradient (Sutton et al., 1999) of πγ and thus
implying a favorable structure. A direct calculation yields that

= Eρ×πγ

[
∇γ log πγ(a|s)△(s, a)2

]
= ηEρEa∼πγ

[
△2(s, a)

(
△(s, a)− Ea′∼πγ [△(s, a′)]

)]
= ηEρ

[
Eπγ

[
△3(s, a)

]
− Eπγ

[
△2(s, a)

]
Eπγ

[
△(s, a)

]]
≤ 0,

where Eρ is the shorthand of Es∼ρ, Eπγ is the shorthand of Ea∼πγ , the first equation is derived from
standard policy gradient and the inequality holds conditioned on the event E(δ) due to Lemma 2.15
and Lemma 2.15.

Now we are ready to prove Theorem 2.10.

Proof of Theorem 2.10. Following the proof of Zhao et al. (2024, Theorem 3.3), we know that there
exists γ̄ ∈ [0, 1] such that

J(π∗)− J(π̂) ≤ ηG(γ̄) ≤ ηG(0), (B.3)

where the first inequality holds due to Lemma 2.14 and the second inequality holds due to the event
E and Lemma B.3. The term G(0) can be further bounded with the D2-based concentrability as
follows

G(0) = ηE(s,a)∼ρ×π∗

[(
ĝ − g∗

)2
(s, a)

]
≤ 4ηE(s,a)∼ρ×π∗ [Γ2

n(s, a)]

= 4ηβ2E(s,a)∼ρ×π∗
[
D2

F ((s, a);π
ref)
]

= Õ(ηD2
π∗n−1 logG(ϵc)), (B.4)

where the second inequality holds conditioned on E(δ) because of Lemma B.3, and the last inequal-
ity follows from the definition of E(δ) together with Line 2. By Lemma 2.9, we know that event E
holds with probability at least 1− δ, which finishes the proof.

B.5 PROOF OF THEOREM 2.11

Proof of Theorem 2.11. We consider the family of contextual bandits with S := |S|, A := |A| <∞
and reward function in some function class G composed of function S ×A → [0, 1] as follows.

CBG := {(S,A, ρ, r, πref , η) : r ∈ G, ρ ∈ ∆(S), πref ∈ ∆(A|S)}. (B.5)

Our goal is to prove the following statement. Fixing any S ≥ 1, η > 4 log 2 and C∗ ∈ (2, exp(η/4)],
then for any estimator D 7→ π̂ ∈ ∆(A|S), for any n ≥ 16SC∗, there exist some function class
G, such that ∃ inst = (S,A, ρ, r, πref , η) ∈ CBG with single-policy concentrability Cπ∗ ≤ C∗,
regularization coefficient η, |S| = S = Θ(log |G|), and

SubOptRKL(π̂; inst) ≳ min{ηSC∗n−1, (SC∗)1/2n−1/2}. (B.6)

Since log |G| ≥ logNG(ϵ) for any ϵ ∈ (0, 1), equation (B.6) yields the desired bound.

We set S = [S], A = {±1}, ρ = Unif(S), and the reference policy to be

∀s ∈ S, πref(−1|s) = C−1, πref(+1|s) = 1− C−1;

where C ≥ 1 is a parameter to be specified later. We construct 2S Bernoulli reward functions, in
particular, ∀τ ∈ {±1}S , the mean function rτ of the reward (indexed by τ ) is defined as

rτ (s,−1) = 0.5 + τsδ, rτ (s,+1) = 0.5− α
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for any state s ∈ S, where α ∈ (0, 1/2) and δ ∈ (0, 1/4] will be specified later. We omit the RKL
subscript in the following argument when it is clear in context. By (2.2), the optimal policy π∗

τ under
rτ is

∀s ∈ S, π∗
τ (−1|s) =

exp
(
η(α+ τsδ)

)
exp

(
η(α+ τsδ)

)
+ C − 1

, π∗
τ (+1|s) = C − 1

exp
(
η(α+ τsδ)

)
+ C − 1

.

(B.7)
Since C∗ ≤ exp(η/4), we assign C = C∗ and α = η−1 log(C − 1) ⇔ C − 1 = exp(ηα), which
gives

∀s ∈ S, π
∗
τ (−1|s)

πref(−1|s)
≤ C

exp(η(α+ τsδ))

C − 1 + exp(η(α+ τsδ))
= C

exp(ητsδ)

1 + exp(ητsδ)
≤ C = C∗;

∀s ∈ S, π
∗
τ (+1|s)

πref(+1|s)
=

C

C − 1
· 1

exp(ητsδ) + 1
≤ C = C∗;

where the last inequality is due to the assumption C∗ ≥ 2. Therefore, we obtain

max
τ∈{±1}S

Cπ∗
τ ≤ C∗. (B.8)

We will abuse the notation SubOpt(π̂; τ) := SubOpt(π̂; rτ ). Since ρ = Unif(S),

SubOpt(π̂; τ) =
1

S

S∑
s=1

SubOpts(π̂; τ), (B.9)

where

SubOpts(π̂; τ) = ⟨π∗
τ (·|s), rτ (s, ·)− η−1 log

π∗
τ (·|s)

πref(·|s)
⟩ − ⟨π̂(·|s), rτ (s, ·)− η−1 log

π̂(·|s)
πref(·|s)

⟩

=
1

η
Ea∼π∗

τ (·|s)

[
log

πref(a|s) · exp
(
ηrτ (s, a)

)
π∗
τ (a|s)

]
− 1

η
Ea∼π̂(·|s)

[
log

πref(a|s) · exp
(
ηrτ (s, a)

)
π̂(a|s)

]
=

1

η
Ea∼π∗

τ (·|s)

[
log
(∑

b∈A

πref(b|s) · exp
(
ηrτ (s, b)

))]

− 1

η
Ea∼π̂(·|s)

[
log

πref(a|s) · exp
(
ηrτ (s, a)

)
π̂(a|s)

]
=

1

η
Ea∼π̂(·|s)

[
log

πref(a|s) · exp
(
ηrτ (s, a)

)
π∗
τ (a|s)

− log
πref(a|s) · exp

(
ηrτ (s, a)

)
π̂(a|s)

]
= η−1KL (π̂∥π∗

τ ) . (B.10)

We write τ ∼s τ
′ if τ, τ ′ ∈ {±1}S differ in only the s-th coordinate and τ ∼ τ ′ if ∃s ∈ S, τ ∼s τ

′.
By (B.10), ∀s ∈ S, ∀τ, τ ′ ∈ {±1}S with τ ∼s τ

′,
SubOpts(π̂; τ) + SubOpts(π̂; τ

′)

= η−1KL (π̂∥π∗
τ ) + η−1KL (π̂∥π∗

τ ′)

= 2η−1
∑
a∈A

π̂(a|s) log π̂(a|s)√
π∗
τ (a|s)π∗

τ ′(a|s)

= 2η−1KL (π̂(·|s)∥π̄τ,τ ′(·|s))− 2η−1Ea∼π̂(·|s) log
(∑

b∈A

√
π∗
τ (b|s)π∗

τ ′(b|s)
)

≥ −2η−1 log
(∑

b∈A

√
π∗
τ (b|s)π∗

τ ′(b|s)
)

=
1

η
log

(exp(ηδ) + 1)(exp(−ηδ) + 1)

4
, (B.11)

where π̄(·|s) =
√
π∗
τ (·|s)π∗

τ ′(·|s)/
∑

b∈A
√

π∗
τ (b|s)π∗

τ ′(b|s) for every s ∈ S , the inequality is due
to the non-negativity of KL divergence, and the last equality follows from (B.7) together with the
design choice C − 1 = exp(ηα).
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Case ηδ ≤ 2. Recall that ∀x ∈ R, (ex + e−x)/2− 1 = x2
∑∞

k=0
x2k

(2k+2)! ≥ x2/2, which implies

(B.11) =
1

η
log

(
1 +

1

2

(eηδ + e−ηδ

2
− 1
))
≥ 1

η
log
(
1 +

η2δ2

4

)
≥ 1

η
· η

2δ2/4

2
= ηδ2/8.

(B.12)

Here, the last inequality is due to η2δ2/4 ≤ 1 and ∀x ∈ [0, 1], log(1 + x) ≥ x/2.

Case ηδ > 2. We have −η−12 log 2 ≥ −δ log 2, which implies the following bound.

(B.11) ≥ 1

η
log

exp(ηδ) + 1

4
≥ ηδ − 2 log 2

η
= δ − η−12 log 2 ≥ (1− log 2)δ ≥ 3δ/10. (B.13)

In summary, (B.12) and (B.13) imply that ∀s ∈ S, ∀τ, τ ′ ∈ {±1}S with τ ∼s τ
′,

SubOpts(π̂; τ) + SubOpts(π̂; τ
′) ≥ ηδ2

8
∧ 3δ

10
. (B.14)

Let Pτ be the distribution of (s, a, y) where s ∼ ρ, a ∼ πref(·|s), and y ∼ Bern(rτ (s, a)). Then
∀x ∈ S ∀τ, τ ′ ∈ {±1}S with τ ∼x τ ′,

KL (Pτ∥Pτ ′) =
1

S

∑
s,a

πref(a|s)KL (Bern(rτ (s, a))∥Bern(rτ ′(s, a)))

=
1

S
· C−1KL (Bern(rτ (x,−1))∥Bern(rτ ′(x,−1)))

≤ 4δ2

SC(0.25− δ2)
≤ 16δ2

3SC
, (B.15)

where we use the requirement δ ≤ 1/4 and KL (Bern(p)∥Bern(q)) ≤ (p − q)2/
(
q(1 − q)

)
. Then

let PDτ
be the distribution of D given the mean reward function rτ , we employ (B.15) to get

KL
(
PDτ
∥PDτ′

)
= nKL (Pτ∥Pτ ′) ≤ 16nδ2

3SC
. (B.16)

Since n ≥ 16SC∗ = 16SC by design, we can set δ =
√
SC/n (which ensures δ ≤ 1/4) to obtain

sup
inst

SubOpt(π̂; inst) ≥ sup
τ∈{±1}S

SubOpt(π̂; τ)

≥ 1

S
· S · 1

4
·
(ηδ2

8
∧ 3δ

10

)
min
τ∼τ ′

exp
(
− KL

(
PDτ ∥PDτ′

) )
≥
(ηSC∗

32n
∧ 3
√
SC∗

40
√
n

)
exp(−16/3) ≳ ηSC∗

n
∧
√

SC∗

n
.

where the S−1 in the second inequality comes from (B.9), the second inequality is by substituting
(B.14) into Assouad’s Lemma (Lemma F.3), and the last inequality is due to (B.16).

C MISSING PROOF FROM SECTION 3

C.1 PROOF OF THEOREM 3.2

Before coming to the proof, we first introduce some useful properties. The following properties
characterize the convexity of f -divergence when f is (strongly) convex.

The strong-convexity of f implies that the corresponding f -divergence, Df (·||πref) is also strongly
convex with respect to all π : S → ∆(A) supported by πref .

Proposition C.1. Given context s, Df (π(·|s)||πref(·|s)) is strict convex with respect to π if f is
strictly convex.

Proposition C.2. Given context s, π(·|s) 7→ Df (π(·|s)∥πref(·|s)) is 4α-strong convex with respect
to the metric TV if f is α-strongly convex.
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Proof of Proposition C.2. We first show the gradient of Df with respect to π.

∂Df (π||πref)

π(a)
=

∂

∂π(a)

∑
b∈A

πref(b)f

(
π(b)

πref(b)

)
= f ′

(
π(a)

πref(a)

)
.

Now consider π1, π2 ∈ ∆(A) supported by πref .

Df (π1||πref)−Df (π2||πref)−
〈
π1 − π2,∇Df (π2||πref)

〉
=
∑
a∈A

πref(a)

(
f

(
π1(a)

πref(a)

)
− f

(
π2(a)

πref(a)

))
−
∑
a∈A

(
π1(a)− π2(a)

)
f ′
(

π2(a)

πref(a)

)

=
∑
a∈A

πref(a)

(
f

(
π1(a)

πref(a)

)
− f

(
π2(a)

πref(a)

)
−
(

π1(a)

πref(a)
− π2(a)

πref(a)

)
f ′
(

π2(a)

πref(a)

))

≥ α

2

∑
a∈A

πref(a)

(
π1(a)

πref(a)
− π2(a)

πref(a)

)2

=
α

2

∑
a∈A

1

πref(a)

(
π1(a)− π2(a)

)2
≥ α

2

(∑
a∈A

∣∣π1(a)− π2(a)
∣∣)2

,

where the first inequality holds due to f ’s strong convexity and the second holds due to
Cauchy–Schwarz. The proof finishes since ∥π1 − π2∥1 = 2TV (π1∥π2).

We first introduce some notation and important properties concerning the convex conju-
gate of functions. Given some context s, we denote the regularization term as Hs(π) =
η−1Df (π(·|s)∥πref(·|s)). We use H∗

s (r) to denote the convex conjugate of Hs, which is defined
as

H∗
s (r) = sup

π∈S→∆|A|
{⟨π(·|s), r(s, ·)⟩ −Hs(π)}.

We have the following properties for the convex conjugate. The first property gives the gradient of
convex conjugate (see, e.g., Zhou 2018, Lemma 5).
Proposition C.3. Given context s, and convex f , let πr ∈ argmaxπ{⟨π(·|s), r(s, ·)⟩ −Hs(π)} for
some r, then the gradient of H∗

s is given by ∇H∗
s (r) = πr(·|s).

We also need some properties of ∇2H∗
s , the Hessian matrix of the convex conjugate function. We

first give the Hessian matrix of the original function Hs as follows.

∇2Hs(π) = η−1diag

(
f ′′
(

π(a1|s)
πref(a1|s)

)
πref(a1|s)

, · · · ,
f ′′
(

π(a|A||s)
πref(a|A||s)

)
πref(a|A||s)

)
. (C.1)

Furthermore, when f is α-strongly convex, we have

∇2Hs(π) ⪰ αη−1diag
(
πref(a1|s)−1, · · · , πref(a|A||s)−1

)
.

The following lemma, which gives an estimate of∇2H∗
s , is the pivot of the proof.

Lemma C.4. For any reward r : S ×A → [0, 1], we have

∇2H∗
s (r) ⪯ α−1ηdiag

(
πref(a1|s), · · · , πref(a|A||s)

)
.

Proof of Lemma C.4. Given reward function r : S ×A → [0, 1], we consider
πr ∈ argmax

π∈S→∆|A|
{⟨π(·|s), r(·|s)⟩ −Hs(π)}.

From (C.1) we know that ∇2Hs(πr) is invertible. Therefore, by Penot 1994, Proposition 3.2, we
have∇2H∗

s (r) ⪯ (∇2Hs(πr))
−1. Since f is α-strongly convex, we have

∇2H∗
s (r) ⪯ α−1ηdiag

(
πref(a1|s), · · · , πref(a|A||s)

)
,

which finishes the proof.
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Now we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. Consider our estimation ḡ which approximates the ground truth reward func-
tion g∗, we know that

π̂ = argmax
π∈S→∆(A)

{
E(s,a)∼ρ×π[ḡ(s, a)]− η−1Es∼ρ

[
Df (π||πref)

]}
.

We have the following sub-optimality decomposition

J(π∗)− J(π̂) = Es∼ρ

[
Ea∼π∗ [g∗(s, a)]− Ea∼π̂[g

∗(s, a)]− η−1
[
Df (π

∗∥πref)−Df (π̂∥πref)
]]

= Es∼ρ

[
H∗

s (g
∗)−H∗

s (ḡ)− ⟨π̂, g∗ − ḡ⟩
]

= Es∼ρ

[
H∗

s (g
∗)−H∗

s (ḡ)− ⟨∇H∗
s (ḡ), g

∗ − ḡ⟩
]

= Es∼ρ[(g
∗ − ḡ)⊤∇2H∗

s (g̃)(g
∗ − ḡ)],

where g̃ = γg∗ + (1 − γ)ḡ and γ ∈ [0, 1] and the last equation holds due to Taylor’s expansion.
Now, for any δ ∈ (0, 1) and ϵc > 0, with probability at least 1− δ

J(π∗)− J(π̂) = Es∼ρ[(g
∗ − ḡ)⊤∇2H∗

s (g̃)(g
∗ − ḡ)]

≤ α−1ηEs∼ρ

[
(g∗ − ḡ)⊤diag

(
πref(a1|s), · · · , πref(a|A||s)

)
(g∗ − ḡ)

]
= α−1ηE(s,a)∼ρ×πref

[(
g∗(s, a)− ḡ

(
s, a))2

]
≤ α−1η

(
128

3n
log(2NG(ϵc)/δ) + 18ϵc

)
,

where the first inequality holds due to Lemma C.4 and last inequality holds due to equation (B.2).
Setting ϵc = O(n−1) completes the proof.

C.2 PROOF OF THEOREM 3.4

We first provide the following lemma that gives the close form of optimal policy under χ2-divergence
regularization.
Lemma C.5 (Huang et al. (2025a, Lemma G.2)). Let π∗ be the optimal policy of χ2-divergence
regularized objective with reward function r, then π∗ has the closed form

π∗(·) = πref(·)max
{
0, η(r(·)− λ)

}
, where

∑
a∈A

π∗
fdiv(a) = 1.

By Proposition C.2, π∗
fdiv = argmaxπ∈∆(A) Jfdiv(π) is unique. The sub-optimality gap for f -

divergence is consequently defined as

SubOptfdiv(·) := SubOptfdiv(·;A, r, πref) = Jfdiv(π
∗
fdiv)− Jfdiv(·). (C.2)

Now we are ready to prove Theorem 3.4.

Proof of Theorem 3.4. We still consider the family of contextual bandits CBG given by (B.5). We,
still, aim to prove the following statement. Fixing any S ≥ 32 log 2, η > 4 log 2 and α, we set
f(x) := α(x − 1)2/2, then for any estimator D 7→ π̂ ∈ ∆(A|S), for any n sufficiently large,
there exist some function class G, such that ∃ inst = (S,A, ρ, r, πref , η) ∈ CBG with |S| = S =
Θ(log |G|), and

SubOptfdiv(π̂; inst) ≳ α−1ηSn−1. (C.3)

Since log |G| ≥ logNG(ϵ) for any ϵ ∈ (0, 1), equation (C.3) yields the desired bound.

We again omit subscripts fdiv when it is clear in context. We set S = [S], A = {−1,+1}, and
ρ = Unif(S). For all s ∈ S , πref = Unif(A). We further consider the following reward function
class. We leverage Lemma F.4 and obtain a set V ∈ {−1,+1}S such that (1) |V| ≥ exp(S/8)
and (2) for any v, v′ ∈ V, v ̸= v′ , one has ∥v − v′∥1 ≥ S/2. We construct the following reward
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function class where the reward follows Bernoulli distribution and the mean functions are given by
the function class

G = {rv(s,−1) = 1/2 + vsδ, rv′(s,+1) = 1/2 + v′sδ, ∀s ∈ S|v ∈ V},

where δ ∈ (0, η−1α] is to be specified later. Fix some context s and v1 ̸= v2 different at entry s and
corresponding reward r1 and r2. Without loss of generality, we assume r1(s, ·) = (1/2+δ, 1/2−δ)
and r2(s, ·) = (1/2− δ, 1/2 + δ). Then direct calculation implies that

π∗
1(·|s) =

1

2
max{0, ηα−1(r1(s, ·)− λ)} = 0.5ηα−1(r1(s, ·)− λ),

π∗
2(·|s) =

1

2
max{0, ηα−1(r2(s, ·)− λ)} = 0.5ηα−1(r2(s, ·)− λ),

where λ = 0.5 − η−1α. Note that 2χ2(µ∥ν) + 1 =
∑

a∈A[µ(a)]
2/ν(a) and χ2 = Df , we obtain

that ∀ π̂,

SubOpts(π̂(·|s); r1) + SubOpts(π̂(·|s); r2) (C.4)

= ⟨r1(s, ·), π∗
1(·|s)⟩+ ⟨r2(s, ·), π∗

2(·|s)⟩ −
=1︷ ︸︸ ︷

⟨r1(s, ·) + r2(s, ·), π̂(·|s)⟩+

≥0︷ ︸︸ ︷
2η−1αχ2(π̂(·|s)∥πref(·|s))

− η−1α · χ2(π∗
1(·|s)∥πref(·|s))− η−1α · χ2(π∗

2(·|s)∥πref(·|s))
≥ 2⟨r1(s, ·), π∗

1(·|s)⟩ − 1− 2η−1α · χ2(π∗
1(·|s)∥πref(·|s))

= 1 +
2ηδ2

α
− 1− ηδ2

α
=

ηδ2

α
. (C.5)

Now we take expectation over all possible contexts and recall that ∥v − v′∥1 ≥ S/2 for v ̸= v′, we
know that for any r1 ̸= r2 ∈ G

SubOpt(π̂; r1) + SubOpt(π̂; r2) ≥
ηδ2

2α

Given any mean reward function r ∈ G, let Pr be the distribution of (s, a, r) when s ∼ ρ, a ∼
πref(·|s), and r ∼ Bern(r(s, a)). Suppose PDr

is the distribution of the dataset given mean reward
function r, then KL

(
PDr1

∥PDr2

)
= nKL (Pr1∥Pr2) for any pair of r1, r2 ∈ G. Now we invoke

Fano’s inequality (Lemma F.2) to obtain

inf
π

sup
inst∈CBG

SubOpt(π̂; inst) ≥ ηδ2

4α

(
1−

maxr1 ̸=r2∈G KL
(
PDr1

∥PDr2

)
+ log 2

log |G|

)

≥ ηδ2

4α

(
1− 64nδ2 + 8 log 2

S

)
,

where the second inequality holds due to KL(Bern(p)∥Bern(q)) ≤ (p − q)2/[q(1 − q)]. Let δ =

16−1
√
Sn−1, then we obtain that for all π we have

sup
inst∈CBG

SubOpt(π̂; inst) ≳
ηS

αn
,

which finishes the proof in that log2 |G| = S.

D GENERALIZATION TO CONTEXTUAL DUELING BANDITS

In this section, we extend our algorithm to the problems of regularized contextual dueling bandits,
where the learner receives preference comparison instead of absolute signals. Our setup largely
follows Zhu et al. (2023); Zhan et al. (2023) and the notion of sub-optimality follows Xiong et al.
(2024); Zhao et al. (2024).
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Algorithm 3 Offline KL-Regularized Pessimistic Contextual Dueling Bandit (KL-PCDB)

Require: regularization η, reference policy πref , function class G, offline dataset D =
{(si, a1i , a2i , yi)}ni=1

1: Compute the maximum likelihood estimator of the reward function

ḡ = argmin
g∈G

n∑
i=1

[
yi log σ

([
g(si, a

1
i )− g(si, a

2
i )
])

+ (1− yi) log σ
([

g(si, a
2
i )− g(si, a

1
i )
])]

2: Let ĝ(s, a) = ḡ(s, a)− Γn(s, a), where Γn(s, a) is the bonus term in (D.1)
Ensure: π̂(a|s) ∝ πref(a|s) exp

(
η · ĝ(s, a)

)
D.1 PROBLEM SETUP

We still consider contextual bandits (S,A, r, πref) where S is the state space, A is the action space
and r : S × A → [0, 1] is the reward function.6 But only relative preference feedback is available,
viz., we have an i.i.d. offline dataset D = {(si, a1i , a2i , yi)}ni=1, where si ∈ S is generated from
distribution ρ and a1i , a

2
i ∼ πref . The binary preference label yi = 1 indicates a1i is preferred over a2i

(denoted by a1 ≻ a2) and 0 for a2 ≻ a1 given context s. In this work we consider the Bradley-Terry
Model, where P[y = 1|s, a1, a2] = σ(r(si, a

1
i ) − r(si, a

2
i )), where σ(x) = (1 + e−x)−1 is the

link function. The objective here identical to (2.1) for KL-regularization and (3.1) for f -divergence
regularization. Our goal is still to find an ϵ-optimal policy. To control the complexity of the function
class G, we assume that Assumption 2.1 still holds here.

Concentrability. Analogous to Section 2, we need our estimation from offline dataset generaliz-
able to the state-action pairs visited by our obtained policy. While density-ratio-based concentrabil-
ity can be directly adapted to dueling bandit, we need a slightly different notion of D2-divergence.
This is because in dueling bandit, we cannot observe the absolute reward and best estimation g
we can achieve is that for any state s and actions a1, a2, our estimated g(s, a1) − g(s, a2) ≈
r(s, a1) − r(s, a2). This implies that there exists some mapping b : S → [−1, 1] such that
g(s, a)− b(s) ≈ r(s, a) on the offline data, which leads to the following definition.
Definition D.1. Given a class of functions G ⊂ (S × A → R) and some policy π, let B = (S →
[−1, 1]) be the function class, define the D2-divergence D2

G((s, a);π) as

sup
g,h∈G

inf
b∈B

(
g(s, a)− h(s, a)− b(s)

)2
Es∼ρ Vara′∼π(·|s′)[g(s′, a′)− h(s′, a′)]

.

A similar definition has been introduced in Zhao et al. (2024, Definition 2.6), which underpins the
following two assumptions that characterize the coverage ability of πref similarly as in Section 2.

Given a reference policy πref , we define two coverage notions for contextual dueling bandits.
Assumption D.2 (All-policy concentrability). D2 := sup(s,a)∈S×A D2

G((s, a);π
ref) <∞.

Assumption D.3 (Single-policy concentrability). D2
π∗ := E(s,a)∼ρ×π∗ [D2

G((s, a);π
ref)] <∞.

Similar single-policy concentrability assumptions have appeared in previous work in offline contex-
tual dueling bandits (Huang et al., 2025b; Song et al., 2024) and similar notions has also appeared
in the analysis of model-based RL (Uehara & Sun, 2021; Wang et al., 2024). Still, while Assump-
tion D.3 is strictly weaker than Assumption D.2, in general cases, the two quantities, Cπ∗

and D2
π∗

cannot be bounded by each other.

D.2 ALGORITHMS AND RESULTS

D.2.1 ALGORITHMS FOR KL-REGULARIZED CONTEXTUAL DUELING BANDITS

We elucidate KL-PCDB for offline KL-regularized contextual dueling bandits, whose pseudocode is
summarized in Algorithm 3. KL-PCDB first estimate the ground truth function g∗ on offline dataset

6We overload some notations in Section 2 by their dueling counterparts for notational simplicity.
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Algorithm 4 Offline f -Divergence Regularized Contextual Dueling Bandits (f -CDB)

Require: regularization η, reference policy πref , function class G, offline dataset D =
{(si, a1i , a2i , yi)}ni=1

1: Compute the maximum likelihood estimator of the reward function

ḡ = argmin
g∈G

n∑
i=1

[
yi log σ

([
g(si, a

1
i )− g(si, a

2
i )
])

+ (1− yi) log σ
([

g(si, a
2
i )− g(si, a

1
i )
])]

.

2: Compute the optimal policy with respect to reward ḡ

π̂(·|s)← argmax
π(·|s)∈∆(A)

∑
a∈A

π(a|s)ḡ(s, a) + η−1Df

(
π(·|s)∥πref(·|s)

)
Ensure: π̂(a|s)

with maximum likelihood estimator (MLE) to estimate a function ḡ ∈ G. After that, analogous to
Algorithm 1, we adopt the principle of pessimism in the face of uncertainty. Specifically, we define
the penalty term

Γn(s, a) = β
√
D2

G((s, a), π
ref), (D.1)

where

β2 = 128 log(2NG(ϵc)/δ)/3n+ 18ϵc = Õ(n−1) (D.2)

and then subtract it from the MLE ḡ to obtain a pessimistic estimator ĝ. KL-PCB then output the
policy π̂, maximizing the estimated objective

Ĵ(π) = E(s,a)∼ρ×π

[
ĝ(s, a)− η−1 log

π(a|s)
πref(a|s)

]
,

the maximizer of which is in closed form as the counterpart of (2.2).

π̂(a|s) ∝ πref(a|s) exp
(
η · ĝ(s, a)

)
.

We provide the following theoretical guarantees for Algorithm 3.
Theorem D.4. Under Assumption D.3, if we set Γn according to (D.1), then for sufficiently small
ϵ ∈ (0, 1), with probability at least 1 − δ, n = Õ

(
η(D2

π∗ ∧ Cπ∗
)ϵ−1

)
is sufficient to guarantee the

output policy π̂ of Algorithm 3 to be ϵ-optimal.

Remark D.5. Zhao et al. (2024) achieved an Õ(ϵ−1) sample complexity under Assumption D.2.
Comparing to Zhao et al. (2024), KL-PCDB achieves the same Õ(ϵ−1) sample complexity but only
requiring Assumption D.3, which is weaker than Assumption D.2.

The following theorem provides the sample complexity lower bound for KL-regularized dueling
contextual bandits.
Theorem D.6. For any sufficiently small ϵ ∈ (0, 1), η > 0, 1 ≤ C∗ ≤ exp(η/2)/2, and any algo-
rithm Alg, there is a KL-regularized contextual dueling bandit instance with single-policy concentra-
bility Cπ∗ ≤ C∗ such that Alg requires at least Ω

(
min{ηC∗ logNG(ϵc)/ϵ, logNG(ϵc)(C

∗)2/ϵ2}
)

samples to return an ϵ-optimal policy.
Remark D.7. Theorem D.6 shows that when ϵ is sufficiently small, any algorithm for offline KL-
regularized contextual dueling bandits requires at least Ω(ηCπ∗

logNG(ϵ)ϵ
−1) samples to output

an ϵ-optimal policy, which matches the sample complexity upper bound in Theorem D.4, indicating
that KL-PCB is nearly optimal.

D.2.2 ALGORITHM AND RESULTS FOR f -DIVERGENCE REGULARIZED CDBS

We present an offline learning algorithm for f -divergence regularized contextual dueling bandit,
f -CDB, in Algorithm 4. f -CDB first leverages maximum likelihood estimator to find a function
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ḡ ∈ G that minimizes its risk on the offline dataset. Then the algorithm constructs the output policy
π̂ that maximizes the f-divergence regularized objective induced by ḡ. Similar to Algorithm 2,
we do not require any pessimism in f -CDB. The following theorem provides an upper bound of
Algorithm 4.
Theorem D.8. For any sufficiently small ϵ ∈ (0, 1), and η, α > 0, with probability at least 1 − δ,
n = Õ(α−1η logN (ϵ)ϵ−1) is sufficient to guarantee that the output policy π̂ of Algorithm 4 is
ϵ-optimal.

The following theorem provides a lower bound for offline f -divergence regularized contextual du-
eling bandit with strongly convex f .
Theorem D.9. For any ϵ ∈ (0, 1), α, η > 0, and offline RL algorithm Alg, there is an α-strongly
convex f and f -divergence regularized contextual dueling bandit instance such that Alg requires at
least Ω

(
α−1η logN (ϵ)ϵ−1

)
samples to return an ϵ-optimal policy.

Remark D.10. Theorem D.9 indicates that, when ϵ is sufficiently small, to produce an ϵ-optimal
policy, any algorithm for offline f -regularized contextual bandits with strongly convex f requires
at least Ω̃(α−1ηϵ−1) samples. This lower bound matches the sample-complexity upper bound in
Theorem D.8, indicating that Algorithm 4 is nearly optimal.

E MISSING PROOF FROM APPENDIX D

E.1 PROOF OF THEOREM D.4

The proof follows the proof in Section 2. At the beginning, we first define the event E(δ) given
δ > 0 as

E(δ) :=
{
∃ b : S → [−1, 1],∀(s, a) ∈ S ×A,

∣∣ḡ(s, a)− b(s)− g∗(s, a)
∣∣ ≤ Γn(s, a)

}
. (E.1)

Here, Γn is defined in (D.1). We abuse the notation and define b(·) as

b = argmin
B

sup
(s,a)∈S×A

Φb(s, a)− Γn(s, a), (E.2)

where Φb(s, a) =
∣∣ḡ(s, a) − b(s) − g∗(s, a)

∣∣ and when E holds, for all (s, a) ∈ S × A, we have
Φb(s, a) ≤ Γn(s, a) This indicates that the least square estimation ḡ obtained in Line 1 of Algo-
rithm 3, after adjusted by some bias function b, is close to the true function g∗. The following lemma
shows that this event holds with high probability.
Lemma E.1. For any δ > 0, P(E(δ)) ≥ 1− δ.

Proof. From Lemma F.1, we have that with probability at least 1− δ, it holds that

Es′∼ρ Vara′∼πref(·|s′)
[
ḡ(s′, a′)− g∗(s′, a′)

]
≤ O

(
1

n
log(NG(ϵc)/δ) + ϵc

)
. (E.3)

It further holds true that for some b : S → R

D2
G((s, a), π

ref)) · Es∼ρ Vara∼πref(·|s)
[
ḡ(s, a)− g∗(s, a)

]
≥
(
ḡ(s, a)− b(s)− g∗(s, a)

)2
. (E.4)

Substituting (E.3) into (E.4), we have

inf
b

(
ḡ(s, a)− b(s)− g∗(s, a)

)2
(E.5)

= inf
b

(
ḡ(s, a)− b(s)− g∗(s, a)

)2
Es′∼ρ Vara′∼πref(·|s′)

[
ḡ(s′, a′)− g∗(s′, a′)

]Es′∼ρ Vara′∼πref(·|s′)
[
ḡ(s′, a′)− g∗(s′, a′)

]
≤ D2

G((s, a), π
ref)Eπref

[(
ḡ(s, a)− b(s)− g∗(s, a)

)2]
(E.6)

≤ D2
G((s, a), π

ref)O

(
1

n
log(NG(ϵc)/δ) + ϵc

)
, (E.7)

where the first inequality holds due to the definition of D2
G((s, a), π

ref) and the last inequality holds
due to Lemma F.1.
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We overload the following quantities. For any γ ∈ [0, 1] and (s, a) ∈ S ×A, we define

gγ(s, a) := γ(ĝ(s, a)− b(s)) + (1− γ)g∗(s, a).

Furthermore, we introduce the following quantities

πγ(·|·) = πgγ (·|·) ∝ πref(·|·) exp
(
ηgγ(·, ·)

)
,

G(γ) := Eρ×πγ

[(
ĝ(s, a)− b(s)− g∗(s, a)

)2]
,

where b(·) is defined in (E.2). We still have the monotonicity of the function G(γ), which is charac-
terized by the following lemma.

Lemma E.2. On event E(δ), 0 ∈ argmaxγ∈[0,1] G(γ).

Proof. For simplicity, we use △(s, a) to denote ĝ(s, a) − b(s) − g∗(s, a) in this proof. Then on
event E(δ), we know that △(s, a) ≤ 0 for all (s, a) ∈ S × A. Taking derivatives of G w.r.t., γ
directly, we conclude that for all γ ∈ [0, 1],

G′(γ) = ηEρEa∼πγ

[
△2(s, a)

(
△(s, a)− Ea′∼πγ

[△(s, a′)]
)]

= ηEρ

[
Eπγ

[
△3(s, a)

]
− Eπγ

[
△2(s, a)

]
Eπγ

[
△(s, a)

]]
≤ 0,

where Eρ is the shorthand of Es∼ρ, Eπγ
is the shorthand of Ea∼πγ

and the inequality holds condi-
tioned on the event E(δ) due to Lemma 2.15.

Finally, we have the proposition that adding some bias term b : S → R does not affect the resulting
policy.

Proposition E.3. Let b : S → R be some bias function, then for all g ∈ G we have J(πg) =
J(πg−b), where (g − b)(s, a) = g(s, a)− b(s).

Proof. For any fixed state s ∈ S, we have for any a ∈ A that,

πg(a|s) =
πref(a|s) exp

(
ηg(s, a)

)∑
a′∈A πref(a′|s) exp

(
ηg(s, a′)

)
=

πref(a|s) exp
(
ηg(s, a)

)
exp

(
−ηb(s)

)∑
a′∈A πref(a′|s) exp

(
ηg(s, a′)

)
exp

(
−ηb(s)

)
=

πref(a|s) exp
(
η[g(s, a)− b(s)]

)∑
a′∈A πref(a′|s) exp

(
η[g(s, a′)− b(s)]

)
= πg−b(a|s),

which indicates that πg = πg−b. This immediately leads to J(πg) = J(πg−b).

Now we are ready to prove Theorem D.4.

Proof of Theorem D.4. We proceed the proof under the event E(δ). By Proposition E.3, we know
that

J(π∗)− J(π̂) = J(π∗)− J(πĝ)

= J(π∗)− J(πĝ−b).

Consequently, there exist some γ ∈ [0, 1] and b : S → [−1, 1] such that

J(π∗)− J(π̂) = J(π∗)− J(πĝ−b)

≤ ηEρ×πγ

[(
ĝ(s, a)− b(s)− g∗(s, a)

)2]
= ηG(γ), (E.8)
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where the inequality holds due to Lemma 2.14. Under event E(δ), we know that ĝ(s, a) − b(s) ≤
g∗(s, a). Together with Lemma E.2, we obtain G(γ) ≤ G(0). Therefore, we know that

J(π∗)− J(π̂) ≤ G(0) (E.9)

= ηEρ×π∗

[(
ĝ(s, a)− b(s)− g∗(s, a)

)2]
≤ 4η

(
Eρ×π∗

[
Γ2
n(s, a)

]
∧ Cπ∗

Eρ×π∗
[(
ĝ(s, a)− b(s)− g∗(s, a)

)2])
= 4η

(
β2Eρ×π∗

[
D2

G((s, a);π
ref)
]
∧ Cπ∗

Eρ×π∗
[(
ĝ(s, a)− b(s)− g∗(s, a)

)2])
= Õ

(
ηD2

π∗ log G(ϵc)n−1
)
, (E.10)

where the inequality holds due to the definition of E(δ). Plugging (E.10) into (E.8), we know that
J(π∗)−J(π̂) has upper bound Õ(D2

π∗n−1). By Lemma E.1, event E with probability at least 1−δ,
which concludes the proof.

E.2 PROOF OF THEOREM D.6

Proof of Theorem D.6. The proof is similar to the proof of Theorem 2.11. Consider the following
family of contextual dueling bandit instances with S := |S|, A := |A| < ∞ and reward in some
function class G.

CDB := {(S,A, ρ, r, πref , η) : r ∈ G, ρ ∈ ∆(S), πref ∈ ∆(A|S)}. (E.11)

Fixing any S ≥ 1, η > 4 log 2 and C∗ ∈ (2, exp(η/4)], we aim to prove that, for any estimator
D 7→ π̂ ∈ ∆(A|S), for any n ≥ 16SC∗, there exist some function class G, such that ∃ inst =
(S,A, ρ, r, πref , η) ∈ CDB with single-policy concentrability Cπ∗ ≤ C∗, regularization coefficient
η, |S| = S = Θ(log |G|), and

inf
inst∈CDB

SubOptRKL(π̂; inst) ≳ min{ηSC∗n−1, (SC∗)1/2n−1/2}. (E.12)

Since log |G| ≥ logNG(ϵ) for any ϵ ∈ (0, 1), the above bound yields the desired result.

We construct the same reward function class as in the proof of Theorem 2.11. In particular, we set
S = [S], A = {±1}, ρ = Unif(S), and the reference policy to be

∀s ∈ S, πref(−1|s) = C−1, πref(+1|s) = 1− C−1;

where C = C∗. Then the total sub-optimality of any π ∈ ∆(A|S) given any reward function
r : S ×A → R is

SubOptfdiv(π; r) =
1

S

S∑
s=1

SubOptfdiv
(
π(·|s); r(s, ·)

)
. (E.13)

We further let α = η−1 log(C − 1) ⇔ C − 1 = exp(ηα). We construct 2S Bernoulli reward
functions, in particular, ∀τ ∈ {±1}S , the mean function rτ of the reward (indexed by τ ) is defined
as

rτ (s,−1) = 0.5 + τsδ, rτ (s,+1) = 0.5− α.

Then, following the derivation of (B.12) and (B.13), we know that ∀s ∈ S , ∀τ, τ ′ ∈ {±1}S with
τ ∼s τ

′,

SubOpts(π̂; τ) + SubOpts(π̂; τ
′) ≥ ηδ2

8
∧ 3δ

10
. (E.14)

Let Pr be the distribution of (s, a1, a2, y) for s ∼ ρ, a1, a2 i.i.d.∼ πref(·|s) and y ∼ Bern(σ(r(s, a1)−
r(s, a2))). Now we set δ =

√
S/n and conclude that for τ ∼ τ ′ with τs = −τ ′s,

KL
(
Prτ ∥Prτ′

)
=

(C − 1)

SC2

∑
s′,a1,a2

KL
(
Bern(σ(rτ (s

′, a1)− r(s′, a2)))∥Bern(σ(rτ ′(s′, a1)− r(s′, a2)))
)

=
2(C − 1)

SC2

(
KL (Bern(σ(α+ δ))∥Bern(σ(α− δ))) ∨ KL (Bern(σ(α− δ))∥Bern(σ(α+ δ)))

)
.
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Since α, δ ∈ (0, 1/2), by the fact KL(P∥Q) ≤ 2Q−1
minTV (P∥Q)

2 (see e.g., Polyanskiy & Wu
(2025, Section 7.6)), we know that

KL
(
Prτ ∥Prτ′

)
≤ 2(C − 1)

SC2

4

1 + exp(α+ δ)

(
1

1 + exp(α− δ)
− 1

1 + exp(α+ δ)

)2

≤ 4

3SC

exp(2α)(exp(δ)− exp(−δ))2

(1 + exp(α− δ))4

≤ 4e

3SC
(exp(δ)− exp(−δ))2

≤ 36S−1C−1δ2, (E.15)

where the second and third inequality hold due to α, δ ≤ 1/2, and last inequality follows from
exp(x) − exp(−x) ≤ 3x for x ∈ [0, 1/2]. Now we set δ =

√
SC/n ≤ 1/4. We substitute (E.14)

into Assouad’s Lemma (Lemma F.3) and obtain that

inf
inst∈CDB

SubOptRKL(π̂; inst) ≥
1

4
S · 1

S
·
(
ηδ2

8
∧ 3δ

10

)
· min
τ∼τ ′

exp
(
− KL

(
PDτ
∥PDτ′

) )
=

1

4

(
ηδ2

8
∧ 3δ

10

)
exp

(
− nKL

(
Prτ ∥PrD

τ′

))
≥ exp(−36)

32
min{ηCSn−1, S2C2n−2},

where the 1/S comes from the denominator of (E.13) and the second inequality follows from (E.15).

E.3 PROOF OF THEOREM D.8

Proof of Theorem D.8. The proof is similar to the proof of Theorem 3.2. Recall that b(·) defined
in (E.2), we know that

π̂ = argmax
π∈∆d

{
E(s,a)∼ρ×π[ḡ(s, a)]− η−1Es∼ρ

[
Df (π||πref)

]}
= argmax

π∈∆d

{
E(s,a)∼ρ×π[ḡ(s, a)− b(s)]− η−1Es∼ρ

[
Df (π||πref)

]}
.

We have the following sub-optimality decomposition

J(π∗)− J(π̂) = Es∼ρ

[
Ea∼π∗ [g∗(s, a)]− Ea∼π̂[g

∗(s, a)]− η−1
[
Df (π

∗∥πref)−Df (π̂∥πref)
]]

= Es∼ρ

[
H∗

s (g
∗)−H∗

s (ḡ − b)− ⟨π̂, g∗ − ḡ + b⟩
]

= Es∼ρ

[
H∗

s (g
∗)−H∗

s (ḡ − b)− ⟨∇H∗
s (ḡ − b), g∗ − ḡ + b⟩

]
= Es∼ρ[(g

∗ − ḡ + b)⊤∇2H∗
s (g̃)(g

∗ − ḡ + b)],

where g̃ = γg∗ + (1− γ)ḡ and γ ∈ [0, 1], (ḡ− b)(s, a) = ḡ(s, a)− b(s) and the last equation holds
due to Taylor’s expansion. Now, for any δ ∈ (0, 1) and ϵc > 0, with probability at least 1− δ

J(π∗)− J(π̂) = Es∼ρ[(g
∗ − ḡ + b)⊤∇2H∗

s (g̃)(g
∗ − ḡ + b)]

≤ α−1ηEs∼ρ

[
(g∗ − ḡ + b)⊤diag

(
πref(a1|s), · · · , πref(ad|s)

)
(g∗ − ḡ + b)

]
= α−1ηE(s,a)∼ρ×πref

[(
g∗(s, a)− ḡ

(
s, a) + b(s))2

]
≤ α−1η

(
128

3n
log(2NG(ϵc)/δ) + 18ϵc

)
,

where the first inequality holds due to Lemma C.4 and last inequality holds due to equation (E.3).
Setting ϵc = O(n−1) completes the proof.
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E.4 PROOF OF THEOREM D.9

Proof of Theorem D.9. We still consider the contextual dueling bandit instance class defined
in (E.11). We show that given any positive α, η, for any n ≥ S · max{16, η2α−2}, there exists
f : R→ R such that f is α-strongly convex, log |G| = Θ(S) and

inf
π̂∈Π̂(D)

sup
inst∈CDB

SubOptfdiv(π̂; inst) ≳
ηS

αn
, (E.16)

where D = {(si, a1i , a2i , yi)}ni=1 is the offline preference dataset, all (possibly randomized) maps
from which to ∆(A|S) is denoted by Π̂(D). Since S = Θ(log |G|) ≳ logNG(ϵc) for all ϵc ∈ (0, 1),
we can conclude the theorem.

Let S = [S], A = {±1}, ρ = Unif(S) and πref(·|s) = Unif(A) for any s ∈ S. Then the total
sub-optimality of any π ∈ ∆(A|S) given any reward function r : S ×A → R is

SubOptfdiv(π; r) =
1

S

S∑
s=1

SubOptfdiv
(
π(·|s); r(s, ·)

)
. (E.17)

We still consider the reward function class G indexed by {±1}S . For all τ ∈ {±1}S the reward
instance “shaped” by τ is

rτ (s, a) =
1

2
+ aτs ·

√
S

n
, (E.18)

where aτs = ±1 because a ∈ A = {±1}. We thereby refer τ ∼ τ ′ to any pair in {±1}S that differs
only in one coordinate. ∀τ, τ ′ ∈ {±1}S , if τ ∼ τ ′, then suppose τs = −τ ′s, we have

SubOptfdiv(π(·|s); rτ (s, ·)) + SubOptfdiv(π(·|s); rτ ′(s, ·)) ≥ ηS

αn
, (E.19)

where the inequality follows from exactly the same calculation in equation (C.5) by setting f(x) =

α(x − 1)2/2.7 Let Pr be the distribution of (s, a1, a2, y) for s ∼ ρ, a1, a2 i.i.d.∼ πref(·|s) and
y ∼ Bern(σ(r(s, a1) − r(s, a2))). Then we denote δ =

√
S/n and conclude that for τ ∼ τ ′ with

τs = −τ ′s,

KL
(
Prτ ∥Prτ′

)
=

1

SA2

∑
s′,a1,a2

KL
(
Bern(σ(rτ (s

′, a1)− r(s′, a2))∥Bern(σ(rτ ′(s′, a1)− r(s′, a2))
)

=
1

4S

(
KL (Bern(σ(2δ))∥Bern(σ(−2δ))) + KL (Bern(σ(−2δ))∥Bern(σ(2δ)))

)
≤ 1

4S

(
(exp(−2δ)− 1)2 + (exp(2δ)− 1)2

)
≤ 1

2S
(exp(2δ)− 1)2 ≤ 36δ2

2S
=

18

n
, (E.20)

where the last inequality follows from exp(x)− 1 ≤ 3x for x ∈ [0, 0.5] and δ =
√
S/n ≤ 0.25 by

assumption. Therefore, we substitute (E.19) into Assouad’s Lemma (Lemma F.3) to obtain

LHS of (E.16) ≥ 1

S
· S · ηS

αn
· 1
4
· min
τ∼τ ′

exp
(
− KL

(
PDτ
∥PDτ′

) )
= 0.25 · ηS

αn
· exp

(
− nKL

(
Prτ ∥PrD

τ′

))
≥ ηS

αn
· 1
3
· exp(−18) ≳ ηS

αn
, (E.21)

where the 1/S comes from the denominator of (E.17) and the second inequality follows from (E.20).

7Recall that in this case Df = χ2, where 2χ2(µ∥ν) + 1 =
∑

a∈A[µ(a)]2/ν(a).
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F AUXILIARY LEMMAS

Lemma F.1 (Zhao et al. 2024, Lemma D.4). Consider a offline dataset {(si, a1i , a2i , yi)}ni=1 gener-
ated from the product of the context distribution ρ ∈ ∆(S), policy π ∈ ∆(A|S), and the Bradley-
Terry Model defined in Appendix D.1. Suppose ḡ is the result of MLE estimation of Algorithm 3,
and we further define b(s) = Ea∼π(·|s)

[
ḡ(s, a)− g∗(s, a)

]
, then with probability at least 1− 2δ, we

have

Es,a∼ρ×π

[(
ḡ(s, a)− g∗(s, a)− b(s)

)2] ≤ O

(
1

n
log(NG(ϵc)/δ) + ϵc

)
.

Lemmas F.2 and F.3 are two standard reductions (Le Cam, 1973; Yu, 1997; Polyanskiy & Wu, 2025).
See, e.g., Chen et al. (2024, Section 3) for a general proof.
Lemma F.2 (Fano’s inequality). Fix any R := {r1, · · · , rS} and policy class Π, let L : Π ×R →
R+ be some loss function. Suppose there exist some constant c > 0 such that the following condition
holds:

min
i̸=j

min
π∈Π

L(π, ri) + L(π, rj) ≥ c.

Then we have

inf
π∈Π

sup
r∈R

L(π, r) ≥ c

2

(
1−

maxi ̸=j KL(Pri∥Prj ) + log 2

logS

)
,

where Pr is the distribution of dataset given model r ∈ R.
Lemma F.3 (Assouad’s Lemma). Let R be the set of instances, Π be the set of estimators, Θ :=
{±1}S for some S > 0, and {Lj}Sj=1 be S functions from Π × R to R+. Suppose {rθ}θ∈Θ ⊂ R
and the loss function is

L(π, r) :=

S∑
j=1

Lj(π, r),∀(π, r) ∈ Π×R.

We denote θ ∼j θ
′ if they differ only in the j-th coordinate. Further assume that

θ ∼j θ
′ ⇒ inf

π∈Π
Lj(π, rθ) + Lj(π, rθ′) ≥ c (F.1)

for some c > 0, then

inf
π∈Π

sup
r∈R

L(π, r) ≥ S · c
4

min
∃j:θ∼jθ′

exp
(
− KL

(
Prθ∥Prθ′

) )
,

where Pr denotes the distribution of the dataset given r ∈ R.

The following Lemma F.4 is due to Gilbert (1952); Varshamov (1957), which is a classical result in
coding theory.
Lemma F.4. Suppose Σ is a set of characters with |Σ| = q where q ≥ 2 is a prime power and N > 0
is some natural number. Then there exists a subset V of ΣN such that (1) for any v, v′ ∈ V, v ̸= vj ,
one has dH(v, v′) ≥ N/2 and (2) logq |V| ≥ Hq(1/2) = Θ(1), where dH is the Hamming distance
and the entropy function H is given by

Hq(x) = x
log(q − 1)

log q
− x

log x

log q
− (1− x)

log(1− x)

log q
.

For example, when q = 2, this means that there exists a subset V of {−1, 1}S such that (1) |V| ≥
exp(S/8) and (2) for any v, v′ ∈ V, v ̸= vj , one has ∥v − v′∥1 ≥ S/2.
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