
Appendix

A Proof of Theorems

In this section, we restate and prove the theorems in Section 4. These give the theoretical foundations
that we use to build our models. Prior work [17, 43] addresses some of the results we formalize
below.

A.1 Proof of Theorem 1

Theorem 1. Let (M, h) be a Riemannian manifold and G be its group of isometries (or an isometry

subgroup). If � : M ! R is a smooth G-invariant function, then the following diagram commutes

for any g 2 G:

M M

TM TM

Lg

r� r�

DLg

or rLgu� = DuLg(ru�). This is condition is also tight in the sense that it only occurs if G is the

group of isometries.

Proof. We first recall the Riemannian gradient chain rule:

ru(� � Lg) = (DuLg)
>
(rLgu�)

where (DuLg)
> : TLguM ! TuM is the “adjoint" given by

h
�
DuLg(v), w

�
= h

⇣
v, (DuLg)

>
(w)

⌘
.

Since Lg is an isometry, we also have

h(x, y) = h
�
DuLg(x), DuLg(y)

�
.

Combining the above two equations gives

h(x, y) = h(DuLg(x), DuLg(y)) = h

⇣
x, (DuLg)

> �
DuLg(y)

�⌘
,

which implies for all y,

h

⇣
x, y � (DuLg)

>
(DuLg(y))

⌘
= 0.

Since h is a Riemannian metric (even pseudo-metric works due to non-degeneracy), we must have
that (DuLg)

> � (DuLg) = I .

To complete the proof, we recall that � = � � Lg , and this combined with chain rule gives

ru� = ru(� � Lg) = (DuLg)
>
(rLgu�).

Now applying DuLg on both sides gives

rLgu� = DuLgru�

which is exactly what we want to show.

We see that this is an “only if" condition because we must necessarily get that the adjoint is the
inverse, which implies that Lg is an isometry.
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A.2 Proof of Theorem 2

Theorem 2. Let (M, h) be a Riemannian manifold, and G be its isometry group (or one of its

subgroups). Let X be any time-dependent vector field on M, and FX,T be the flow of X . Then X is

an G-equivariant vector field if and only if FX,T is a G-equivariant flow for any T 2 [0,+1).

Proof. G-equivariant X )G-equivariant FX,T . We invoke the following lemma from Lee [28,
Corollary 9.14]:

Lemma 1. Let F : M ! N be a diffeomorphism. If X is a smooth vector field over M and ✓ is the

flow of X, then the flow of F⇤X (F⇤ is another notation for the differential of F ) is ⌘t = F � ✓t �F�1
,

with domain Nt = F (Mt) for each t 2 R.

Examine Lg and its action on X . Since X is G-equivariant, we have for any (x, t) 2 M⇥ [0,+1),

((Lg)⇤X)(x, t) = (D
L

�1
g (x)Lg)X(L

�1
g

(x), t) = X(Lg � L�1
g

(x), t) = X(x, t)

so it follows that (Lg)⇤X = X . Applying the lemma above, we get:

F(Lg)⇤X,T = Lg � FX,T � L�1
g

and, by simplifying, we get that FX,T � Lg = Lg � FX,T , as desired.

G-equivariant X ( G-equivariant FX,T . This direction follows from the chain rule. If FX,T is
G-equivariant, then at all times we have:

(DmLg)
�
X(FX,t(m), t

�
= (DmLg)

✓
d

dt
FX,T (m)

◆
(definition)

=
d

dt
(Lg � FX,T )(m) (chain rule)

=
d

dt
FX,T (Lgm) (equivariance)

= X(Lg(FX,t(m)), t) (definition)

This concludes the proof of the backward direction.

A.3 Proof of Theorem 3

Theorem 3. Let (M, h) be a Riemannian manifold, and G be its isometry group (or one of its

subgroups). If ⇢ is a G-invariant density on M, and f is a G-equivariant diffeomorphism, then ⇢f (x)

is also G-invariant.

Proof. We wish to show ⇢f (x) is also G-invariant, i.e. ⇢f (Lgx) = ⇢f (x) for all g 2 G, x 2 M.

We first recall the definition of ⇢f :

⇢f (x) = ⇢

⇣
f
�1

(x)

⌘ �����det
@f

�1
(x)

@x

����� = ⇢

⇣
f
�1

(x)

⌘ ��det Jf�1(x)
�� .

Since f 2 C
1
(M,M) is G-equivariant, we have f � Lg = Lg � f for any g 2 G. Also, since ⇢ is

G-invariant, we have ⇢ � Lg = ⇢. Combining these properties, we see that:
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⇢f (Lgx) = ⇢f (Lgx)
| det JLg (x)|
| det JLg (x)|

=

⇢Rg�1�f (x)

| det JLg (x)|
(expanding definition of ⇢f )

=

⇢f�Rg�1 (x)

| det JLg (x)|
= ⇢

⇣
(Lg � f�1

)(x)

⌘ | det JLg�f�1(x)|
| det JLg (x)|

(G-equivariance of f)

= (⇢ � Lg � f�1
)(x)

| det JLg (f
�1

(x))Jf�1(x)|
| det JLg (x)|

(expanding Jacobian)

= (⇢ � f�1
)(x)

| det JLg (f
�1

(x))|| det Jf�1(x)|
| det JLg (x)|

(G-invariance of ⇢)

= ⇢(f
�1

(x))| det Jf�1(x)| ·
| det JLg (f

�1
(x))|

| det JLg (x)|
(rearrangement)

= ⇢f (x) ·
| det JLg (f

�1
(x))|

| det JLg (x)|
(expanding definition of ⇢f )

Now note that G is contained in the isometry group, and thus Lg is an isometry. This means
| det JLg (x)| = 1 for any x 2 M, so the right-hand side above is simply ⇢f (x), which proves the
theorem.

A.4 Proof of Theorem 4

Theorem 4. Let (M, h) be a closed Riemannian manifold. Let ⇡ be a smooth, non-vanishing

distribution over M, which will act as our target distribution. Let ⇢t be a distribution over said

manifold parameterized by a real time variable t, with ⇢0 acting as the initial distribution. Let

DKL(⇢t||⇡) denote the Kullback–Leibler divergence between distributions ⇢t and ⇡. If we choose a

g : M ! R such that

g(x) = log

✓
⇡(x)

⇢t(x)

◆
,

and if ⇢t evolves with t as the distribution of a flow according to g, it follows that

@

@t
DKL(⇢tk⇡) = �

Z

M
⇢t exp(g)krgk2 dx = �

Z

M
⇡krgk2 dx

implying convergence of ⇢t to ⇡ in KL. Moreover, the exact diffeomorphism that takes us from

⇢0 ! ⇡ is as follows. Given some initial point x 2 M, let u(t) be the solution to the initial value

problem given by:

du(t)

dt
= rg(t), u(0) = x

The desired diffeomorphism maps x to limt!1 u(t).

Proof. 1) Derivative of DKL(⇢t||⇡). We start by noting the following: by the Fokker-Planck
equation, ⇢t evolving as a flow according to g is equivalent to

@⇢t

@t
= r · (⇢trg).

Please observe that since ⇢t is defined as being a solution to the Fokker-Planck equation [39], ⇢t will
be a family of densities. In particular, the Fokker-Planck equation describes the time evolution of a
probability density function.
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Keeping Fokker-Planck in mind, we obtain the following expression for the time derivative of
DKL(⇢t||⇡):

@

@t
DKL(⇢t||⇡) =

Z
⇡

⇢t

@⇢t

@t
dx

=

Z
⇡

⇢t
r · (⇢trg) dx

=

Z  
r ·
✓
⇡

⇢t
(⇢trg)

◆
� (⇢trg) ·r · ⇡

⇢t

!
dx

=

Z ✓
r · (⇡rg)� (⇢trg) ·r ⇡

⇢t

◆
dx

= �
Z
(⇢trg) ·r ⇡

⇢t
dx,

where the final equality follows from the divergence theorem, since the integral of the divergence
over a closed manifold is 0. Now if we choose g such that:

g(x) = log

✓
⇡(x)

⇢t(x)

◆
.

Then we have:
@

@t
DKL(⇢t||⇡) = �

Z
(⇢trg) ·r exp(g) dx

= �
Z

⇢t exp(g)||rg||2 dx,

2) Proof of convergence. Consider:

@⇢t

@t
= r · (⇢trg)

where g is defined as above. Note by standard existence and uniqueness results for differential
equations on manifolds (for example, see do Carmo [11]) we have the existence of a solution, ⇢t for
all time t > 0, to this differential equation with initial value ⇢0.

Now note g, expressed as a function of ⇢t, is an invariant potential, the flow of which maps ⇢0 to
limt!1 ⇢t. By the result above, we know the right-hand-side of the equation:

@

@t
DKL(⇢t||⇡) = �

Z
⇢t exp(g)||rg||2 dx,

must approach 0 (since the KL-divergence cannot continue decreasing at any constant rate, as it
must be non-negative). The only way the right-hand-side can be 0 is when rg = 0, which can occur
only when ⇢t = ⇡. This concludes the proof of convergence of ⇢t ! ⇡ in KL.

3) Showing diffeomorphism ⇢0 ! ⇡ is well-defined. The exact diffeomorphism from ⇢ ! ⇡ is as
follows. Given some initial point x 2 supp(⇢), let u(t) be the solution to the initial value problem
given by:

du(t)

dt
= rg(t), u(0) = x

g is defined as before. Note u(t) exists and is unique by standard differential equation uniqueness
and existence results [11]. We claim the desired diffeomorphism maps x to limt!1 u(t). All that
remains is to show (a) convergence to a smooth function at the limit and (b) that equivariance of the
diffeomorphism does not break at the limit. We begin by showing this for ⇡ uniform and finish the
proof by extending to ⇡ general.
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⇡ uniform. For simplicity, we first consider the case where ⇡ is the uniform (Haar) measure. In this
case, the differential equation that ⇢ obeys reduces to the heat equation, namely:

@⇢

@t
= �⇢

(a) Please note the following: an important fact that makes harmonic analysis on compact manifolds
possible is that the spectrum of the Laplacian on any compact manifold must be discrete, i.e. its
eigenvalues are countable and tend to infinity [12]. Also, its eigenvectors must be smooth (intuitively
this says harmonic analysis is “nice" on manifolds in the same way that Fourier analysis is nice on
the unit circle).

Note also that the Laplacian is Hermitian and negative semidefinite, and moreover that the only
eigenfunction for eigenvalue 0 is the constant vector.

Both facts above imply the solution to the above differential equation will just be the sum of several
exponentially decaying (in t) terms and a constant term, given by the harmonic expansion of ⇢0.

From here, it follows that the L
2 distance between ⇢t and the constant potential is just the sum of

squares of the coefficients in front of those terms (this is simply the manifold analog of Parseval’s
theorem). However, all of those terms are decaying exponentially, so it follows that ⇢t converges in
the L

2 norm to the constant potential7.

(b) Additionally, note that if the initialization ⇢0 is G-invariant, then it is fairly easy to see that all the
terms in its harmonic expansion must also be G-invariant. As a result, ⇢ must be G-invariant at all
times, and must remain G-invariant in the limit. Similarly, its flow must be G-equivariant.

⇡ general. We have shown the desired properties for the case of ⇡ uniform. However, the general
case is entirely analogous, as the modified operator (involving ⇡) has all the same relevant properties
as the Laplacian (it is just generally better known that the Laplacian has these properties).

A.5 Conjugation by SU(n) is an Isometry

We now prove a lemma that shows that the group action of conjugation by SU(n) is an isometry
subgroup. This implies that Theorems 1 through 3 above can be specialized to the setting of SU(n).
Lemma 2. Let G be the group action of conjugation by SU(n), and let each Lg represent the

corresponding action of conjugation by g 2 SU(n). Then G is an isometry subgroup.

Proof. We first show that the matrix conjugation action of SU(n) is unitary. For R,X 2 SU(n),
note that the action of conjugation is given by vec(RXR

�1
) = (R

�T ⌦ R)vec(X). We have that
R

�T ⌦R is unitary because:

(R
�T ⌦R)

⇤
(R

�T ⌦R)

= (R�1 ⌦R
⇤
)(R

�T ⌦R) (conjugate transposes distribute over ⌦)

= (R�1R
�T

)⌦ (R
⇤
R) (mixed-product property of ⌦)

= (R
T
R

�T
)⌦ (I) = (I)⌦ (I) = In2⇥n2 (simplification)

Now choose an orthonormal frame X1, . . . , Xm of TM. Note that TM locally consists of SU(n)

shifts of the algebra, which itself consists of traceless skew-Hermitian matrices [19]. We show G is
an isometry subgroup by noting that when it acts on the frame, the resulting frame is orthonormal.
Let g 2 G, and consider the result of action of g on the frame, namely LgX1, . . . , LgXm. Then we
have:

(LgXi)
⇤
(LgXj) = X

⇤
i
R

⇤
g
LgXj = X

⇤
i
Xj .

Note for i 6= j, we have X
⇤
i
Xj = 0 and for i = j we see X

⇤
i
Xi = 1. Hence the resulting frame is

orthonormal and G is an isometry subgroup.
7Please note that if we wanted some other type of convergence, e.g. pointwise convergence, we could get

this as well using a similar argument, by analyzing the decay properties of the eigenvalues/eigenvectors of the
Laplacian.
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B Manifold Details for the Special Unitary Group SU(n)

In this section, we give a basic introduction to the special unitary group SU(n) and relevant properties.

Definition. The special unitary group SU(n) consists of all n-by-n unitary matrices U (i.e. U⇤
U =

UU
⇤
= 1 for U⇤ the conjugate transpose of U ) that have determinant det(U) = 1.

Note that SU(n) is a smooth manifold; in particular, it has Lie structure [19]. Moreover, the tangent
space at the identity (i.e. the Lie algebra) consists of traceless skew-Hermitian matrices [19]. The
Riemannian metric is tr(A>

B).

B.1 Haar Measure on SU(n)

Haar Measure. Haar measures are generic constructs of measures on topological groups G that
are invariant under group operation. For example, the Lie group G = SU(n) has Haar measure
µH : SU(n) ! R, which is defined as the unique measure such that for any U 2 SU(n), we have

µH(V U) = µH(UW ) = µH(U)

for all V,W 2 SU(n) and µH(G) = 1.

A topological group G together with its unique Haar measure defines a probability space on the
group. This gives one natural way of defining probability distributions on the group, explaining its
importance in our construction of probability distributions on Lie groups, specifically SU(n).

To make the above Haar measure definition more concrete, we note from Bump [5, Proposition 18.4]
that we can transform an integral over SU(n) with respect to the Haar measure into integrating over
the corresponding diagonal matrices under eigendecomposition:

Z

SU(n)

fdµH =
1

n!

Z

T

f(diag(�1, . . . ,�n))

Y

i<j

|�i � �j |d�.

Thus, we can think of the Haar measure as inducing the change of variables with volume element

Haar(x) =

Y

i<j

|�i(x)� �j(x)|2.

To sample uniformly from the Haar measure, we just need to ensure that we are sampling each
x 2 SU(n) with probability proportional to Haar(x).

Sampling from the Haar Prior. We use Algorithm 1 [32] for generating a sample uniformly from
the Haar prior on SU(n):

Algorithm 1 Sampling from the Haar Prior on SU(n)

Sample Z 2 Cn⇥n where each entry Zij = Z
(1)
ij

+ iZ
(2)
ij

for independent random variables
Z

(1)
ij

, Z
(2)
ij

⇠ N (0, 1/2).
Let Z = QR be the QR Factorization of Z.
Let ⇤ = diag(

R11
|R11| , . . . ,

Rnn
|Rnn| ).

Output Q0
= Q⇤ as distributed with Haar measure.

B.2 Eigendecomposition on SU(n)

One main step in the invariant potential computation for SU(n) is to derive formulas for the eigende-
composition of U 2 SU(n) as well as formulas for double differentiation through the eigendecompo-
sition (recall that we must differentiate the SU(n)-invariant potential � to get SU(n)-equivariant
vector field r� and another time to produce gradients to optimize this). During the initial submission
of our paper, a general implementation of this for complex matrices did not exist. Furthermore, while
various specialized numerical techniques have been developed [41] to perform this computation, the
implementation of these was unnecessary for our test cases of n = 2, 3. Instead, we derived explicit
formulas for the eigenvalues based on finding roots of the characteristic polynomials (given by root
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formulas for quadratic/cubic equations). Note that this procedure does not scale to higher dimensions
since there does not exist a closed form solution for n > 4 [1]. However, concurrently released
versions of PyTorch [36] introduced twice differentiable complex eigendecomposition, allowing one
to easily extend our methods to higher dimensions.

B.2.1 Explicit Formula for SU(2)

We now derive an explicit eigenvalue formula for the U 2 SU(2) case. Let us denote U =
a+ bi �c+ di

c+ di a� bi

�
for a, b, c, d 2 R such that a2 + b

2
+ c

2
+ d

2
= 1 as an element of SU(2); then

the characteristic polynomial of this matrix is given by
det(�I�U) = (��(a+bi))(��(a�bi))+(c+di)(c�di) = (a��)

2
+b

2
+c

2
+d

2
= �

2�2a�+1

and thus its eigenvalues are given by

�1 = a+ i

p
1� a2 = a+ i

p
b2 + c2 + d2

�2 = a� i

p
1� a2 = a� i

p
b2 + c2 + d2

Remark. We note that there is a natural isomorphism � : S
3 ! SU(2), given by

�(a, b, c, d) =


a+ bi �c+ di

c+ di a� bi

�

We can exploit this isomorphism by learning a flow over S
3 with a regular manifold flow like

NMODE [29] and mapping it to a flow over SU(2). This is also an acceptable way to obtain stable
density learning over SU(2).

B.2.2 Explicit Formula for SU(3)

We now derive an explicit eigenvalue formula for the U 2 SU(3) case. For the case of U 2 SU(3),
we can compute the characteristic polynomial as

det(�I � U) = det

0

B@

2

4
�� U11 �U12 �U13

�U21 �� U22 �U23

�U31 �U32 �� U33

3

5

1

CA

= �
3
+ c2�

2
+ c1�+ c0

where
c2 = �(U11 + U22 + U33)

c1 = U11U22 + U22U33 + U33U11 � U12U21 � U23U32 � U13U31

c0 = �(U12U23U31 + U13U21U32 + U11U22U33 � U12U21U33 � U13U31U22 � U23U32U11)

Now to solve the equation
�
3
+ c2�

2
+ c1�+ c0 = 0

we first transform it into a depressed cubic
t
3
+ pt+ q = 0

where we make the transformation
t = x+

c2

3

p =
3c1 � c

2
2

3

q =
2c

3
2 � 9c2c1 + 27c0

27

Now from Cardano’s formula, we have the cubic roots of the depressed cubic given by

�1,2,3 =
3

s

�q

2
+

r
q2

4
+

p3

27
+

3

s

�q

2
�
r

q2

4
+

p3

27

where the two cubic roots in the above equation are picked such that they multiply to �p

3 .
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C Experimental Details for Learning Equivariant Flows on SU(n)

This section presents some additional details regarding the experiments that learn invariant densities
on SU(n) in Section 6.

For the evaluation, we found that ESS (effective sample size) was not a good metric to compare
learned densities in this context. In particular, we noticed that several degenerate (mode collapsed)
densities were able to attain near perfect ESS while completely failing on matching the target
distribution geometry. Given that Boyda et al. [3] did not release code and reported ESS only for
certain test cases, we decided to exclude ESS as a metric from our paper and instead relied directly
on distribution geometry visualization.

C.1 Training Details

Our DeepSet network [45] consists of a feature extractor and regressor. The feature extractor is
a 1-layer tanh network with 32 hidden channels. We concatenate the time component to the sum
component of the feature extractor before feeding the resulting 33 size tensor into a 1-layer tanh
regressor network.

To train our flows, we minimize the KL divergence between our model distribution and the target
distribution [34], as is done in Boyda et al. [3]. In a training iteration, we draw a batch of samples
uniformly from SU(n), map them through our flow, and compute the gradients with respect to the
batch KL divergence between our model probabilities and the target density probabilities. We use
the Adam stochastic optimizer for gradient-based optimization [23]. The graph shown in Figure 2
was trained for 300 iterations with a batch size of 8192 and weight decay setting of 0.01; the starting
learning rate for Adam was 0.01, and a multi-step learning rate schedule that decreased the learning
rate by a factor of 10 every 100 epochs was used. We use PyTorch to implement our models and
run experiments [36]. Experiments are run on one CPU and/or GPU at a time, where we use one
NVIDIA RTX 2080Ti GPU with 11 GB of GPU RAM.

We note that during our implementation, there are specific parts of the code that involved careful
tuning for effective training. Specifically, we perturbed the results of certain functions and gradients
by small constants to ensure numerical stability of the training process. We also spent some time
tuning the learning rate and some ODE settings. More details can be found in the accompanying
Github code.

C.2 Conjugation-Invariant Target Distributions

Boyda et al. [3] defined a family of matrix-conjugation-invariant densities on SU(n) as:

ptoy(U) =
1

Z
e

�
n Re tr(

P
k ckU

k
)
,

which is parameterized by scalars ck and �. The normalizing constant Z is chosen to ensure that ptoy
is a valid probability density with respect to the Haar measure.

More specifically, the experiments of Boyda et al. [3] focus on learning to sample from the distribution
with the above density with three components, in the following form:

ptoy(U) =
1

Z
e

�
n Re tr(c1U+c2U

2+c3U
3
)

We tested on three instances of the density, also used in Boyda et al. [3]:

set i c1 c2 c3 �

1 0.98 -0.63 -0.21 9
2 0.17 -0.65 1.22 9
3 1 0 0 9

Table 1: Sets of parameters c1, c2, c3 and � used in the SU(2) and SU(3) experiments

Note that the rows of Figure 2 correspond to coefficient sets 3, 2, 1, given in order from top to bottom.
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C.2.1 Case for SU(2)

In the case of n = 2, we can represent the eigenvalues of a matrix U 2 SU(2) in the form e
i✓
, e

�i✓

for some angle ✓ 2 [0,⇡]. We then have tr(U) = e
i✓
+ e

�i✓
= 2 cos(✓), so above density takes the

form:
ptoy(U) =

1

Z
e
c1� cos ✓ · ec2� cos(2✓) · ec3� cos(3✓)

.

C.2.2 Case for SU(3)

In the case of n = 3, we can represent the eigenvalues of U 2 SU(3) in the form e
i✓1 , e

i✓2 , e
i(�✓1�✓2).

Thus, we have
Re tr(U) =

1

3

�
cos(✓1) + cos(✓2) + cos(�✓1 � ✓2)

�

and thus

ptoy(U) =
1

Z
e

c1�
3 (cos(✓1)+cos(✓2)+cos(�✓1�✓2))

· e
c2�
3 (cos(2✓1)+cos(2✓2)+cos(�2✓1�2✓2))

· e
c3�
3 (cos(3✓1)+cos(3✓2)+cos(�3✓1�3✓2))

D Learning Continuous Normalizing Flows over Manifolds with Boundary

Motivation. Recall that learning a continuous normalizing flow over a manifold with boundary is not
principled, and is rather numerically unstable, since probability mass can “flow out" on the boundary.
In particular we noted in Section 1 that this was a major problem for the quotient manifold approach
to learning invariant densities, since the quotient frequently has a nonempty boundary.

Our Approach. Our method enables learning flows over manifolds with boundary. One need only
represent the manifold with boundary as a quotient of a larger manifold without boundary and
learn with an invariant potential function that ensures the density descends smoothly from the larger
manifold without boundary to the manifold with boundary.

Example. For instance, one can use our method to construct a flow over an interval. Notice that
we can view an interval I = [0, 1] as a manifold with boundary. The boundary consists of the two
endpoints, {0, 1}. To use our method to learn a flow over this interval, we need only represent [0, 1] as
the quotient of S2 by the isotropy group at the north pole, then apply the flow construction described
in Section 5.2.1. The learned density assigns the same value to all points at the same latitude: clearly,
this descends to a density over [0, 1] by taking one representative point from each latitude circle.
Notice that this works more generally: we can represent various manifolds with boundary as quotients
of larger manifolds by isotropy groups. In particular, one can imagine using this method to replace
neural spline flows [13], which carefully constructs noncontinuous normalizing flows over intervals.
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