
INPC: Implicit Neural Point Clouds for Radiance Field Rendering

Supplementary Material

Outline

To facilitate navigation of this document, we provide an
overview of its content:

• Sec. 1 details our implementation to ensure reproducibility.
• Sec. 2 discusses additional ablations for further insights

w.r.t. our algorithmic and architectural design choices.
• Sec. 3 presents per-scene metrics and visual comparisons.
• Sec. 4 describes our perceptual experiment in detail.

1. Implementation

We believe that the flexibility of our implicit point cloud
could prove to be useful for future work. Here, we try to
support such work by providing all details of our implemen-
tation.

1.1. Overview

We implement our method using PyTorch and create re-
usable PyTorch extensions using C++/CUDA for our dif-
ferentiable rasterization module and multiple – otherwise
slightly slower – stages of our sampling process. Further-
more, we use multiple libraries that provide efficient imple-
mentations for parts of our pipeline. For the multi-resolution
hash grid as well as the background MLP, we use the im-
plementation provided with the tiny-cuda-nn (TCNN) frame-
work [16]. As our optimizer, we use the fused ADAM [11]
implementation provided by the NVIDIA Apex library. To
reduce computation time of the CNN, we also make use
of PyTorch’s automatic mixed precision package and scale
FP16 gradients by a fixed factor of 128 during the backward
pass.

1.2. Pre-Processing Details

Lens Distortion. For the Tanks and Temples dataset [13],
the original images are subject to slight lens distortions.
While our rendering supports radial and tangential distortion,
we use COLMAP [20, 21] to extract undistorted images
after camera calibration to ensure fair comparison against
the selected baselines. Specifically, 3DGS [10] only works
with a pinhole camera model. Note that the undistorted
images are used by all of the compared methods, including
INPC.
Scene Normalization. We follow Barron et al. [2] and apply
a world-space transformation to all camera poses so that they
fit inside a cube [−1, 1]3. We apply the same transformation
to the SfM point cloud if it is used. For all scenes, we set the
values for near and far plane to 0.01 and 100 respectively.

1.3. Optimization Details

For ADAM, we use β1 = 0.9, β2 = 0.99, ϵ = 10−15, and
disable weight decay. The learning rates for all parameters
are exponentially decayed during the optimization. For the
hash grid and MLP parameters, we decay the learning rate
from 1e−2 to 3e−4, while CNN parameter learning rates
are decayed from 3e−4 to 5e−5.

When using differentiable tone mapping as proposed by
Rückert et al. [19], we follow the authors and only activate
the sub-modules for exposure and camera response. Similar
to Rückert et al. [19], these parameters are updated with a
fixed learning rate of 5e−4 and 1e−3 respectively. However,
we use a warm-up strategy [1] where the learning rate cosine-
delayed by multiplying with a factor between 0.01 and 1
during the first 5, 000 iterations. This is slightly different
from the original version that simply disabled optimization
of tone mapping parameters during the first few iterations.

1.4. Point Probability Octree Details

Initialization. For each scene, we define bmin, bmax ∈ R3

as the axis-aligned bounding box of the SfM point cloud
and enlarge the result by 10% for increased robustness. If
no SfM point cloud is available, we instead use the smallest
axis-aligned box enclosing the viewing frustra of all train-
ing cameras. Given a desired initial resolution R and the
aforementioned bounding box of the scene, we initialize our
octree-based data structure as a regular grid of cube-shaped
voxels. These 3D voxels are the initial leaf nodes of P .
For each leaf node, we store its center ci ∈ R3 in world
space, current subdivision level li ∈ N0, sampling proba-
bility pi ∈ [0, 1], and subdivision ”probability” qi ∈ [0, 1].
We limit values of R to powers of 2 and can thus initialize
the initial subdivision level as log2(N) for all leaf nodes.
To incorporate a point cloud I as a prior, we modify ini-
tial sampling probability: Assuming |Ii| is the number of
points inside the volume of the i-th leaf node and Q is the
0.95-quantile of these point counts, we compute the initial
probability as |Ii|Q , clipping values with 0.1 and 1.0 for in-
creased robustness.
Ensuring Sample Count. For our viewpoint-specific sam-
pling, a major difficulty comes from dealing with those
leaves whose volume intersects the faces of the viewing
frustum. For these, it is possible that positions generated by
our sampling scheme lie outside the frustum. To this end,
we re-sample until the desired number of samples is reached.
Note that our re-weighting scheme for sampling probabilities
does not account for partial visibility of voxels. This means
simply placing points inside the visible volume of each leaf

would slightly bias sampling towards partially visible leaves.
We avoid this by re-sampling the viewpoint-specific proba-
bility distribution for affected samples repeatedly until all
generated samples are visible. Notably, our multisampling
approach allows us to omit this step during inference, which
speeds up sampling.
Depth Calculation. For our view-specific re-weighting
scheme, we look to obtain a view-specific depth value di ∈
[0, 1] for each leaf node. To this end, we adjust the distance
of each leaf center to the image plane, i.e., the view-space
depth value zview:

di = max (
|zview − near|

far
, τd). (1)

Note that |zview − near| accounts for the fact that zview may
be smaller than ”near” for partially visible leaves (see the
previous paragraph). To prevent extreme cases of oversam-
pling close to the camera, we use a threshold τd = 10−8 in
all experiments.

1.5. TCNN Details

For the multi-resolution hash grid and the accompanying
MLP, we use the implementation from the TCNN frame-
work [16]. We tested different configurations using those
employed by prior works [3, 17, 26] as a starting point. Our
resulting configuration is shown in Listing 1. It is similar to
the one used by Zip-NeRF [3], but we increase the hashmap
size from 221 to 223 (see Sec. 2 for ablations). For the back-
ground MLP we also use the fully-fused implementation
from the TCNN framework [16]. It has four hidden lay-
ers with 128 neurons each and uses ReLU activations. For
each pixel, we encode its normalized viewing direction using
spherical harmonics of degree three before inputting into the
MLP. Note that in TCNN this means using 'degree': 4
and converting input directions to [0, 1]3.

1.6. Bilinear Splatting Details

Prior work on point rasterization has demonstrated that soft-
ware implementations are a) very fast [22, 23] compared to

Listing 1 Hash grid configuration for the tiny-cuda-nn
implementation [16].
encoding_config = {

'otype': 'Grid',
'type': 'Hash',
'n_levels': 10,
'n_features_per_level': 4,
'log2_hashmap_size': 23,
'base_resolution': 16,
'per_level_scale': 2.0,
'interpolation': 'Linear'

}
network_config = {

'otype': 'FullyFusedMLP',
'activation': 'ReLU',
'output_activation': 'None',
'n_neurons': 64,
'n_hidden_layers': 1

}

hardware implementations, e.g., GL_POINTS, and b) allow
for backward pass implementations suited for gradient-based
optimization [14, 19]. Motivated by these insights, we set
out to design our own rasterization module in an effort to
adapt it to the needs of our rendering pipeline.

Part of why MLP-based radiance fields works so well
is the fully differentiable color accumulation of multiple
samples for a given pixel. While NeRF uses a volume
rendering-based formulation, recent successful point-based
methods [7, 10] use conventional α-blending, which is sim-
ilarly favorable for gradient-based optimization. We deem
the extra cost of sorting points worthy with respect to to the
superior optimization properties.

The second consideration is the selection of points
blended into each pixel. Typically, each point is projected
onto a single pixel using the extrinsic and intrinsic camera
matrices. Using this approach, the unstructured and discon-
nected nature of point clouds may cause large holes in the
resulting image. To this end, we follow the common practice
of optimizing a hole-filling CNN alongside the rest of our
model, which helps a great deal but causes other downstream
problems such as temporal instabilities. However, other ap-
proaches for addressing the issue exist. Among these, splat-
ting is a well-established technique in rasterization-based
rendering where the same point may influence multiple pix-
els at once. Furthermore, splatting ameliorates the problems
arising from the need of discrete pixel coordinates for draw-
ing each point. While, mathematically speaking, a point is
always projected onto a single pixel, giving the same weight
to points projected near pixel boundaries and those projected
into the center of a pixel can be problematic for gradient-
based optimization. We therefore splat each point into the
four closest pixels and achieve this by downweighting its
opacity using bilinear interpolation before blending it into
each pixel (see main paper). During α-blending, we stop
accumulation for a pixel once the remaining transmittance
falls below 10−4. The full algorithm, which we implement in
CUDA to achieve accelerated rendering times, can be written
as shown in Algorithm 1. We use the NVIDIA CUB library
for the exclusive sum as well as the global radix sorting of
key/value pairs. As we identify global memory accesses to

Algorithm 1 GPU rasterization with bilinear splatting and
α-blending
Input: C: Camera model
Input: P,A, F : Point positions, opacities, and features
Output: I: Image
1: function RASTERIZE(C,P,A, F)
2: P ′ ← PROJECTANDCULL(P,C)
3: A′, K,N ← BILINEARSPLATTING(P ′, A) ▷ Splat α, keys, counts
4: L← EXCLUSIVESUM(N) ▷ Splat indices
5: RADIXSORTPAIRS(K,L) ▷ Global sort
6: I ← BLENDSORTEDSPLATS(A′, F, L,N) ▷ Per-pixel α-blending
7: return I
8: end function

be the main performance bottleneck for our blending ker-
nel, we implement it using CUDA’s warp-level primitives
distributing the workload for each pixel over a full warp of
32 threads. The blending weight computation required for
updating P as well as the spherical harmonics computations
are fused into this pipeline. During optimization, we store
the bilinear interpolation weights, per-pixel point counts, and
sorted key/index buffers for the backward pass. To compute
per-splat gradients we process them in the same order as in
the forward pass. We obtain a per-point gradient by com-
bining its four splat gradients in a weighted sum according
to the respective bilinear interpolation weights, i.e., the an-
alytical derivative of the bilinear splatting process. For the
probability field updates, we also need to combine per-splat
blending weights of each point. Interestingly, we observe
that the use of a weighted sum according to the respective
bilinear interpolation weights outperforms the theoretically
correct approach of a simple sum in all our experiments. We
believe this is because the weighted sum causes the resulting
per-point blending weight to more closely resemble the ex-
pected visibility of future samples from the leaf from which
the point was sampled.

1.7. CNN Details

For the rendering network, we use a standard three-layer
U-Net architecture with 64 initial filters, GELU activations,
average pooling for downsampling, and bilinear interpolation
followed by a point-wise convolution for upsampling. One
important change is the introduction of a single residual
block based on Fast Fourier Convolution (FFC) [5]. We use
the authors’ implementation with αin, αout = 0.75 and no
further modifications. To avoid having to crop or pad when
concatenating tensors for the employed skip-connections in
the expansive path of the U-Net, we pad the target width
and height to a multiple of 2L−1, where L is the number of
layers in the U-Net, before initiating our rendering pipeline.
Note that this requires adjusting the principal point to allow
for renderings that – after removing the padded pixels – can
properly be compared to ground truth images for loss or
quality metric computation.

2. Additional Ablations
In Tab. 1, we show additional model ablations computed
by running various versions of our 8M configuration on the
five outdoor scenes from the Mip-NeRF360 dataset [2]. For
all configurations, we also include model size as well as
optimization time and inference frame rate measured on the
Bicycle scene (1237× 822 pixels). To avoid any confusion,
we want to mention that we re-computed the results of the
baseline configuration Ours (8M) for the ablation studies.
As our method produces marginally different results in every
run, the results are not exactly the same as in Tab. 2. This
also applies to the corresponding tables from the main pa-

Configuration LPIPS↓ SSIM↑ PSNR↑ Train Render Size
(hrs)↓ (fps)↑ (GB)↓

A) No D-SSIM Loss 0.204 0.729 25.27 4.24 9.8 1.1
B) No VGG Loss 0.238 0.754 25.29 3.43 9.8 1.1
C) No Weight Decay 0.210 0.744 25.22 3.69 9.8 1.1
D) No Subdivision 0.508 0.406 19.15 4.07 9.9 0.88
E) No Bilinear Splatting 0.243 0.708 24.36 4.14 11.7 1.1
F) No Multisampling 0.201 0.740 25.02 4.25 26.3 1.1
G) No SfM Prior 0.197 0.753 25.29 4.25 9.8 1.1
H) No Background Model 0.197 0.752 25.28 4.24 9.9 1.1
I) No FFC Block 0.207 0.749 25.32 4.15 10.0 1.1
J) No Post-Processing 0.277 0.718 24.32 4.05 5.6 1.1

P : No Viewpoint Bias 0.328 0.618 23.23 3.83 10.1 1.0
P : No Depth Re-weighting 0.226 0.721 24.72 4.25 9.8 1.1
P : di → d2

i 0.210 0.740 25.04 4.25 9.8 1.1
P : No Size Re-weighting 0.198 0.753 25.27 4.25 9.8 1.1
P : λl = 2 0.363 0.557 22.01 4.25 9.8 1.1
A: No Space Contraction 0.242 0.702 24.59 4.45 10.2 1.1
A: Hashmap Size 221 0.203 0.750 25.23 3.57 10.6 0.52
A: Hashmap Size 222 0.201 0.751 25.34 3.76 10.4 0.73
A: No View-Dependence 0.205 0.743 24.80 4.13 11.6 1.1
A: SH Degree 1 0.196 0.753 25.32 4.16 10.4 1.1
A: 3 SG Lobes 0.197 0.753 25.26 4.58 8.2 1.1
A: 4 SG Lobes 0.197 0.755 25.26 4.85 7.8 1.1
A: 1 ASG Lobe 0.200 0.751 25.16 4.69 8.4 1.1
U-Net: 32 Initial Filters 0.206 0.750 25.23 3.84 10.6 1.1
U-Net: 2 Layers 0.207 0.745 24.88 4.23 9.8 1.1
Ours (4M) 0.228 0.733 24.93 3.61 17.5 1.1

Ours (8M) 0.192 0.761 25.53 4.25 9.8 1.1

Table 1. Model ablations computed on the five Mip-NeRF360
outdoor scenes.

per. The reason for these slightly different results lies in
the fact that the PyTorch modules we use for the CNN use
fast implementations provided by the CUDA Deep Neural
Network (cuDNN) API. For floating point numbers, apply-
ing associative operations in different order might slightly
change the result. Many cuDNN kernels do not ensure iden-
tical ordering of operations for every kernel launch to obtain
faster computation times. Therefore, the slight differences
in results can not be prevented by, e.g., using a fixed random
seed – which we are doing anyways.

Viewpoint-Specific Sampling. We show the impact of
omitting/changing parts of our view-specific re-weighting
scheme used when sampling our point probability octree P .
Without any re-weighting, i.e., sampling the whole scene for
every viewpoint, we observe a significant drop in quality of
the reconstruction. We further observe that the depth term
1/di is more important than the size term 1/2li·λl . While in-
tuition may suggest that the depth term should be squared
for a perspective camera model to not overemphasize on the
background, we show that this leads to worse results. This is
caused by the use of a CNN for hole-filling, as it can easily
fill slightly larger holes close to the camera but may not
correctly produce clean background with less samples. As a
result, placing more samples in the background is beneficial
for our method. Along the same lines, we expected λl = 2
to work best, as it most closely resembles the relative size
of leaves when projected onto the 2D image plane. How-

ever, this performs much worse than using λl = 0.5, which
we think is due to the fact that for better observed regions
leaves are more likely to get subdivided. Thus, overempha-
sizing smaller leaves leads to more samples being placed
into well-reconstructed areas, which improves results.

Appearance Field. Our appearance field A requires query-
ing with positions in [0, 1]3, for which a employ spherical
contraction [2]. If we instead use the bounding box of P for
the normalization, we observe a less detailed reconstruction
of the well-observed foreground. We further show that using
smaller hashmaps for the multi-resolution hash grid has a
modest impact on speed and quality but a major impact on
model size. Note that the impact on speed mostly depends
on the amount of available L2 cache on the used GPU, which
was extensively discussed by Müller et al. [17]

View-Dependence. We also analyze different representa-
tions for capturing view-dependent effects. Not modeling
view-dependence at all produces the worst results and using
one spherical harmonics (SH) degree less impacts quality
only on a few scenes. Alternatives to SH such as spherical
Gaussians (SG) [26, 27] and anisotropic spherical Gaussians
(ASG) [25] perform worse in our tests. For SG, we encode
the lobe width inside the length of the mean vector, which
results in 25 and 32 parameters per point with three and four
lobes respectively. For ASG, we use a 6D feature vector
representing a rotation matrix [29] for each lobe and use the
basis vectors of this matrix to model the anisotropic extent.
This results in 15 parameters per point for a configuration
with a single ASG lobe. We would like to emphasize that we
find the ASG representation in particular much more elegant
and compact as it uses more than 2× less features per point
and is theoretically less likely to overfit to the training views.
However, we observe that it is much harder to optimize using
gradient descent compared to SH.

U-Net. Lastly, we analyze the impact of using smaller U-
Net configurations w.r.t. speed and image quality. Using less
initial filters considerably speeds up training and rendering at
the cost of image quality. In contrast, using only two layers
barely has any impact on speed but reduces image quality
significantly.

Other. We show effect of using even less samples (4M)
and observe much faster training and rendering with only
slightly reduced image quality. Here, we also want to high-
light that for ablation J, which uses no post-processing but
16M samples instead, the rendering speed is lower than with
8M samples and post-processing enabled. Reducing the
number of samples to 8M results in 2.51 hours training time
and 10.9 fps. In combination, these two observations sug-
gest finding a method for hole-filling that works with fewer
samples without requiring a CNN could lead to a remarkably
powerful point-based representation in the future.

3. Per-Scene Results

Mip-NeRF360. [2] We show per-scene image quality met-
rics and visual comparisons in Tab. 2 and Fig. 1 respectively.
We follow the common practice of using 4× downsampling
for the five outdoor scenes and 2× downsampling for the four
indoor scenes. Consequently, reconstructions and evaluation
use images with roughly one megapixel (MP) resolution for
outdoor and 1.5 MP resolution for indoor scenes. Impor-
tantly, we directly use the downsampled images provided
with the dataset as we observe that these are of consider-
ably higher quality compared to the output of commonly
used downsampling implementations, e.g., those provided
by OpenCV, PIL, and PyTorch/Torchvision. In our tests, the
used downsampling algorithm had a non-negligible influence
on results. When using the downsampled images Barron et al.
[2] obtained using ImageMagick, we notice more accurate
recovery of fine details but up to 0.5 db lower PSNR values.
Intuitively this makes sense: A better downsampling algo-
rithm leads to more details that can be recovered but also
more details that must be recovered to achieve good metrics.
However, we suggest that a detailed study on the influence
of using different downsampling algorithms in the context
of novel view synthesis could be interesting.
Tanks and Temples. [13] We show per-scene image quality
metrics and visual comparisons in Tab. 3 and Fig. 2 respec-
tively. We evaluate on all eight scenes of the intermediate
set and use no downsampling, which results in images that
have a resolution of roughly two MP. As the Tanks and
Temples dataset does not include camera parameters, we
estimate them using COLMAP [20, 21] and use the resulting
calibration for all methods/experiments.
About LPIPS and the VGG Loss. The most commonly
used version of the Learned Perceptual Image Patch Simi-
larity (LPIPS) [28] metric uses a VGG-16 [24] architecture,
where 16 quantifies the number of convolution layers in the
employed neural network. When inspecting our loss func-
tion in combination with our quantitative evaluation, it is
easy to assume that our LPIPS results are so good specifi-
cally because we use a VGG-based loss term (LVGG). We
highlight that – similar to prior works [7, 15, 19] – our VGG
loss uses the VGG-19 [24] architecture. This is a key dif-
ference compared to both the original version of the loss
by Johnson et al. [8] and the used LPIPS metric. Our ab-
lation study (see Tab. 1) clearly shows that using the VGG
loss improves results w.r.t. all three reported quality met-
rics. To further validate that exploitation of similarities in
the VGG-16 and VGG-19 architectures is not a deciding
factor for our improved results, we include all three available
versions of LPIPS (LPIPSvgg/LPIPSalex/LPIPSsqueeze) in the
per-scene result tables (Tab. 2 and 3). Our method achieves
the best average performance for all versions of LPIPS on
both datasets.

LPIPSvgg↓ on Mip-NeRF360 [2]
Method Bicycle Flowers Garden Stump Treehill Bonsai Counter Kitchen Room Average

Instant-NGP [17] 0.478 0.466 0.289 0.474 0.496 0.258 0.368 0.249 0.340 0.380
ADOP [19] 0.250 0.361 0.203 0.305 0.354 0.223 0.264 0.221 0.241 0.259
TRIPS [7] 0.223 0.318 0.183 0.309 0.308 0.153 0.206 0.154 0.197 0.213
3DGS [10] 0.229 0.366 0.118 0.244 0.367 0.253 0.262 0.158 0.289 0.254
Zip-NeRF [3] 0.228 0.309 0.127 0.236 0.281 0.196 0.223 0.134 0.238 0.219
Ours 0.161 0.212 0.086 0.173 0.215 0.137 0.184 0.123 0.187 0.164

Ours (16M) 0.171 0.220 0.090 0.190 0.226 0.149 0.187 0.126 0.195 0.173
Ours (8M) 0.183 0.246 0.098 0.210 0.242 0.163 0.212 0.134 0.202 0.188
Ours (pre-ex.) 0.220 0.254 0.113 0.278 0.276 0.156 0.224 0.137 0.200 0.207

SSIM↑ on Mip-NeRF360 [2]
Method Bicycle Flowers Garden Stump Treehill Bonsai Counter Kitchen Room Average

Instant-NGP [17] 0.513 0.485 0.706 0.591 0.544 0.904 0.816 0.856 0.870 0.698
ADOP [19] 0.665 0.494 0.741 0.666 0.556 0.818 0.769 0.737 0.839 0.723
TRIPS [7] 0.704 0.502 0.773 0.681 0.591 0.899 0.845 0.850 0.883 0.778
3DGS [10] 0.770 0.602 0.869 0.774 0.637 0.938 0.905 0.921 0.913 0.814
Zip-NeRF [3] 0.772 0.637 0.863 0.788 0.674 0.952 0.905 0.929 0.929 0.828
Ours 0.805 0.668 0.886 0.826 0.702 0.954 0.912 0.932 0.932 0.847

Ours (16M) 0.796 0.655 0.884 0.811 0.695 0.950 0.912 0.933 0.930 0.841
Ours (8M) 0.783 0.645 0.876 0.790 0.688 0.942 0.896 0.927 0.926 0.830
Ours (pre-ex.) 0.731 0.617 0.852 0.711 0.645 0.941 0.880 0.923 0.920 0.802

PSNR↑ on Mip-NeRF360 [2]
Method Bicycle Flowers Garden Stump Treehill Bonsai Counter Kitchen Room Average

Instant-NGP [17] 22.21 20.68 25.14 23.47 22.42 30.69 26.69 29.48 29.71 25.61
ADOP [19] 22.60 19.68 24.85 24.18 20.99 24.33 23.09 23.61 25.97 23.54
TRIPS [7] 23.47 19.44 25.38 24.17 22.04 28.71 27.00 27.66 29.07 25.94
3DGS [10] 25.25 21.52 27.41 26.55 22.49 31.98 28.69 30.32 30.63 27.20
Zip-NeRF [3] 25.85 22.33 28.22 27.35 23.95 34.79 29.12 32.36 33.04 28.56
Ours 26.26 22.41 28.52 27.71 24.16 33.89 29.38 31.81 32.89 28.56

Ours (16M) 26.09 22.19 28.34 27.44 24.20 33.29 29.20 31.61 32.91 28.36
Ours (8M) 25.77 22.12 28.09 26.85 24.05 31.90 28.39 30.92 32.36 27.83
Ours (pre-ex.) 24.45 21.60 26.78 25.35 23.41 31.72 26.69 30.47 31.22 26.85

LPIPSalex↓ on Mip-NeRF360 [2]
Method Bicycle Flowers Garden Stump Treehill Bonsai Counter Kitchen Room Average

Instant-NGP [17] 0.389 0.385 0.221 0.342 0.468 0.123 0.244 0.137 0.206 0.279
ADOP [19] 0.166 0.280 0.132 0.208 0.278 0.129 0.177 0.151 0.164 0.177
TRIPS [7] 0.138 0.218 0.103 0.205 0.218 0.073 0.124 0.102 0.123 0.133
3DGS [10] 0.165 0.340 0.074 0.151 0.318 0.132 0.161 0.099 0.170 0.179
Zip-NeRF [3] 0.161 0.213 0.085 0.129 0.223 0.092 0.129 0.082 0.133 0.139
Ours 0.124 0.169 0.057 0.112 0.163 0.070 0.123 0.083 0.116 0.113

Ours (16M) 0.137 0.183 0.060 0.131 0.173 0.080 0.125 0.087 0.120 0.122
Ours (8M) 0.152 0.213 0.067 0.161 0.214 0.098 0.153 0.096 0.129 0.143
Ours (pre-ex.) 0.170 0.207 0.078 0.192 0.232 0.090 0.156 0.095 0.128 0.150

LPIPSsqueeze↓ on Mip-NeRF360 [2]
Method Bicycle Flowers Garden Stump Treehill Bonsai Counter Kitchen Room Average

Instant-NGP [17] 0.260 0.269 0.137 0.254 0.285 0.105 0.185 0.112 0.155 0.196
ADOP [19] 0.104 0.179 0.091 0.139 0.155 0.084 0.111 0.096 0.103 0.112
TRIPS [7] 0.089 0.131 0.072 0.141 0.123 0.049 0.080 0.065 0.078 0.084
3DGS [10] 0.108 0.246 0.051 0.112 0.213 0.127 0.134 0.078 0.148 0.135
Zip-NeRF [3] 0.095 0.136 0.053 0.102 0.117 0.085 0.093 0.061 0.103 0.094
Ours 0.073 0.094 0.037 0.079 0.090 0.050 0.082 0.057 0.076 0.071

Ours (16M) 0.081 0.104 0.040 0.093 0.096 0.058 0.084 0.059 0.079 0.077
Ours (8M) 0.091 0.122 0.045 0.111 0.113 0.069 0.104 0.064 0.086 0.089
Ours (pre-ex.) 0.102 0.119 0.049 0.133 0.120 0.061 0.103 0.063 0.082 0.092

Table 2. Per-scene image quality metrics for the Mip-NeRF360 dataset [2] separated into outdoor and indoor scenes. The three best results
are highlighted in green in descending order of saturation.

TRIPS 3DGS Zip-NeRF Ours Ground Truth

Figure 1. Visual comparisons for multiple scenes of the Mip-NeRF360 dataset [2].

LPIPSvgg↓ on Tanks and Temples [13]
Method Family Francis Horse Lighthouse M60 Panther Playground Train Average

Instant-NGP [17] 0.413 0.439 0.458 0.439 0.367 0.355 0.547 0.487 0.438
ADOP [19] 0.203 0.233 0.201 0.242 0.225 0.219 0.231 0.302 0.236
TRIPS [7] 0.176 0.266 0.182 0.277 0.204 0.191 0.222 0.267 0.229
3DGS [10] 0.236 0.344 0.239 0.291 0.244 0.241 0.291 0.320 0.276
Zip-NeRF [3] 0.172 0.270 0.181 0.281 0.212 0.217 0.251 0.279 0.233
Ours 0.115 0.227 0.134 0.217 0.182 0.178 0.172 0.287 0.189

Ours (16M) 0.125 0.241 0.146 0.236 0.239 0.220 0.195 0.356 0.220
Ours (8M) 0.141 0.253 0.159 0.275 0.304 0.267 0.215 0.398 0.252
Ours (pre-ex.) 0.174 0.292 0.207 0.265 0.263 0.232 0.237 0.421 0.261

SSIM↑ on Tanks and Temples [13]
Method Family Francis Horse Lighthouse M60 Panther Playground Train Average

Instant-NGP [17] 0.729 0.812 0.733 0.759 0.810 0.840 0.550 0.666 0.737
ADOP [19] 0.807 0.860 0.842 0.782 0.835 0.859 0.785 0.667 0.802
TRIPS [7] 0.849 0.879 0.871 0.792 0.862 0.884 0.771 0.768 0.831
3DGS [10] 0.871 0.901 0.889 0.834 0.901 0.910 0.834 0.791 0.866
Zip-NeRF [3] 0.893 0.918 0.909 0.835 0.905 0.908 0.846 0.813 0.878
Ours 0.905 0.915 0.914 0.833 0.903 0.912 0.878 0.769 0.878

Ours (16M) 0.902 0.906 0.909 0.822 0.884 0.896 0.860 0.718 0.862
Ours (8M) 0.895 0.906 0.905 0.804 0.848 0.870 0.852 0.687 0.846
Ours (pre-ex.) 0.864 0.879 0.877 0.808 0.864 0.884 0.826 0.664 0.833

PSNR↑ on Tanks and Temples [13]
Method Family Francis Horse Lighthouse M60 Panther Playground Train Average

Instant-NGP [17] 21.47 23.96 18.45 21.17 24.87 26.45 18.52 19.72 21.82
ADOP [19] 24.29 21.92 23.87 18.28 23.66 25.47 22.58 15.66 21.69
TRIPS [7] 24.03 20.06 23.45 18.09 25.52 27.73 24.10 18.79 22.62
3DGS [10] 25.05 27.64 24.18 21.76 27.82 28.35 25.65 21.69 25.27
Zip-NeRF [3] 28.05 29.55 27.67 22.31 28.86 28.84 26.62 22.10 26.75
Ours 28.52 26.85 27.73 21.83 27.77 28.82 26.81 19.12 25.93

Ours (16M) 28.05 26.61 27.10 21.40 26.55 27.55 25.61 18.11 25.12
Ours (8M) 27.92 26.09 26.86 21.08 24.56 25.99 26.04 17.81 24.54
Ours (pre-ex.) 26.20 24.23 24.53 20.96 25.22 26.43 25.15 16.98 23.71

LPIPSalex↓ on Tanks and Temples [13]
Method Family Francis Horse Lighthouse M60 Panther Playground Train Average

Instant-NGP [17] 0.337 0.295 0.387 0.313 0.259 0.245 0.475 0.393 0.338
ADOP [19] 0.142 0.122 0.138 0.180 0.148 0.128 0.157 0.236 0.158
TRIPS [7] 0.114 0.138 0.115 0.187 0.124 0.101 0.133 0.181 0.140
3DGS [10] 0.152 0.187 0.144 0.197 0.165 0.146 0.231 0.237 0.182
Zip-NeRF [3] 0.105 0.125 0.099 0.174 0.125 0.118 0.175 0.171 0.136
Ours 0.073 0.113 0.072 0.152 0.136 0.114 0.145 0.241 0.131

Ours (16M) 0.087 0.126 0.085 0.176 0.192 0.160 0.174 0.323 0.165
Ours (8M) 0.105 0.139 0.099 0.222 0.266 0.213 0.196 0.371 0.201
Ours (pre-ex.) 0.128 0.182 0.148 0.200 0.205 0.151 0.200 0.385 0.200

LPIPSsqueeze↓ on Tanks and Temples [13]
Method Family Francis Horse Lighthouse M60 Panther Playground Train Average

Instant-NGP [17] 0.251 0.224 0.302 0.245 0.207 0.194 0.351 0.310 0.261
ADOP [19] 0.090 0.085 0.091 0.118 0.100 0.088 0.099 0.162 0.106
TRIPS [7] 0.076 0.134 0.080 0.144 0.086 0.071 0.086 0.136 0.105
3DGS [10] 0.120 0.180 0.122 0.164 0.137 0.127 0.175 0.196 0.153
Zip-NeRF [3] 0.074 0.104 0.073 0.131 0.094 0.091 0.117 0.126 0.101
Ours 0.050 0.093 0.052 0.112 0.091 0.080 0.083 0.166 0.091

Ours (16M) 0.058 0.102 0.060 0.126 0.133 0.113 0.101 0.222 0.114
Ours (8M) 0.071 0.111 0.071 0.159 0.183 0.148 0.116 0.263 0.140
Ours (pre-ex.) 0.083 0.132 0.102 0.139 0.141 0.110 0.114 0.273 0.137

Table 3. Per-scene image quality metrics for the Tanks and Temples dataset [13]. The three best results are highlighted in green in
descending order of saturation.

TRIPS 3DGS Zip-NeRF Ours Ground Truth

Figure 2. Visual comparisons for multiple scenes of the Tanks and Temples dataset [13].

4. Perceptual Experiment

The objective of our perceptual experiment is to compare,
from an observer’s perspective, the novel view results of
our method and Zip-NeRF [3] (the method achieving the
best quality metrics’ scores among the compared-against
methods). This necessitates the presentation of a multitude
of stimuli, the distinctions between which are frequently
nuanced. It is also crucial to acknowledge that the qual-
ity of the results we seek to quantify cannot be accurately
represented on a linear scale [9]. This underscores the limi-
tations of ranking methods in this context. Accordingly, the
paired comparisons technique was selected for use in this
experiment. This technique requires participants to view two
images simultaneously and then select the one that more
closely aligns with the task question. This resulted in a
two-alternatives forced-choice (2AFC) preference task, in
which each result was compared to the corresponding other
method’s results for the same image.

4.1. Experimental Design

Stimuli. Consistently with the analysis of the main paper,
the stimuli were selected from the well established datasets
Mip-NeRF360 [2] and Tanks and Temples [13]. In order
to maintain the number of trials of the experiment under a
reasonable number that allows for a single participant to per-
form a complete test while maintaining the necessary level of
attention, we selected a set of three novel views per scene, for
all scenes in both considered datasets. The criteria for selec-
tion aimed to cover the maximum possible diversity in image
attributes (i.e., background/foreground objects, recurring
texture, scene composition, lighting, faces/people, lines/
clear edges, view angle/focus depth, textual elements) for a
given scene. For those scenes were the attributes were not
sufficiently sampled, we extended the number of considered
novel views (i.e., Room: 4, Lighthouse: 4, M60: 5). We then
gathered the corresponding results of both Zip-NeRF [3] and
our method, for a total of 55 paired comparisons (see Fig. 3).
Participants. A total of 17 participants were included in
the study, with an age range of 22 to 55 years and a gender
distribution of 4 females, 1 non-available, and 12 males. All
participants reported normal or corrected-to-normal vision.
Additionally, the majority of participants indicated an inter-
mediate level of proficiency in computer graphics and image
processing, as measured on a scale of 1 to 4, with 1 indicat-
ing no experience and 4 indicating advanced proficiency.
Procedure. The participants performed the experiment in-
situ one at a time. Before starting the experiment, each par-
ticipant signed an informed consent form. They were then
given an explanation on the experimental task and provided
with the options of asking any questions. However, they
were neither informed of the research question behind the
experiment, nor of the nature (e.g., captured vs. generated)

of the images they were presented with. The participant was
asked to sit roughly 50 cm in front of a 27” UHD monitor (at
a resolution of 3840× 2160) in a semi-dark room.After the
experimenter gathered the participant’s demographic data,
the partaker was presented with a screen describing once
again the instructions. Before the experimenter left the room,
the participants were given another chance to ask any fur-
ther questions. Each trial started by presenting two images
side by side over a black background. Participants were not
explicitly instructed to focus their attention on anything in
particular, but to just select which of the two images they
found more appealing. The participants were able to enter
their answers by clicking on the desired image without hav-
ing any restriction regarding the time to make their choice;
once a response was entered, the next trial started. Both the
order of the pairs of stimuli, and their position on the screen
(left vs. right) was fully randomized, with each participant
receiving a different random order. The experiment was con-
trolled by Psychophysics Toolbox Version 3.0.15 (PTB-3)
[4, 12], and the mean time to complete it was of 21 minutes.

4.2. Analysis

To assess not only the efficacy of each method, but also
the consistency of participant responses, we employed the
linked-paired comparison design [6]. Accordingly, the meth-
ods are ranked according to the number of times they are
preferred over the other method. The total number of votes a
pair of stimuli received is displayed in Fig. 3, while the votes
over datasets and over all stimuli are displayed in Tab. 4.
These results favorably rank our method over Zip-NeRF in
all scenarios. In order to ascertain the true meaning of this
ranking, a significance test of the score differences is per-
formed. In order to achieve this objective, it is necessary
to identify a value, designated as R′, which represents the
minimum variance-normalized range of scores within each
group. This necessitates the computation of R′ such that
P [R ≥ R′] ≤ α, where the confidence level, set at 0.01,
is represented by α. Subsequently, in accordance with the
methodology proposed by Herbert A. David [6], we can
derive R′ from the following equation:

P (Wt,α ≥ 2R′ − 0.5√
mt

), (2)

where m is the number of participants, t is the number
of methods to be compared, and Wt,α has been previ-
ously tabulated by Pearson and Hartley [18]. In our case,
W2,0.01 = 3.645, which leads to R′Exp = 10.87691 for our
experiment.

Since the score differences between all ranked groups
exceed the aforementioned R′, we can conclude that they
are all statistically significant. Thus, the ranking creates two
distinguishable groups within our experimental context.

Dataset Method #Votes Ranking

Mip-NeRF360 [2] Ours 331 1st

Zip-NeRF [3] 145 2nd

Tanks & Temples [13] Ours 318 1st

Zip-NeRF [3] 141 2nd

All Stimuli Ours 649 1st

Zip-NeRF [3] 286 2nd

Table 4. Perceptual ranking of the compared methods in our experi-
ment with 17 participants. All rankings are statistically significant.

References
[1] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter

Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-NeRF: A multiscale representation for anti-aliasing neu-
ral radiance fields. In Int. Conf. Comput. Vis., pages 5835–
5844, 2021. 1

[2] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-NeRF 360: Unbounded
anti-aliased neural radiance fields. In IEEE/CVF Conf. Com-
put. Vis. Pattern Recog., pages 5460–5469, 2022. 1, 3, 4, 5, 6,
9, 10, 14

[3] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Zip-NeRF: Anti-aliased grid-
based neural radiance fields. In Int. Conf. Comput. Vis., pages
19640–19648, 2023. 2, 5, 7, 9, 10, 14

[4] David H. Brainard. The psychophysics toolbox. Spat. Vis.,
10(4):433–436, 1997. 9

[5] Lu Chi, Borui Jiang, and Yadong Mu. Fast Fourier convolu-
tion. In Adv. Neural Inform. Process. Syst., pages 4479–4488.
Curran Associates, Inc., 2020. 3

[6] Herbert Aron David. The method of paired comparisons.
Charles Griffin, London, 1963. 9

[7] Linus Franke, Darius Rückert, Laura Fink, and Marc Stam-
minger. TRIPS: Trilinear point splatting for real-time radiance
field rendering. Comput. Graph. Forum, 43(2), 2024. 2, 4, 5,
7

[8] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In Eur.
Conf. Comput. Vis., pages 694–711. Springer International
Publishing, 2016. 4

[9] M. G. Kendall and B. Babington Smith. On the method of
paired comparisons. Biometrika, 31(3-4):324–345, 1940. 9

[10] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler,
and George Drettakis. 3D Gaussian splatting for real-time
radiance field rendering. ACM Trans. Graph., 42(4), 2023. 1,
2, 5, 7

[11] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Int. Conf. Learn. Represent., 2015.
1

[12] Mario Kleiner, David Brainard, Denis Pelli, Allen Ingling,
Richard Murray, Christopher Broussard, and Frans Cornelis-
sen. What’s new in psychtoolbox-3? Perception, 36(14):
1–16, 2007. 9

[13] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and Temples: Benchmarking large-scale scene

reconstruction. ACM Trans. Graph., 36(4), 2017. 1, 4, 7, 8, 9,
10, 14

[14] Christoph Lassner and Michael Zollhöfer. Pulsar: Efficient
sphere-based neural rendering. In IEEE/CVF Conf. Comput.
Vis. Pattern Recog., pages 1440–1449, 2021. 2

[15] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
realistic single image super-resolution using a generative ad-
versarial network. In IEEE/CVF Conf. Comput. Vis. Pattern
Recog., pages 105–114, 2017. 4

[16] Thomas Müller. tiny-cuda-nn, 2021. 1, 2
[17] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-

der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4), 2022. 2,
4, 5, 7

[18] E. S. Pearson and H.O. Hartley. Biometrika Tables for Statis-
ticians. Cambridge University Press, 3 edition, 1966. 9

[19] Darius Rückert, Linus Franke, and Marc Stamminger. ADOP:
Approximate differentiable one-pixel point rendering. ACM
Trans. Graph., 41(4), 2022. 1, 2, 4, 5, 7

[20] Johannes L. Schönberger and Jan-Michael Frahm. Structure-
from-motion revisited. In IEEE/CVF Conf. Comput. Vis. Pat-
tern Recog., pages 4104–4113, 2016. 1, 4

[21] Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, and
Jan-Michael Frahm. Pixelwise view selection for unstructured
multi-view stereo. In Eur. Conf. Comput. Vis., pages 501–518.
Springer International Publishing, 2016. 1, 4

[22] Markus Schütz, Bernhard Kerbl, and Michael Wimmer. Soft-
ware rasterization of 2 billion points in real time. Proc. ACM
Comput. Graph. Interact. Tech., 5(3), 2022. 2

[23] Markus Schütz, Bernhard Kerbl, and Michael Wimmer. Ren-
dering point clouds with compute shaders and vertex order
optimization. Comput. Graph. Forum, 40(4):115–126, 2021.
2

[24] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In Int.
Conf. Learn. Represent., 2015. 4

[25] Kun Xu, Wei-Lun Sun, Zhao Dong, Dan-Yong Zhao, Run-
Dong Wu, and Shi-Min Hu. Anisotropic spherical gaussians.
ACM Trans. Graph., 32(6), 2013. 4

[26] Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin,
Pratul P. Srinivasan, Richard Szeliski, Jonathan T. Barron,
and Ben Mildenhall. BakedSDF: Meshing neural SDFs for
real-time view synthesis. In ACM SIGGRAPH Conference
Papers. Association for Computing Machinery, 2023. 2, 4

[27] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. PlenOctrees for real-time rendering of
neural radiance fields. In Int. Conf. Comput. Vis., pages 5732–
5741, 2021. 4

[28] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In IEEE/CVF Conf. Comput.
Vis. Pattern Recog., pages 586–595, 2018. 4

[29] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao
Li. On the continuity of rotation representations in neural
networks. In IEEE/CVF Conf. Comput. Vis. Pattern Recog.,
pages 5738–5746, 2019. 4

Figure 3. Experimental Stimuli. All images generated with Zip-NeRF [3] and our method used as stimuli for our perceptual experiment.
The two columns of the left belong to the results on the Mip-NeRF360 dataset [2], while the two on the right are from the Tanks and Temples
dataset [13]. Under each pair of stimuli, we report the scene name, frame number, and total votes gathered per method (max=17).

	. Implementation
	. Overview
	. Pre-Processing Details
	. Optimization Details
	. Point Probability Octree Details
	. TCNN Details
	. Bilinear Splatting Details
	. CNN Details

	. Additional Ablations
	. Per-Scene Results
	. Perceptual Experiment
	. Experimental Design
	. Analysis

