
Supplementary Material of DiffComplete:
Diffusion-based Generative 3D Shape Completion

Contents

A Detailed Network Architecture 17

B Additional Experiments 17

B.1 Choice of Training Strategy . 17

B.2 Choice of Fusion Space for Multiple Conditions 18

B.3 Choice of Occupancy Threshold . 18

B.4 Impact of Training Iteration . 19

B.5 Data-efficient Finetuning on Unseen Categories 19

B.6 Comparison with Point Cloud Completion Approaches 19

B.7 Applications in Semantic Part Editing . 19

B.8 Failure Cases . 21

C Quantitative Visualizations 21

D Difference from ControlNet [70] 21

E Limitations and Future Work 21

F Broader Impact 22

A Detailed Network Architecture

Fig. 8 shows the detailed architecture of encoder blocks, middle blocks, and decoder blocks of
our network (corresponding to those in Fig. 2). In particular, both the main and control branches
consist of four encoder blocks (Fig. 8(a)), built from repeated ResBlocks and Downsample layers,
where the latter iteratively reduces the feature volume to 1/8th of its original size. The middle
block (Fig. 8(b)) comprises two ResBlocks with an intermediate AttentionBlock. The main branch
additionally contains four decoder blocks (Fig. 8(c)), which restore the volume shape to its initial size
using upsampling. Fig. 8(d) presents the detailed structure of a ResBlock unit. It receives features
from the preceding network layer and a time embedding as inputs, fuses their embeddings, and
processes them with convolutional operations. To support network and experiment reproduction, we
will make our code available.

B Additional Experiments

B.1 Choice of Training Strategy

In Table 9, we evaluate different training strategies for our model on chair class of the 3D-EPN [14]
benchmark. Both ‘pretraining-class’ and ‘pretraining-all’ follow ControlNet [70]’s training paradigm.
They involve an initial unconditional generation task for main branch pretraining and then optimize
only the control branch with partial shapes with the objective in Eq. (3). Specifically, ‘pretraining-
class’ pretrains the main branch on individual object classes, while ‘pretraining-all’ employs all data
for one pretraining model, both of which are finetuned on a specific object class. These pretraining-
based strategies bring much more completion errors (higher l1-err.) and increased completion

17

×3

Downsample

ResBlock (D=64)

ResBlock (D=128)

Downsample

ResBlock (D=128)

Downsample

×3

×1

×3

×1

×1

ResBlock (D=128) ×3

Encoder
block 1

Encoder
block 2

Encoder
block 3

Encoder
block 4

ResBlock (D=128)

AttentionBlock

×1

×1

ResBlock (D=128) ×1

Middle
block

×4

Upsample

ResBlock (D=64)

ResBlock (D=128)

Upsample

ResBlock (D=128)

Upsample

×4

×1

×4

×1

×1

ResBlock (D=128) ×4

Decoder
block 4

Decoder
block 3

Decoder
block 2

Decoder
block 1

×1OutLayer (D=1)

(a) (b) (c)

SiLU

GroupNorm

Conv3D

SiLU

Linear

feature

time embed.

SiLU

GroupNorm

Dropout

Conv3D

(d)

⊕

⊕

Figure 8: The detailed architecture of encoder blocks (a), middle blocks (b), and decoder blocks (c)
in our network, each is mainly constructed by stacked ResBlocks (d). The ‘D’ denotes the output
feature dimension and

⊕
represents the feature addition operation.

Table 9: Choice of training strategy. The
pretraining-based options increase the com-
pletion errors (l1-err.) and diversity (TMD).

Training Strategy l1-err. ↓ TMD ↑
pretraining-class 0.14 0.028
pretraining-all 0.11 0.030
scratch (Ours) 0.07 0.025

Table 10: Choice of fusion space for multiple partial
shapes. Directly fusing them in the original TSDF
space significantly impairs the completion quality.

Space Strategy l1-err. ↓ CD ↓ IoU ↑
simple average 0.29 6.68 51.6TSDF occ-aware 0.12 4.78 61.0

simple average 0.13 4.56 63.3feature occ-aware 0.05 3.97 68.3

diversity (higher TMD). This may be due to the model’s over-relies on the learned distribution during
pretraining, making it less adaptable to concrete completion tasks. Instead, we train the network
entirely from scratch, which is most effective for accurate shape completion (with the lowest l1-err.).

B.2 Choice of Fusion Space for Multiple Conditions

Table 10 analyzes the impacts of fusion space when incorporating multiple incomplete shapes as
conditions, which supplements Table 6 to further validate our fusion choice. The experiments are
conducted on the 3D-EPN [14] and Patchcomplete [15] benchmarks. The first two rows refer to
merging multiple aligned partial shapes into a volumetric TSDF and feeding it to the network as a
single condition. However, both ’simple average’ and ‘occupancy-aware’ fusion strategies for this
yield worse performance across diverse metrics. This is because registration errors between different
shapes directly disrupt the input, potentially causing distortions in the final completed model. In
contrast, we move the fusion process to a more abstract level within the hierarchical feature space,
which can be more resilient to simple noise at the TSDF level. Our occupancy-aware fusion strategy
further provides more accurate and robust completion results.

B.3 Choice of Occupancy Threshold

During the occupancy-aware fusion process, the TSDF value threshold τ determines which volumes
are recognized as occupied. In Table 11, we evaluate the impact of different thresholds on the
completion performance using the 3D-EPN [14] and Patchcomplete [15] benchmarks. Selecting
extreme threshold values, whether very low (e.g., 1 voxel unit) or high (e.g., 5 voxel units), tends to
degrade results, as lower thresholds may omit informative geometries while higher ones could include
redundant geometries that do not contribute meaningfully to the object shape, both of which confuse
the model. Conversely, a middle-range value (3 voxel unit) provides a balance between preserving
essential geometries and avoiding unnecessary ones, thereby achieving optimal completion accuracy
(the lowest l1-err. and CD).

18

Table 11: Choice of occupancy threshold. Ex-
tremely low or high values yield worse results.

Threshold τ l1-err. ↓ CD ↓ IoU ↑
1 0.08 4.21 66.6
2 0.05 4.09 68.2
3 (Ours) 0.05 3.97 68.3
4 0.06 4.10 68.4
5 0.07 4.13 67.8

Figure 9: Accuracy (MMD) and diversity (TMD)
curves with varying training iterations.

100 120 140 160 180 200
Training Iterations (k)

2.0

2.5

3.0

3.5

M
M

D
 (×

10
3) MMD ()

TMD ()

2.50

2.60

2.70

TM
D

 (×
10

2)

Table 12: Finetuning on eight unseen object categories with limited data. Our model shows substantial
improvements with incremental data. The 0% and 100% indicate zero and full data usage, respectively.

Data Ratio Avg. CD ↓ Bag Lamp Bathtub Bed Basket Printer Laptop Bench

0% 3.19 2.98 3.54 2.87 3.24 3.70 3.46 2.85 2.87
1% 2.84 2.54 3.27 2.46 2.98 3.24 3.25 2.49 2.52
5% 1.84 1.67 1.93 1.63 2.01 1.96 2.04 1.81 1.70
10% 1.34 1.23 1.43 1.20 1.40 1.49 1.48 1.28 1.19
100% 1.02 0.98 1.07 0.95 1.05 1.12 1.10 1.00 0.95

B.4 Impact of Training Iteration

Fig. 9 plots the performance of our model over a range of training iterations from 100k to 200k. As
the training iterations increase, the shape completion accuracy improves (with lower MMD) while
the completion diversity gradually decreases (with lower TMD). This trend reveals that, given more
training time, the model learns to better fit the target distribution.

B.5 Data-efficient Finetuning on Unseen Categories

In Table 12, we evaluate the model’s ability to complete ShapeNet objects [73] of unknown categories
when finetuned with limited data. To this end, we first divide the data from unseen classes into a 7:3
train-test split. Then we finetune our model using varying proportions of the training set (1%, 5%,
and 10%). Here, a ratio of 0% indicates no finetuning process, following the setting in Table. 2, while
100% means using the entire training set. A lower CD denotes better completion accuracy.

With just 1% finetuning data, the average CD decreases by 10.9% (from 3.19 to 2.84). A more
substantial improvement is observed when the data ratio increases to 5%, with a nearly 1 point
decrease in average CD compared to the 1% ratio. The trend of improvement continues for a 10%
data ratio, where the model impressively approaches the performance achieved using the full training
set. These results demonstrate that our model has a robust few-shot learning capability and can
generalize well from a small amount of out-of-distribution data.

B.6 Comparison with Point Cloud Completion Approaches

Regarding methods on point cloud completion, we compare our DiffComplete with the leading
approach SnowflakeNet [82]. To make the comparisons fair, we converted SnowflakeNet’s outputs
to meshes using the reconstruction technique from ConvONet [26]. On the 3D-EPN benchmark,
SnowflakeNet achieves the average l1-error (↓) of 0.189 across eight object classes, while our method
attains the 0.053 l1-error, which delivers much better completion accuracy.

B.7 Applications in Semantic Part Editing

As our methods flexibly supports multiple conditional inputs, it can be applied for editing a semantic
part of the object from one or multiple partial inputs. Fig. 10 showcases the visual examples for the
shape editing task to better demonstrate the model’s multiple-input capability.

19

🟰 🟰

🟰 🟰

(a) Incorporate two patrial parts (b) Edit an object with a partial input

(d) Edit an object with multiple partial inputs(c) Edit an object with a partial input

Figure 10: Examples of multi-input shape completion for part editing. (a) Incorporate two distinct
partial parts to complete an object. (b)-(c) Edit a specific part of the object using a partial input. It is
achieved by directly taking an object shape and an incomplete part as the conditional inputs. (d) Edit
an object with multiple partial inputs.

Input

Ours

Ground
Truth

(a) (b) (c) (d) (e) (f)

Known object categories Unknown object categories

Figure 11: Failure cases on known and unknown object categories. Our model may produce inaccurate
or improbable completions when faced with overly sparse inputs (a), atypical shapes (b-c), complex
structures (d), and high noise levels (e-f). The red boxes highlight the difference with ground truths.

20

B.8 Failure Cases

Fig. 11 showcases certain failure instances in our completion results. For shape completion on known
object categories (a-c), given the overly sparse input, our model struggles with producing a shape
that aligns with the ground truth (see (a) and (b)). In example (c), the model fails to complete a
non-standard structure, such as an elephant beneath a lamp. This can be attributed to the model’s
tendency to generate shapes based on frequently seen patterns during training, while the elephant
belongs to an atypical structure in lamp categories. For unknown object categories (d-f), the model
faces additional challenges. The case (d) reveals that our model may favor simple structures when
the input shape is too complex. Cases (e) and (f) further show the model’s difficulty in handling
substantial input noise, which results in inaccurate or improbable completions.

C Quantitative Visualizations

Visualizations on known object categories. Fig. 12 shows quantitative results on diverse object
categories produced by SOTA PatchComplete and our DiffComplete. Our method produces the
completion results with much fewer artifacts and more realistic shapes. Our completions are also
highly accurate, closely recovering the ground-truth shapes.

Visualizations on unseen object categories. As shown in Fig. 13, across a diverse set of entirely
unseen object categories, our method also achieves superior completion results over PatchComplete,
preserving better global coherence and local details. Note that we do not employ any zero-shot
designs while PatchComplete does.

Multimodal completion results. In Fig. 14, we show multiple plausible completion results produced
by our model from the same partial shape input. For sparser input shapes, our model can explore
different possibilities to fill in the missing regions and yield more diverse results (e.g., the first row).
In contrast, for the inputs with higher completeness levels, our control-based design ensures the
model to output more consistent 3D shapes (e.g., the last row).

Visualizations of denoising process. In Fig. 15, we visualize the produced shapes at different time
steps during the inference stage. Our model progressively converts the noises into clean 3D shapes.

D Difference from ControlNet [70]

Although the paradigm of injecting conditional features takes inspiration from ControlNet, DiffCom-
plete has critical distinctions. First, DiffComplete differs from ControlNet in several key areas. (i)
Task: ControlNet tackles the 2D text-to-image generation task, making it work on our 3D completion
task is non-trivial. To this end, we design the appropriate volumetric representation and 3D networks.
(ii) Motivation: The motivation of ControlNet is to finetune pretrained large diffusion models, while
we aim to train a specific diffusion model. This leads to different training strategies. (iii) Training
Strategy: ControlNet utilizes a "trainable copy" initialization, but our experiments found that training
from scratch is the most effective way, as shown in Table 9. (iv) Design Details: We discard "zero
convolution", a critical component in ControlNet, as we do not require the pre-training process. We
also directly embed the original 3D shape representation rather than operating in latent space.

Second, DiffComplete offers new features and insights beyond ControlNet. (i) Our method further
supports multiple inputs to improve the completion accuracy. (ii) We delve deeper into the feature
injection mechanism, observing that altering the feature aggregation level finely controls the trade-off
between completion accuracy and diversity. This finding can be leveraged to adjust the model’s
performance, as described in Sec. 4.5 of the main paper.

E Limitations and Future Work

First, our model may struggle to complete highly irregular or noisy shapes, as extensively discussed in
Sec. B.8. Yet, our model’s multimodal capacity will increase the likelihood of producing satisfactory
results, enabling it to tackle this problem more effectively than deterministic methods. With more
diverse training data, the model’s performance on completing these hard shapes could be improved.

21

Like most diffusion models [60, 59], another limitation of DiffComplete is the substantial compu-
tational requirements due to the iterative completion process. Despite employing the technique in
work [61] to reduce sampling steps by ten times, we still need 100 steps to achieve competitive results,
which costs around 3 4 seconds per shape on an RTX 3090 GPU. The extended test time could cap its
potential for real-time or resource-constrained applications. Future work will leverage the advances
in fast sampling techniques (e.g., [83]) to accelerate inference speed.

Also, the dense 3D CNN architecture in our implementation limits the model ability to handle high-
resolution 3D shapes, due to the cubic increase in computational costs with volume size. A potential
solution could be replacing dense CNNs with efficient 3D network modules, such as SparseConv [84],
TriVol [85], or Octree-based layers [86], while remaining other essential designs of our framework.
Decomposing 3D shapes into parts can also help the model capture high-resolution details with
low memory costs. For instance, we can utilize the techniques of work [69] to first encode global
volumetric TSDF (TUDF) into smaller structural patches. Then, our DiffComplete is capable of
performing accurate part-level completion. Such an adaptation is feasible due to the versatility
of DiffComplete’s core designs. Future work will explore more efficient 3D representations (e.g.,
patch-based) to enhance the capability of our method.

At last, although our model shows robust generalizability to unseen object classes, its performance
may be adversely affected by the quality and diversity of the training data. In cases where object
classes or shapes deviate significantly from the training set, the model may underperform. Therefore,
careful selection of training data is needed to boost completion robustness.

In conclusion, despite the current limitations, they also present opportunities for model improvement.
By addressing these issues, we believe the full potential of our model can be further realized.

F Broader Impact

On the positive side, the potential applications of our work are widespread. DiffComplete could
contribute to fields such as computer vision, robotics, virtual reality, and many others. For instance, in
computer vision and robotics, our method can significantly enhance object reconstruction capabilities,
providing more accurate and realistic models that facilitate object recognition, manipulation, and
robot navigation. Similarly, in virtual reality or 3D printing, our model is able to complete or refine
3D models, enriching the user experience and the quality of end products.

Moreover, our model provides a flexible balance between the completion diversity and accuracy. This
attribute can be tailored to suit various application needs, thereby broadening its potential usability
across different tasks.

On the other hand, it is crucial to consider potential negative implications. As with any AI technology,
there are risks associated with misuse. For instance, if used for recreating personal items without
consent, it could lead to unwarranted privacy intrusions. In addition, the automation facilitated by our
model may also displace jobs involving manual 3D modeling or shape completion.

To conclude, while our research holds promising potential, it is essential to responsibly manage
its broader impacts. We advocate for developing this technology in a way that maximizes societal
benefits and minimizes potential negative effects.

22

Input

Patch-
Complete

Ours

Ground
Truth

Input

Patch-
Complete

Ours

Ground
Truth

Input

Patch-
Complete

Ours

Ground
Truth

Figure 12: Quantitative results on completing objects of diverse known categories. Our method
significantly outperforms SOTA PatchComplete [15] on both the completion quality and accuracy.

23

Input

Patch-
Complete

Ours

Ground
Truth

Figure 13: Quantitative results on completing objects of entirely unseen categories. Our significantly
outperforms SOTA PatchComplete [15] on both the completion quality and accuracy.

Input Output 1 Output 2 Output 3 Output 4 Output 5

Figure 14: Multimodal completion results on ShapeNet Chair class. We run the model five times for
the same input. The level of input sparsity affects the diversity and certainty of the shape completion.

24

Input Step=0 Step=20 Step=40 Step=60 Step=80 Step=100

Figure 15: The denoising process that gradually converts the noises to completed shapes (from left to
right). We visualize the produced shapes at varying time steps (0, 20, 40, 60, 80, and 100).

25

	Introduction
	Related Work
	Method
	Formulation
	Shape Completion Pipeline
	Occupancy-aware Fusion
	Training and Inference

	Experiment
	Experimental Setup
	Main Results
	Multimodal Completion Characteristics
	Multiple Conditional Inputs
	Ablation Study

	Conclusion and Discussion
	Detailed Network Architecture
	Additional Experiments
	Choice of Training Strategy
	Choice of Fusion Space for Multiple Conditions
	Choice of Occupancy Threshold
	Impact of Training Iteration
	Data-efficient Finetuning on Unseen Categories
	Comparison with Point Cloud Completion Approaches
	Applications in Semantic Part Editing
	Failure Cases

	Quantitative Visualizations
	Difference from ControlNet zhang2023adding
	Limitations and Future Work
	Broader Impact

