
Under review as submission to TMLR

Bayesian Optimization over Discrete Structured Inputs
by Continuous Objective Relaxation

Anonymous authors
Paper under double-blind review

Abstract

To optimize efficiently over discrete data from few available target observations is a challenge
in Bayesian optimization. We propose a continuous relaxation of the objective function and
show that inference and optimization is computationally tractable. The advantages are the
continuous treatment of the problem and directly incorporating available prior knowledge
over the inputs. Motivated by optimizing expensive biochemical properties from discrete
sequences, we consider optimization with few observations and strict budgets. We leverage
available and learned distributions from domain models for a weighting of the Hellinger
distance, which we show to be a covariance function. Our results include a domain-model
likelihood weighted kernel and acquisition function optimization with continuous and discrete
algorithms. Lastly, we compare against state-of-the-art Bayesian optimization algorithms on
sequence optimization tasks: 25 small-molecule tasks and two protein objectives.

1 Introduction

Optimizing discrete inputs with respect to multi-dimensional targets is challenging as gradients are undefined.
A common additional difficulty are strict limits on the number of observations and expensive evaluation of
the objective, e.g. in protein engineering and drug discovery. Bayesian optimization is the de facto standard
approach for this setting, but most methods in this realm focus on optimizing continuous variables (Močkus,
1975; Shahriari et al., 2016; Garnett, 2022). We focus on optimizing sequences of tokens, i.e. a string of amino
acids or small molecule descriptors; inspired by the algorithmic demands of protein and drug design (Biswas
et al., 2021; Gao et al., 2022). The need to design both proteins and small molecules efficiently has resulted in
many different domain models in recent years (Notin et al., 2023; Bagal et al., 2021). In practice, many models
are trained in an unsupervised way and can be used as domain-specific latent variable models (Riesselman et al.,
2018; Frazer et al., 2021; Detlefsen et al., 2022; Notin et al., 2022). We show how to utilize available probabilistic
models over sequences to transform the optimization from discrete sequential inputs to the continuous domain.
Specifically, we relax the problem by mapping sequences to distributions and optimize in distribution space,
which lets us incorporate prior information directly. Adhering to a strict evaluation budget during optimization
and considering realistic sequences requires us to incorporate and leverage strong prior knowledge of the domain.

In this paper we first propose a continuous relaxation of the objective function in standard Bayesian
optimization (BO), by mapping discrete sequences to the space of probability distributions (Section 3.1).
Secondly, we show how inference and optimization remain computationally tractable. This domain
transformation allows us to incorporate available prior densities, e.g. in the form of an (unsupervised) deep
generative models. The result is a covariance function that scales linearly with sequence length (Section 3.2.1).
Empirically, we demonstrate that our proposed approach performs remarkably well when optimizing protein
sequence and molecular properties under a very tight evaluation budget; providing results for 25 small
molecule tasks and two protein optimization tasks (Section 4).

2 Background

Problem statement Given is a set of discrete sequences of length at most L ∈ N and an alphabet of
A tokens such that for each position of each sequence, there are |A| possibilities. We define our discrete

1

Under review as submission to TMLR

input set X := ∪L
l=1Al as the sequences composed of the tokens up to length L. Given a costly black-box

function f : X 7→ R, which provides a value for each input sequence, our objective is to minimize f such that
x∗ := arg minx∈X f(x) – using as few function evaluations as possible. Additionally, there exists a mapping
ϕ : X 7→ P that can be derived from a set of (unlabeled) input sequences.

One specific example of this are proteins, for which A is the set of naturally occurring 20 amino acids and
X contains all possible protein sequences up to length L. The function f is a measurable property of a
protein sequence (e.g. thermal stability). Acquiring a label is costly because it requires wet-lab experiments
to obtain a measurement. Therefore, the initial set of candidates contains only very few labels, which limits
our ability to pre-train a supervised surrogate model. This differs from commonly reported BO setups,
which may require a large pool of labeled inputs to train a surrogate model prior to the optimization
(Gómez-Bombarelli et al., 2018; Tripp et al., 2020; Stanton et al., 2022; Maus et al., 2023; Lee et al., 2024;
Ziomek and Bou Ammar, 2023; Kong et al., 2024).

Bayesian optimization consists of a surrogate model m for f , and an acquisition function α with the
objective to find the global optimum f∗ = minx∈X f(x∗) (Garnett, 2022), which in our work is set to be
the minimum. The model is updated at each iteration given the observations of all experiments and the
acquisition function is numerically optimized on the surrogate to select the next evaluation of f . The
algorithm ends when the function value converges to the optimum or the evaluation budget b is exhausted.
Typically, m is a Gaussian process (Rasmussen and Williams, 2006), and popular choices for α are Expected
Improvement (Jones et al., 1998) and the Upper Confidence Bound (Srinivas et al., 2012). BO makes no
assumptions about the domain and input space in which we seek the optimum.

Gaussian process regression Gaussian processes (GPs) are a typical choice for m due to their expressiveness
and closed-form inference. A GP is a collection of random variables, such that every finite subset follows
a multivariate normal distribution (Rasmussen and Williams, 2006, p. 13). The prior is described by a mean
function µ (often set to µ(x) := 0), and a positive definite covariance function (kernel) k : X × X 7→ R.
Assuming that observations of f are distorted by Gaussian noise, the posterior over the function f is again a GP.

For discrete input spaces, continuous numerical optimization algorithms cannot directly find the optima of α.
One approach is to fit a latent variable model and optimize in latent space (Lu et al., 2018; Gómez-Bombarelli
et al., 2018), i.e. latent BO. Since it is unclear whether the Euclidean distance in representation space is
a reliable proxy for similarity (Detlefsen et al., 2022), we develop an approach that is a relaxation through
a constrained probability space and uses a distance measure for probability vectors (Section 3.1).

2.1 Related Work

We provide an overview of contemporary BO methods that optimize discrete structured inputs over learned
latent models, highlighting practical challenges that are worth addressing. Following a discussion of surrogate
models on latent representations, strict budgets, and related discrete optimizers, we present the use-case for
probabilistic domain models and how it differentiates our contribution.

GPs over latent representations Lu et al. (2018) investigated Bayesian optimization by defining a
Gaussian process model directly on the latent space of a variational autoencoder (VAE). Stanton et al.
(2022) also formulate a GP surrogate on learned latent variable models. The distance measure in standard
covariance functions, e.g. the Matérn or Squared-exponential kernel (Rasmussen and Williams, 2006) is not
always satisfied in practice, since a learned latent space need not have a Euclidean measure (Arvanitidis et al.,
2018). A key assumption for kernels based just on Euclidean distance measures is that far-apart observations
are independent from one another given a particular length-scale. This assumption is not necessarily fulfilled
in learned latent representations, where two sequences can be highly related, while being far away in latent
space or close in latent space without being related (Detlefsen et al., 2022).

Budgets in Bayesian optimization Some BO algorithms rely on a significant number of black-box
function evaluations either via pre-training surrogates e.g. Gómez-Bombarelli et al. use 2 000,1 Tripp et al.
uses 10 000 observations for GP pre-training, and large labeled pools are presented in Maus et al.; Kong et al.;
Lee et al. (> 50 000, 62 500, 80 000 respectively). This means that these approaches are ruled out by settings

1Specifically, 250 000 (labelled) pre-training samples for the embedding in (Gómez-Bombarelli et al., 2018).

2

Under review as submission to TMLR

where computational labels are not available and labels are prohibitively expensive, e.g. bio-chemical assay
experiments (Gao et al., 2022). The problems we consider have few observations available at the start of
the optimization and the available budget to evaluate the function is limited i.e. b≪ 103.

High-dimensional Bayesian optimization Bayesian optimization in high-dimensional spaces over
categorical and mixed-input variables is a large field, recently surveyed by Dreczkowski et al. (2023) and
González-Duque et al. (2024). Approaches include graph product kernels, with and without trust regions
(Oh et al., 2019; Wan et al., 2021), that leverage embedded linear subspaces, and kernels built for categorical
variables (Moss et al., 2020; Papenmeier et al., 2022; 2023), or mapping combinatorial variables to Hamming em-
beddings (Deshwal et al., 2023). To optimize bio-chemical sequences by learning latent representations has been
proposed by Gómez-Bombarelli et al. (2018), and a weighted retraining schemes to represent promising points
by Tripp et al. (2020). Maus et al. and Stanton et al. combine surrogate- and representation-learning given a
sufficient pre-training pool. Replacing GPs with ensemble methods is done in Gruver et al. for guided diffusion.

Closely related to our work are the articles by Garrido-Merchán and Hernández-Lobato (2020) and Daulton
et al. (2022). The former proposes a continuous relaxation for categorical inputs on discrete and mixed spaces,
whereas we relax the objective. The latter approach introduces a continuous relaxation of the acquisition
function in its probabilistic reparameterization (PR). PR differs from our approach as it considers neither
the constrained probability space (see Eq. (1) and (2)) nor prior likelihoods; the former is required for
computational feasibility. The result is that we can optimize problems of significantly higher dimensionality
(larger L and A cf. Appendix H).

Our proposed transformation from a discrete optimization problem to a continuous one is at its core a linear
programming relaxation (Ge and Huang, 1989; Matoušek and Gärtner, 2007, p. 33). We view this relaxation as
optimizing in the space of probability distributions over X. To the best of our knowledge, no current approach
formulates BO continuously with a covariance function on distributions over discrete sequence inputs, defining
the GP prior over the objective that extends to a continuous treatment of the acquisition function. This
formulation allows us to map the inherently high-dimensional BO-problem to a constrained probability space
(Section 3.1). Furthermore, applying a weighting from distributions to obtain a kernel has not been done prior
to this work and incorporates a ranking of the candidates based on prior domain likelihoods (Section 3.2.1).

2.2 The case for pre-trained probabilistic domain models

As an alternative to learning a new continuous search space model prior to the optimization, we follow a
different approach. We will work directly with probability distributions over the alphabet, which can typically
be extracted meaningfully from pre-trained models in the domain. Specifically, advances in bioinformatics
and chemoinformatics have resulted in domain models over input sequences, i.e. amino-acid (protein) and
nucleic-acid (gene) sequences or molecular tokens (Rives et al., 2021; Brixi et al., 2025; Bagal et al., 2021).
Apart from large language models (Marin et al., 2023; Notin et al., 2023), one example is a simple protein
sequence lookup in a resource like the Protein Data Bank (Berman et al., 2000) done with a hidden Markov
model (Eddy, 2011). The scores and likelihoods obtained from these models often correlate with properties of
interest (Notin et al., 2023; Lin et al., 2023). Such models can already be used to (i) transform the problem,
and (ii) apply a likelihood based ranking over candidates for optimization (see Section 3.4).

3 Continuously relaxed Bayesian optimization

As our main contribution we propose a continuous relaxation of the objective function which at first glance
yields an intractable problem, that requires constraining. We show how to restrict the optimization problem
and how to recover computational tractability. This leads us to develop a covariance function that acts on
probability distributions and incorporates a priori available probability densities for our surrogate function.

3.1 From discrete to continuous space

We turn the discrete optimization problem from Section 2 into a continuous one by minimizing the expected
function value of f in the space of probability distributions over X. This gives a differentiable function f̄

3

Under review as submission to TMLR

with the same optima:

f̄(p) := Ex∼p[f(x)] =
∑
x∈X

f(x)px, (1)

where p ∈ P := {p ∈ [0, 1]|X| |
∑

i pi = 1} are probability distributions over X, i.e. real vectors with elements
between 0 and 1 whose components sum to 1. Note that, each element of x ∈ X can be represented as
p := 1x, i.e. as Dirac probability vector with full mass on x, such that px′ = 1 iff x = x′ and 0 otherwise.
The problem transformation in Eq. (1) is a linear programming relaxation (Ge and Huang, 1989; Matoušek
and Gärtner, 2007, p. 33), which we require for our later contributions.
Proposition 1. Assume that f has a unique optimum in x∗, then f̄ has a unique optimum in 1x∗ .

Proof. Deferred to Appendix A.

We consider the case of multiple optima in Proposition 4 and provide the proof in Appendix A.1.

A continuous objective function with preserved optima may naively appear sufficient for the successful
application of BO. However, our relaxation introduces computational challenges that we proceed to resolve.

Representation Even for small input sequences (e.g. L < 100), any p ∈ P is infeasibly large. We will
have to restrict P to be able to work with it. Note that the majority of the initial P space entries are highly
unlikely given that inputs are of a particular length and tokens can be positionally conserved – relevant to
the objective function. We therefore consider Pf , the space of factorizing distributions of length l

Pf :=

p ∈ [0, 1]l×|A|
∣∣∣∣p ≥ 0,∀l :

|A|∑
a=1

pl,a = 1

 . (2)

Inference A Gaussian process over f naturally induces a model over f̄ , from the kernel
k′(p, q) :=

∑
x,x′∈X pxk(x, x′)qx′ . Evaluating this canonical kernel function is intractable as it naively

requires |X|2 = (
∑L

l=1 |A|l)2 ≈ |A|2L operations and thus O(|A|2L) – even if we consider a restriction of P.
Section 3.2 resolves this.

Optimization Having established a model m over f̄ we must determine how to optimize the acquisition
function αm. Even though αm is continuous, the proposed inputs must remain probability distributions,
which prevents us from freely using any optimizer;2 Section 3.3 discusses this.

3.2 The model

A GP prior over f induces a Gaussian process belief over f̄ , yet computing the posterior over f̄ is intractable
– even when restricted to Pf . The key is to place a GP prior directly over f̄ instead of using the induced prior
from f . This gives us computationally tractable inference.
Generally, it is not the case that the posterior mean is equal to the weighted sum of posterior means over
each atom EGP[f̄(p)] ̸=

∑
x∈X p(x)EGP[f̄(1x)], as potentially expected from Inference in Section 3.1. The

main challenge is to find a kernel function which can exploit the structural properties of Pf e.g. distances
informed by prior probability densities, and subsequently discard regions of low-probability.

3.2.1 The weighted Hellinger kernel

A relevant kernel k : Pf × Pf 7→ R can be constructed from the Hellinger distance r (Hellinger, 1909)

r(p, q) :=
√

1
2
∑
x∈X

(√
p(x)−

√
q(x)

)2
, (3)

k(p, q) := θ exp(−λr(p, q)). (4)
2The vector components must be positive and sum to one.

4

Under review as submission to TMLR

We know r to be negative definite (Harandi et al., 2015), and therefore k is a positive definite kernel ∀θ, λ > 0
(Feragen et al., 2015). Since we restrict p, q to be in Pf , we can evaluate k(p, q) in O(LA) time

r2(p, q) = 1−
L∏

l=1

A∑
a=1

√pl,aql,a. (5)

This is done by rewriting Eq. (3) – see Appendix Proposition 5.

For any distinct input pair we observe that {x, x′}: r(1x,1x′) = 1, implying that a Hellinger distance kernel
is not necessarily a useful guide for optimization. However, we recall from Section 2.2 that there often exists
a prior ranking over elements of X in form of a probability distribution, such as hidden Markov models,
variational autoencoders, or large language models with which we can compute likelihoods (Durbin et al.,
1998; Riesselman et al., 2018; Frazer et al., 2021; Rives et al., 2021). To use this prior knowledge, we propose
to weigh the Hellinger distance using a given ranking. For every positive weighting w : X 7→ R+, we define
the weighted distance as

r2
w(p, q) := 1

2
∑
x∈X

w(x)
(√

p(x)−
√

q(x)
)2

. (6)

Proposition 2. The squared weighted Hellinger distance is negative definite.

Proof. To show that Eq. (6) gives rise to a kernel function we extend the proof by Harandi et al. (2015) which
can be found in Appendix B.

Proposition 3. For product measures p, q, w ∈ Pf , the weighted Hellinger distance remains linear time
computable

r2(p, q, w) =
L∏

l=1

1
2

A∑
al=1

(pal,lwal,l + qal,lwal,l)−
L∏

l=1

A∑
al=1

wal,l
√

pal,lqal,l. (7)

Proof. Deferred to Appendix D.1.

With the weighted distance, distinct sequences x, x′ evaluate to rw(1x,1x′) = 1
2 w(x) + w(x′). Sequences

with low weighting are considered similar, whereas sequences with high weighting are more independent.

The kernel is particularly suitable to model functions that have a particular threshold or where sets of inputs
yield a particular value, i.e. in some optimization campaigns we care about an improvement given a reference.
If the sequence weighting is 0 (or close to 0), thus highly unlikely according to the weighting model—assuming
reasonable correlation between the weighting and the objective—we expect low interest function values. Other
zero weighted sequences correlate perfectly under this kernel, allowing us to disregard this vast space with
one function evaluation in our BO routine.

Valid distributions w Any distribution over a sequence of available input tokens can be used as a weighting
distribution, if it can be factorized over the length of the inputs. Since the acquisition depends on this
weighting, the likelihood of the inputs should correlate with the downstream objective function. We consider
HMMs (Durbin et al., 1998) and VAEs (Kingma and Welling, 2019)—assuming factorizing distributions.
When choosing w it is important that the weighting allows for efficient evaluations of rw. Fig. 1 visualizes how
the combination of Hellinger kernel and decoder induces a more complex, non-Euclidean similarity measure
on the latent space. The type of model determines the optimization strategy (Section 3.3).

Kernel specifications The weighted Hellinger kernel gives rise to expressive GP models by the product
property of kernels (Rasmussen and Williams, 2006, p. 95). Specifically, for a given latent variable model, we
propose to use k′(x, x′) :=

∏N
n=1 kP (X|Zn)(x, x′), with N as the size of the unlabelled pre-training dataset

and Zn as subsets of the latent space. The same hyper-parameters θ and λ apply for each kernel. This yields
a product kernel over the available samples. We defer specific choices for Zn to Section 4. We follow Jones
et al. (1998) for hyper-parameter settings and set a constant prior mean function with µ := 1⊺K−1y

y⊺K−1y and

5

Under review as submission to TMLR

-0.
30

-0.
20

-0.
10 0.0

1
0.1

1
0.2

1

z1

-0.30

-0.20

-0.10

0.01

0.11

0.21

z 2

z=[0, 0]
Matern

0.9
20.92

0.920.9
2 0.94

0.
96

0.98

-0.
30

-0.
20

-0.
10 0.0

1
0.1

1
0.2

1

z1

z 2

z=[0, 0]
Hellinger

0.48

0.48

0.
56

0.64

0.72

0.80

-0.
30

-0.
20

-0.
10 0.0

1
0.1

1
0.2

1

z1

z 2

z=[0.0, 0.0]
Hellinger weighted

0.9900

0.9900 0.9925

0.9925

0.9
95

0

0.9950

0.9950

0.9975

Figure 1: Visual comparison of the (weighted) Hellinger distance kernel and a Matérn 5/2. We use an
adaptation of the decoder proposed by Brookes et al. (2019) (see Fig. A1). For the Matérn kernel we visualize
k(0, [z1, z2]) whereas for the Hellinger kernel k(P (x | 0), P (x′ | [z1, z2])). With the Hellinger kernel, the decoder
induces a more complex, non-Euclidean similarity measure on the latent space, which is non-stationary in the
latent space — see Appendix Fig. A2.

the amplitude of the kernel to θ := 1
N−1 (y − µ)⊺K−1(y − µ). We set λ and σ2 by maximizing the evidence

log p(y|λ, σ2).

3.3 Optimizing the acquisition function

As a consequence of the continuous relaxation, the acquisition function also acts on the probability distributions.
We can find local optima by

i) discrete optimization with the acquisition function evaluating sequences individually as indicator functions,
ii) a continuous parameterization of Pf , a) given a probabilistic decoder Dec : Rd 7→ Pf , and b) identifying

each P ∈ Pf through the canonical mapping Dec : RL×A 7→ Pf , zl,a 7→ expzl,a /
∑A

a′=1 expzl,a′ for
l ∈ [1, . . . , L] and a ∈ [1, . . . , A]. This allows standard continuous optimization of β(z) := α(Dec[z]),

iii) manifold optimization on Pf , since the space Pf is a product simplex, and we can thus use any manifold
optimization algorithm directly on the acquisition function (Boumal, 2014).

Combinations of these options apply. For the continuous case we ideally want the optimization to terminate
with an atomic distribution such that the decision of which sequence to evaluate is unambiguous. Even if this
is not the case, the optimization narrows down the choice of candidates and we can choose the most likely
sequence or sample from the optimized distribution and use the acquisition function to score the sampled
candidates. In this work we focus on the discrete and continuous case and leave the exploration of manifold
optimization for future work.

3.4 The CoRel algorithms

Algorithm 1 shows the continuous relaxation (CoRel) in the general Bayesian optimization loop given a
continuous parameterization of Pf , here the decoder of a VAE. See algorithms 3 and 4 in the Appendix for
discrete or direct continuous optimization.

Given is a set with n0 starting sequences with observations D0, an acquisition function α on Pf , and a model
that defines the weighting. We fit a GP posterior predictive by optimizing the kernel parameters. The
acquisition function is queried to find the maximizing probability vector on the parameterized space via the
predictive GP. From the probability vector we can obtain a sequence or a set of sequences within a given
budget. The black-box function is evaluated on the sequence proposal and the observations and inputs are
added to the dataset. This is repeated until the budget is exhausted.

6

Under review as submission to TMLR

Algorithm 1 CoRel with parameterized optimization
Input: acquisition α : Pf 7→ R, black-box f : X 7→ R,
D0 = {xi, yi}n0

i=1, LVM ϕ : RD 7→ Pf , budgets
tmax, b

Output: Dtmax

for t ∈ 1, ..., tmax do
m← trainModel((1xi

, yi)t
i=1)

z∗ ← arg maxz α(ϕ(z), m)
p∗ ← ϕ(z∗)
x← getSequenceFromDistribution(p∗, α, b)
Dt+1 ← Dt ∪ {x, f(x)}

end for

Algorithm 2 getSequenceFromDistribution
Input: distribution P, acquisition α, evaluations b
Output: x∗

x∗ ← arg maxx P(x)
y∗ ← a(1x∗)
for t ∈ 1, ..., b do

x← x ∼ P
y ← α(1x)
if y > y∗ then

y∗ ← y, x∗ ← x
end if

end for

3.5 Convergence

A discrete optimizer together with UCB as the acquisition function can achieve sublinear regret under the
conditions laid out in Srinivas et al. (2012). The continuous optimization case is a distinct problem outside
the scope of this paper and additional considerations are in Appendix G.

4 Empirical results

We benchmark our method to optimize i) several Red Fluorescent Proteins (RFP) as proposed by Stanton
et al. (LamBO), ii) an enhanced Green Fluorescent Protein (eGFP) with a VAE proposed by Brookes et al.
(CBas) as a fitness proxy, and iii) 25 molecular optimization tasks (PMO) proposed by Gao et al. (see
Appendix H). We solve these problems with CoRel with D0 denoting the initial set of labeled candidates
that define a Pareto front, i.e. six RFP sequences, three GFP sequences, and one small molecule for each
PMO task. This setup is motivated by drug-discovery tasks where initial experimental observations can be
prohibitively expensive. We keep pre-training data equal between all tested methods and fix the prior domain
model ϕ for a fair comparison.3

4.1 Continuous optimization

Optimizing with a latent variable model lends itself to CoRel as a continuous optimizer. Brookes et al.
(2019) provide a continuous parameterization of Pf to solve the GFP problem in the form of a pre-trained
latent decoder (details are in Appendix I.4). The CBas oracle function evaluations serve as surrogate for the
true GFP fluorescence values. To qualitatively inspect our method we evaluate the covariance function values
of the (2D) latent space in an area around the reference sequence. Fig. 1 shows the evaluated Hellinger (Eq. (3))
and weighted Hellinger kernel (Eq. (6)), which are not equidistant in latent space, like the Matérn kernel
evaluations, and show the contribution of the probabilistic model weighting distribution to the covariance
function values. These values expectedly change when computed with respect to a different reference point
and higher covariance values are assigned in a density around the reference points and the respective decoding
probabilities (Appendix Fig. A2).

We optimize GFP sequences with CoRel, defining the product kernel model by setting Zn as the VAEs
latent training samples. We compare against greedy random selection of mutations close to the reference
sequences (random HC), Probabilistic Reparameterization (PR) (Daulton et al., 2022) and random sampling
of the sequence (Sobol). We run CoRel with (i) a product kernel from all available unlabelled data and
(ii) a N = 5 000 uniformly sampled subset, both use a continuous optimization and Expected Improvement
acquisition. Fig. 4 shows that we find larger objective values within the allotted budget (100 queries)
compared to random HC. The full product kernel (i) is terminated after 60h compute time,4 and the sampled

3Specifically, a (RFP) HMM computed from 250 sequences, VAE from 250 000 unlabelled samples (ZINC250k, PMO).
4At this point 26 iterations are completed for all seeds.

7

Under review as submission to TMLR

Table 1: PMO 25 tasks aggregated by group, mean ±standard error (SE) across tasks is reported; each value
is the mean over the best observations (9 seeds), normalized by the best value per task. For a complete
overview see Appendix Table A3.

BO references
group CoRel PR Bounce Turbo VanillaBO CMA-ES random HC

value ±SE value ±SE value ±SE value ±SE value ±SE value ±SE value ±SE
optimize 0.90 0.03 0.78 0.05 0.72 0.16 0.94 0.08 0.84 0.05 0.93 0.05 0.83 0.01
discover 0.88 0.02 0.61 0.10 0.09 0.03 0.98 0.12 0.91 0.06 0.99 0.09 0.85 0.09
dock 0.60 0.13 0.22 0.04 0.21 0.21 0.57 0.18 0.45 0.20 0.60 0.24 0.46 0.26
mpo 0.67 0.08 0.37 0.14 0.19 0.06 0.92 0.10 0.83 0.08 0.98 0.11 0.79 0.16
other 0.63 0.05 0.54 / 0.28 0.07 0.83 0.08 0.80 0.08 0.86 0.06 0.79 0.09

subset-kernel runs for less than 30h. Sobol and PR are overlying and neither propose an improvement over
the starting sequences. CoRel prioritizes extreme values of the oracle (Appendix Fig. A6).

To optimize small molecule (SELFIE) tokens we solve 25 PMO tasks continuously with CoRel, defining
a product kernel from a sampled set of (uniform sampled N = 1 000 unlabelled) training sequences, test-
ing against PR (Daulton et al., 2022), Bounce (Papenmeier et al., 2023), Turbo (Eriksson et al., 2019),
VanillaBO (Hvarfner et al., 2024), CMA-ES – see Table 1 for a summary grouped by tasks (an unaggregated
overview is in Table A3). The VAE (ϕ) which is used for all methods is trained on ZINC250k SELFIES
(details in Appendix I.6). Since single property optimization tasks tend to dominate result aggregation (logP,
QED, SA) we report grouped tasks, as to not overrepresent them. Again we optimize continuously with an EI
acquisition function. CoRel obtains the best performance for logP optimization and the gsk3 docking task
compared to other methods.

4.2 Discrete optimization

Optimizing in the discrete proposed sequence setting generates proposals directly in the sequence
space. We optimize the RFP problem with respect to two properties: stability and surface area accessibility
(SASA) proposed by Stanton et al. (2022). We use LamBO as a state of the art reference in this optimization
setting and also compare against a greedy hill-climb random sequence mutations.5 We take the Pareto front
(six reference RFP sequences) as D0 which differs from the larger pre-training set in (Stanton et al., 2022)
and set the oracle evaluations tmax to 180 queries. To optimize for multiple tasks in the BO algorithm we
use the expected hypervolume improvement (EHVI) as acquisition function (Daulton et al., 2020). To build
the Pf -space we take a hidden Markov model (HMM), obtained from HMMER (Eddy, 2011). The HMM
serves as our ϕ model to parameterize our distributions. The choice for the HMM as ϕ is motivated by the
process of querying for related sequences, e.g. the set of starting candidates, which already yields such a
model. This step is required when setting up the initial RFP problem-set (Stanton et al., 2022).6 Akin to the
optimization done in LamBO we mutate the elements of the input sequences to maximize EHVI acquisition
values. Fig. 2 shows that running CoRel obtains a larger relative hypervolume compared to LamBO, and
random HC which modifies two residues selected at random from elements in the Pareto front and retains the
best results for subsequent iterations. This results in a larger Pareto front of the respective protein candidates
(Fig. 3). In the setup by Stanton et al. (2022) where over 500 initial sequences are available we achieve on-par
performance (Fig. A4). However, we find that if significantly more starting candidates are available, a larger
Pareto front is optimized and LamBO outperforms our method.

5 Discussion

A constrained high-dimensional problem is a solvable problem The experiments we consider are
very high-dimensional and the proposed CoRel approach constrains this problem to make it computable.

5random HC mutates a few positions at random and retains best mutations per iteration.
6The RFP data includes a wide range of additional sequences that are not in the initial Pareto front (see Appendix I.5).

8

Under review as submission to TMLR

0 50 10
0

15
0

steps

1.00

1.05

1.10

1.15

1.20

1.25

1.30
re

l.
hy

pe
rv

ol
um

e
LamBO
CoRel
Random HC

Figure 2: The RFP Pareto front
is optimized and relative hypervol-
ume computed respective the six
labelled starting sequences. Re-
ported is mean ±SE (shaded)
across 9 seeds (random 5).

10500 11000 11500 12000
SASA

40

20

0

20

40

60

80

St
ab

ilit
y

Start
DsRed.M1
AdRed
mScarlet
DsRed.T4
mRouge
RFP630
LamBO
CoRel

Figure 3: Pareto front of the
RFP stability and surface accessi-
bility (SASA). Initial sequences (■),
the best proposals by LamBO (●)
and CoRel (✖) (9 seeds).

0 25 50 75 10
0

steps

3.26

3.28

3.30

3.32

m
ax

 f G
FP

method
PR
CoRel
Random HC

Sobol
kernel
N=5000
unlabelled

Figure 4: GFP optimization on
CBas. CoRel has k all sequences,
and N = 5 000 subset. Reported is
mean (line) ±SE (shaded) (CoRel
8 seeds). PR and Sobol (9 seeds)
remain at ≈ 3.25.

Other relaxations that are unconstrained can become unsolvable (Daulton et al., 2022). Although constraining
other methods is an option, there exists no generally applicable recipe for other high dimensional solvers.

We focus on the surrogate model rather than the acquisition function Advances in Bayesian
optimization can be achieved by building a useful surrogate function to model f or by investigating the
acquisition function. In addition to the problem transformation our primary contribution is the surrogate
model through the covariance function. CoRel focuses on the properties of the GP, which incorporates a
ranking over the continuously relaxed inputs. The surrogate model we obtain predicts points of interest to
observe, at the cost of capturing the underlying function landscape. An investigation of acquisition functions
are out of the scope for this work and we rely on the established results in the field (Jones et al., 1998;
Daulton et al., 2020).

Other distance measures apply Any distance metric on probability vectors applies as long as the resulting
kernel is valid. Other distance metric candidates include the Wasserstein distance or the Jensen-Shannon
divergence (Menéndez et al., 1997). CoRel can potentially work with either; however we emphasize the linear
runtime of our kernel, which may not translate to alternatives.

Relying on prior models Given that distributions over discrete input elements exist that have been shown
to work for a particular problem (Notin et al., 2023), they can be used directly with CoRel. The assumption
that a well-defined model exists for the problem domain is crucial. That means if no prior model over the
input tokens exists with which to derive a probability distribution, the proposed problem transformation is
not solvable. Though the lack of a model implies that no prior knowledge exists and the problem has to be
treated naively.

6 Conclusion

We have shown an approach to cast discrete Bayesian optimization problems as continuous with a compu-
tationally tractable, nonpathological choice of kernel function. Our approach allows us to leverage domain
knowledge from prior unsupervised models for Bayesian optimization, and the empirical assessment has
demonstrated the applicability to biochemical problems across several diverse tasks. We have transformed an
initially infeasible problem space and demonstrated performance on particularly challenging formulations of
optimization problems with very few starting observations and strict budgets.

9

Under review as submission to TMLR

References
Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. Latent space oddity: on the curvature of

deep generative models. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=SJzRZ-WCZ.

Viraj Bagal, Rishal Aggarwal, PK Vinod, and U Deva Priyakumar. Molgpt: molecular generation using a
transformer-decoder model. Journal of chemical information and modeling, 62(9):2064–2076, 2021.

Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N Bhat, Helge Weissig, Ilya N
Shindyalov, and Philip E Bourne. The protein data bank. Nucleic acids research, 2000.

Christopher M. Bishop. Pattern recognition and machine learning. Information science and statistics. Springer,
New York, 2006. ISBN 978-0-387-31073-2.

Surojit Biswas, Grigory Khimulya, Ethan C. Alley, Kevin M. Esvelt, and George M. Church. Low-N protein
engineering with data-efficient deep learning. Nature Methods, 18(4):389–396, 2021. ISSN 1548-7105. doi:
10.1038/s41592-021-01100-y. Nature Publishing Group.

Julian Blank and Kalyanmoy Deb. Pymoo: Multi-Objective Optimization in Python. IEEE Access, 8:
89497–89509, 2020. ISSN 2169-3536. doi: 10.1109/ACCESS.2020.2990567.

Ilija Bogunovic and Andreas Krause. Misspecified gaussian process bandit optimization. Advances in neural
information processing systems, 34:3004–3015, 2021.

Nicolas Boumal. Optimization and estimation on manifolds. Publisher: Catholic University of Louvain,
Louvain-la-Neuve, Belgium, 2014.

Garyk Brixi, Matthew G Durrant, Jerome Ku, Michael Poli, Greg Brockman, Daniel Chang, Gabriel A
Gonzalez, Samuel H King, David B Li, Aditi T Merchant, et al. Genome modeling and design across all
domains of life with evo 2. BioRxiv, pages 2025–02, 2025.

David Brookes, Hahnbeom Park, and Jennifer Listgarten. Conditioning by adaptive sampling for robust
design. In Proceedings of the 36th International Conference on Machine Learning, pages 773–782. PMLR,
2019. ISSN: 2640-3498.

Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Differentiable Expected Hypervolume Improvement
for Parallel Multi-Objective Bayesian Optimization. In Advances in Neural Information Processing Systems,
volume 33, pages 9851–9864. Curran Associates, Inc., 2020.

Samuel Daulton, Xingchen Wan, David Eriksson, Maximilian Balandat, Michael A Osborne, and Eytan
Bakshy. Bayesian optimization over discrete and mixed spaces via probabilistic reparameterization. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural
Information Processing Systems, volume 35, pages 12760–12774. Curran Associates, Inc., 2022.

Aryan Deshwal, Sebastian Ament, Maximilian Balandat, Eytan Bakshy, Janardhan Rao Doppa, and David
Eriksson. Bayesian optimization over high-dimensional combinatorial spaces via dictionary-based embed-
dings. In Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent, editors, Proceedings of The 26th
International Conference on Artificial Intelligence and Statistics, volume 206, pages 7021–7039. PMLR,
25–27 Apr 2023.

Nicki Skafte Detlefsen, Søren Hauberg, and Wouter Boomsma. Learning meaningful representations of protein
sequences. Nature Communications, 13:1914, 2022. ISSN 2041-1723. doi: 10.1038/s41467-022-29443-w.
Nature Publishing Group.

Kamil Dreczkowski, Antoine Grosnit, and Haitham Bou Ammar. Framework and benchmarks for combinatorial
and mixed-variable bayesian optimization. In Thirty-seventh Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2023. URL https://openreview.net/forum?id=qi0Zrm6E5E.

10

https://openreview.net/forum?id=SJzRZ-WCZ
https://openreview.net/forum?id=SJzRZ-WCZ
https://openreview.net/forum?id=qi0Zrm6E5E

Under review as submission to TMLR

Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, 1 edition, 1998. ISBN
978-0-521-62041-3 978-0-521-62971-3 978-0-511-79049-2. doi: 10.1017/CBO9780511790492.

Sean R. Eddy. Accelerated Profile HMM Searches. PLOS Computational Biology, 7(10):e1002195, 2011. ISSN
1553-7358. doi: 10.1371/journal.pcbi.1002195. Public Library of Science.

David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable global
optimization via local bayesian optimization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
6c990b7aca7bc7058f5e98ea909e924b-Paper.pdf.

Aasa Feragen, Francois Lauze, and Soren Hauberg. Geodesic Exponential Kernels: When Curvature and
Linearity Conflict. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
3032–3042, 2015.

Jonathan Frazer, Pascal Notin, Mafalda Dias, Aidan Gomez, Joseph K. Min, Kelly Brock, Yarin Gal, and
Debora S. Marks. Disease variant prediction with deep generative models of evolutionary data. Nature,
599(7883):91–95, 2021. ISSN 1476-4687. doi: 10.1038/s41586-021-04043-8. Nature Publishing Group.

Wenhao Gao, Tianfan Fu, Jimeng Sun, and Connor Coley. Sample efficiency matters: A benchmark for
practical molecular optimization. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, editors, Advances in Neural Information Processing Systems, volume 35, pages 21342–21357. Curran
Associates, Inc., 2022.

Roman Garnett. Bayesian Optimization. Cambridge University Press, January 2022.

Eduardo C. Garrido-Merchán and Daniel Hernández-Lobato. Dealing with categorical and integer-valued
variables in Bayesian Optimization with Gaussian processes. Neurocomputing, 380:20–35, 2020. ISSN
0925-2312. doi: 10.1016/j.neucom.2019.11.004.

Renpu Ge and Changbin Huang. A continuous approach to nonlinear integer programming. Applied
Mathematics and Computation, 34(1):39–60, 1989.

Miguel González-Duque, Richard Michael, Simon Bartels, Yevgen Zainchkovskyy, Søren Hauberg, and Wouter
Boomsma. A survey and benchmark of high-dimensional bayesian optimization of discrete sequences. arXiv
preprint arXiv:2406.04739, 2024.

Nate Gruver, Samuel Stanton, Nathan Frey, Tim G. J. Rudner, Isidro Hotzel, Julien Lafrance-Vanasse,
Arvind Rajpal, Kyunghyun Cho, and Andrew G Wilson. Protein design with guided discrete diffusion.
In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural
Information Processing Systems, volume 36, pages 12489–12517. Curran Associates, Inc., 2023.

Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamín
Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel, Ryan P. Adams,
and Alán Aspuru-Guzik. Automatic Chemical Design Using a Data-Driven Continuous Representation of
Molecules. ACS Central Science, 4(2):268–276, February 2018. ISSN 2374-7943. doi: 10.1021/acscentsci.
7b00572. URL https://doi.org/10.1021/acscentsci.7b00572. Publisher: American Chemical Society.

Mehrtash Harandi, Mathieu Salzmann, and Mahsa Baktashmotlagh. Beyond Gauss: Image-Set Matching on
the Riemannian Manifold of PDFs. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), December 2015.

E. Hellinger. Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen.
Journal für die reine und angewandte Mathematik, 1909(136):210–271, July 1909. ISSN 1435-5345. doi:
10.1515/crll.1909.136.210. De Gruyter.

11

https://proceedings.neurips.cc/paper_files/paper/2019/file/6c990b7aca7bc7058f5e98ea909e924b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/6c990b7aca7bc7058f5e98ea909e924b-Paper.pdf
https://doi.org/10.1021/acscentsci.7b00572

Under review as submission to TMLR

Carl Hvarfner, Erik Orm Hellsten, and Luigi Nardi. Vanilla Bayesian Optimization Performs Great in High
Dimensions, February 2024. arXiv:2402.02229 [cs, stat].

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient Global Optimization of Expensive
Black-Box Functions. Journal of Global Optimization, 13(4):455–492, December 1998. ISSN 1573-2916.
doi: 10.1023/A:1008306431147.

Diederik P. Kingma and Max Welling. An Introduction to Variational Autoencoders. Foundations and
Trends® in Machine Learning, 12(4):307–392, 2019. ISSN 1935-8237, 1935-8245. doi: 10.1561/2200000056.
arXiv:1906.02691 [cs, stat].

Deqian Kong, Yuhao Huang, Jianwen Xie, Edouardo Honig, Ming Xu, Shuanghong Xue, Pei Lin, Sanping
Zhou, Sheng Zhong, Nanning Zheng, and Ying Nian Wu. Dual-Space Optimization: Improved Molecule
Sequence Design by Latent Prompt Transformer, 2024. arXiv:2402.17179 [cs, q-bio].

Greg Landrum. rdkit/rdkit: 2024_03_1 (Q1 2024) Release, May 2024.

Seunghun Lee, Jaewon Chu, Sihyeon Kim, Juyeon Ko, and Hyunwoo J Kim. Advancing Bayesian Optimization
via Learning Correlated Latent Space. Advances in Neural Information Processing Systems, 2024.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Robert Verkuil,
Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level protein structure with a
language model. Science, 379(6637):1123–1130, 2023.

Xiaoyu Lu, Javier Gonzalez, Zhenwen Dai, and Neil D. Lawrence. Structured Variationally Auto-encoded
Optimization. In Proceedings of the 35th International Conference on Machine Learning, pages 3267–3275.
PMLR, July 2018. ISSN: 2640-3498.

Frederikke Isa Marin, Felix Teufel, Marc Horlacher, Dennis Madsen, Dennis Pultz, Ole Winther, and Wouter
Boomsma. Bend: Benchmarking dna language models on biologically meaningful tasks. arXiv preprint
arXiv:2311.12570, 2023.

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, 2015. URL https:
//www.tensorflow.org/.

Jiří Matoušek and Bernd Gärtner. Integer Programming and LP Relaxation. Springer, 2007.

Alexander G. de G. Matthews, Mark van der Wilk, Tom Nickson, Keisuke. Fujii, Alexis Boukouvalas, Pablo
León-Villagrá, Zoubin Ghahramani, and James Hensman. GPflow: A Gaussian process library using
TensorFlow. Journal of Machine Learning Research, 18(40):1–6, April 2017.

Natalie Maus, Haydn Jones, Juston Moore, Matt J Kusner, John Bradshaw, and Jacob Gardner. Local latent
space bayesian optimization over structured inputs. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35, pages
34505–34518. Curran Associates, Inc., 2022.

Natalie Maus, Kaiwen Wu, David Eriksson, and Jacob Gardner. Discovering Many Diverse Solutions with
Bayesian Optimization, May 2023. arXiv:2210.10953 [cs].

M.L. Menéndez, J.A. Pardo, L. Pardo, and M.C. Pardo. The jensen-shannon divergence. Journal of the
Franklin Institute, 334(2):307–318, 1997. ISSN 0016-0032.

Henry Moss, David Leslie, Daniel Beck, Javier Gonzalez, and Paul Rayson. Boss: Bayesian optimization over
string spaces. Advances in Neural Information Processing Systems, 33:15476–15486, 2020.

12

https://www.tensorflow.org/
https://www.tensorflow.org/

Under review as submission to TMLR

J. Močkus. On Bayesian Methods for Seeking the Extremum. In G. I. Marchuk, editor, Optimization Techniques
IFIP Technical Conference: Novosibirsk, July 1–7, 1974, Lecture Notes in Computer Science, pages 400–404.
Springer, Berlin, Heidelberg, 1975. ISBN 978-3-662-38527-2. doi: 10.1007/978-3-662-38527-2_55.

Pascal Notin, Lood Van Niekerk, Aaron W Kollasch, Daniel Ritter, Yarin Gal, and Debora S. Marks.
Trancepteve: Combining family-specific and family-agnostic models of protein sequences for improved
fitness prediction. bioRxiv, 2022. doi: 10.1101/2022.12.07.519495.

Pascal Notin, Aaron W. Kollasch, Daniel Ritter, Lood Van Niekerk, Steffanie Paul, Hansen Spinner, Nathan
Rollins, Ada Shaw, Ruben Weitzman, Jonathan Frazer, Mafalda Dias, Dinko Franceschi, Rose Orenbuch,
Yarin Gal, and Debora S. Marks. ProteinGym: Large-Scale Benchmarks for Protein Design and Fitness
Prediction. preprint, Synthetic Biology, December 2023.

Changyong Oh, Jakub Tomczak, Efstratios Gavves, and Max Welling. Combinatorial bayesian optimization
using the graph cartesian product. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019.

Leonard Papenmeier, Luigi Nardi, and Matthias Poloczek. Increasing the scope as you learn: Adaptive
bayesian optimization in nested subspaces. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35, pages 11586–11601.
Curran Associates, Inc., 2022.

Leonard Papenmeier, Luigi Nardi, and Matthias Poloczek. Bounce: Reliable high-dimensional bayesian
optimization for combinatorial and mixed spaces. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine, editors, Advances in Neural Information Processing Systems, volume 36, pages
1764–1793. Curran Associates, Inc., 2023.

Victor Picheny, Joel Berkeley, Henry B. Moss, Hrvoje Stojic, Uri Granta, Sebastian W. Ober, Artem Artemev,
Khurram Ghani, Alexander Goodall, Andrei Paleyes, Sattar Vakili, Sergio Pascual-Diaz, Stratis Markou,
Jixiang Qing, Nasrulloh R. B. S Loka, and Ivo Couckuyt. Trieste: Efficiently Exploring The Depths of
Black-box Functions with TensorFlow, 2023.

Simon C Potter, Aurélien Luciani, Sean R Eddy, Youngmi Park, Rodrigo Lopez, and Robert D Finn. Hmmer
web server: 2018 update. Nucleic Acids Research, 46(W1):W200–W204, 2018.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning. Adaptive
computation and machine learning. MIT Press, Cambridge, Mass, 2006. ISBN 978-0-262-18253-9.

Adam J. Riesselman, John B. Ingraham, and Debora S. Marks. Deep generative models of genetic variation
capture the effects of mutations. Nature Methods, 15(10):816–822, October 2018. ISSN 1548-7105. doi:
10.1038/s41592-018-0138-4. Nature Publishing Group.

Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott,
C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. Biological structure and function emerge from scaling
unsupervised learning to 250 million protein sequences. Proceedings of the National Academy of Sciences,
118(15):e2016239118, 2021. doi: 10.1073/pnas.2016239118.

Karen S Sarkisyan, Dmitry A Bolotin, Margarita V Meer, Dinara R Usmanova, Alexander S Mishin, George V
Sharonov, Dmitry N Ivankov, Nina G Bozhanova, Mikhail S Baranov, Onuralp Soylemez, et al. Local
fitness landscape of the green fluorescent protein. Nature, 533(7603):397–401, May 2016. ISSN 1476-4687.
doi: 10.1038/nature17995. Nature Publishing Group.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando De Freitas. Taking the Human
Out of the Loop: A Review of Bayesian Optimization. Proceedings of the IEEE, 104(1):148–175, January
2016. ISSN 0018-9219, 1558-2256. doi: 10.1109/JPROC.2015.2494218.

13

Under review as submission to TMLR

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias Seeger. Gaussian Process Optimization
in the Bandit Setting: No Regret and Experimental Design. IEEE Transactions on Information Theory, 58
(5):3250–3265, May 2012. ISSN 0018-9448, 1557-9654. doi: 10.1109/TIT.2011.2182033. arXiv:0912.3995
[cs].

Samuel Stanton, Wesley Maddox, Nate Gruver, Phillip Maffettone, Emily Delaney, Peyton Greenside, and
Andrew Gordon Wilson. Accelerating Bayesian optimization for biological sequence design with denoising
autoencoders. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
Sabato, editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 20459–20478. PMLR, 17–23 Jul 2022.

Austin Tripp, Erik Daxberger, and José Miguel Hernández-Lobato. Sample-efficient optimization in the
latent space of deep generative models via weighted retraining. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
11259–11272. Curran Associates, Inc., 2020.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,
Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric
Larson, C J Carey, Ilhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold,
Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro,
Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Xingchen Wan, Vu Nguyen, Huong Ha, Binxin Ru, Cong Lu, and Michael A. Osborne. Think Global and Act
Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces. In Proceedings
of the 38th International Conference on Machine Learning, pages 10663–10674. PMLR, July 2021. ISSN:
2640-3498.

Juliusz Krzysztof Ziomek and Haitham Bou Ammar. Are random decompositions all we need in high
dimensional Bayesian optimisation? In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages 43347–43368. PMLR,
23–29 Jul 2023.

14

Under review as submission to TMLR

A Proof that the relaxed objective has the same optima

Proposition 1. Assume that f has a unique optimum in x∗, then f̄ has a unique optimum in 1x∗ .

Proof.

f̄(p) =
∑
x∈X

f(x)p(x) ≤
∑
x∈X

max
x′

f(x′)p(x) = max
x′

f(x′)
∑
x∈X

p(x) = max
x′

f(x′) (8)

On the other hand: for an optimal x∗, i.e. f(x∗) = maxx′ f(x′) and choose p∗(x) := 1[x=x∗], then
f̄(p∗) =

∑
x∈X f(x)p∗(x)f(x) = maxx′ f(x′). Since by assumption x∗ is a unique optimum of f , this

completes the proof.

A.1 Multiple Optima

Proposition 4. For every p∗ with f̄(p∗) = maxp f̄(p), if x ∼ p∗, then f(x) = maxx′ f(x′).

Proof. Let p∗ be s.t. f̄(p∗) = maxp f(p) and let x be a sample from p∗. From the previous proof we know
that maxp f̄(p) = maxx′ f(x′). Furthermore, since x is a sample from p∗, we have that p∗(x) > 0. We will
prove the proposition by contradiction. Assume f(x) < maxx′ f(x′), then

max
x′

f(x′) =f̄(p∗) previous proof in Appendix A (9)

=p∗(x)f(x) +
∑

x′ ̸=x

p∗(x′)f(x′) definition of f̄ and separating terms (10)

≤p∗(x)f(x) +
∑

x′ ̸=x

p∗(x′)) max
x′′

f(x′′) over estimating all f(x′) (11)

=p∗(x)f(x) + (1− p∗(x)) max
x′

f(x′) simplifying the sum (12)

<p∗(x) max
x′

f(x′) + (1− p∗(x)) max
x′

f(x′) assumption on f(x) and p(x∗) > 0 (13)

= max
x′

f(x′) (14)

This is a contradiction, so we must have f(x) = maxx′ f(x′).

B Proof that the weighted Hellinger distance is negative definite

Proof of Proposition 2.

Proof. The proof follows Harandi et al. (2015). By definition of negative definite we have to show
∀N ∈ N,∀c1, . . . , cN ∈ R :

∑N
n=1 cn = 0⇒

∑N
n,m=1 cncmHDp(qn, qm)2 ≤ 0 .

15

Under review as submission to TMLR

Let N ∈ N and c1, . . . , cN ∈ R s.t.
∑N

n=1 cn = 0.

N∑
n,m=1

cncmHDp(qn, qm)2 (15)

= 1
2

N∑
n,m=1

cncm

∑
x∈X

p(x)
(√

qn(x)−
√

qm(x)
)2

(16)

� by definition

= 1
2

N∑
n,m=1

cncm

∑
x∈X

p(x)
(

qn(x) + qm(x)− 2
√

qn(x)qm(x)
)

(17)

� expanding the square

=
∑
x∈X

p(x)
(

N∑
n=1

cnqn(x)
N∑

m=1
cm +

N∑
m=1

cmqm(x)
N∑

n=1
cn −

N∑
n=1

cn

√
qn(x)

N∑
m=1

cm

√
qm(x)

)
(18)

� changing order of summation

= −
∑
x∈X

p(x)
N∑

n=1
cn

√
qn(x)

N∑
m=1

cm

√
qm(x) (19)

� since
N∑

n=1

cn = 0

= −
∑
x∈X

p(x)
(

N∑
n=1

cn

√
qn(x)

)2

(20)

� writing the identical sums over n and m as a square
≤ 0 (21)

To show that the square-root of the tilted Hellinger distance is a kernel, we follow the same reasoning as in
Harandi et al. (2015).

C Proof for the efficient evaluation of the Hellinger distance

Proposition 5. For product measures p, q ∈ Pf , the Hellinger distance can be written as

HD(p, q)2 = 1−
L∏

l=1

A∑
al=1

√
p[al, l]q[al, l]

.

16

Under review as submission to TMLR

Proof.

HD(p, q)2 = 1
2
∑
x∈X

(√
p(x)−

√
q(x)

)2
(22)

� expanding the square and using that p and q sum to 1.

= 1−
∑
x∈X

√
p(x)q(x) (23)

� property of the Hellinger distance

= 1−
A∑

a=1
· · ·

A∑
a=1︸ ︷︷ ︸

L times

√
p(a1, . . . , aL)q(a1, . . . , aL) (24)

� rewriting the sum

= 1−
A∑

a1=1
· · ·

A∑
aL=1︸ ︷︷ ︸

L times

√√√√ L∏
l=1

p[al, l]q[al, l] (25)

� using p, q ∈ Pf

= 1−
A∑

a1=1
· · ·

A∑
aL=1︸ ︷︷ ︸

L times

L∏
l=1

√
p[al, l]q[al, l] (26)

� moving the square-root

= 1−
A∑

a1=1

√
p[a1, 1]q[a1, 1] ˙ . . . ˙

A∑
aL=1

√
p[aL, L]q[aL, L] (27)

� moving unaffected parts of the product out of the sum

= 1−
L∏

l=1

A∑
al=1

√
p[al, l]q[al, l] (28)

� rearranging

D Efficient evaluation of the weighted Hellinger distance

D.1 Product measures

For product measures p, q, r ∈ Pf , the weighted Hellinger distance can be written as

HD(p, q, r)2 =
L∏

l=1

A∑
al=1

[
1
2r[al, l]p[al, l] + 1

2r[al, l]q[al, l]
]
−

L∏
l=1

A∑
al=1

r[al, l]
√

p[al, l]q[al, l]

=
L∏

l=1

A∑
al=1

1
2Ep[x]r[al, l] + 1

2Eq[x]r[al, l]−
L∏

l=1

A∑
al=1

r[al, l]
√

p[al, l]q[al, l].

17

Under review as submission to TMLR

Proof.

HDr(p, q)2 = 1
2
∑
x∈X

r(x)
(√

p(x)−
√

q(x)
)2

(29)

= 1
2
∑
x∈X

r(x)
(

p(x)− 2
√

p(x)q(x) + q(x)
)

(30)

� expanding the square

= 1
2
∑
x∈X

[
r(x)p(x)− 2r(x)

√
p(x)q(x) + r(x)q(x)

]
(31)

� note that
∑
x∈X

r(x)p(x) ̸= 1

= 1
2
∑
x∈X

r(x)p(x) + 1
2
∑
x∈X

r(x)q(x)−
∑
x∈X

r(x)
√

p(x)q(x) (32)

� property of the Hellinger distance

= 1
2

A∑
a1=1

· · ·
A∑

aL=1︸ ︷︷ ︸
L times

r(x1, . . . , xL)p(x1, . . . , xL) + 1
2

A∑
a1=1

· · ·
A∑

aL=1︸ ︷︷ ︸
L times

r(x1, . . . , xL)q(x1, . . . , xL) (33)

−
A∑

a1=1
· · ·

A∑
aL=1︸ ︷︷ ︸

L times

r(x1, . . . , xL)
√

p(x1, . . . , xL)q(x1, . . . , xL) (34)

� factorize

= 1
2

A∑
a1=1

· · ·
A∑

aL=1︸ ︷︷ ︸
L times

L∏
l=1

r[al, l]p[al, l] + 1
2

A∑
a1=1

· · ·
A∑

aL=1︸ ︷︷ ︸
L times

L∏
l=1

r[al, l]q[al, l] (35)

−
A∑

a1=1
· · ·

A∑
aL=1︸ ︷︷ ︸

L times

L∏
l=1

r[al, l]
√

p[al, l]q[al, l] (36)

� rearrange, and sums of products as products of sums - see C

=
L∏

l=1

A∑
al=1

1
2r[al, l]p[al, l] + 1

2r[al, l]q[al, l]−
L∏

l=1

A∑
al=1

r[al, l]
√

p[al, l]q[al, l] (37)

D.2 Hidden Markov model weighting

If p and w are both hidden Markov models, kw(p, 1x) can be evaluated efficiently. In this work, the setup
is even simpler as we only consider Dirac distributions for p (see Section 4.2). In that case, for x ̸= x′,
HDw(1x,1x′) =

√
w(x)+w(x′)

2 where w(x) is computed by the forward algorithm (see for example Bishop
(2006, Chapter 13.2)). We obtain our weightings by running HMMER (Durbin et al., 1998; Potter et al., 2018)
with default parameters on the wild-type and all given unlabeled sequences. Our code repository contains a
shell-script to do this.

18

Under review as submission to TMLR

D.3 PLM weighting

We obtain p and w from a PLM by the likelihoods from a softmax on the last-layer logits of e.g.esm2, where
the input sequence is masked at every position as described in (Rives et al., 2021) and the implementation of
Notin et al. (2023) (see masked-marginals in proteingym/baselines/esm/compute_fitness).

E Evaluations of f and the argmax p on acquisition

The function f does not act on the space of probability measures and there is no bijective mapping between
a probability vector and a discrete x. Ideally, the optimization of α arrives at a Dirac distribution, meaning
p is of the form 1x. Then mapping the optimization outcome to a sequence is unambiguous. In the other
case, when p is not a Dirac, we can sample sequences from p, and pick the x for evaluation which has the
best value of α(1x).

F CoRel algorithm specifications

F.1 A continuous optimization algorithm

Algorithm 3 CoRel using continuous optimization
Input: acquisition a : Pf → R, black-box f : X→ R, dataset D1 = {X, y}, pretrained LVM ϕ : RD → Pf

for t ∈ 1, ..., tmax do
m← trainModel((1xi , yi)t

i=1)
p∗ ← arg maxp a(p, m)
x← getSequenceFromDistribution(p∗)
Dt+1 ← Dt ∪ {x, f(x)}

end for

F.2 A discrete optimization algorithm

Algorithm 4 CoRel using discrete optimization
Input: acquisition a : Pf → R, black-box f : X→ R, dataset D1 = {X, y}, pretrained LVM ϕ : RD → Pf

for t ∈ 1, ..., tmax do
m← trainModel((1xi

, yi)t
i=1)

x← arg maxx′ a(1x′ , m)
Dt+1 ← Dt ∪ {x, f(x)}

end for

F.3 Optimizing multiple properties

Given an optimization task for multiple properties (see RFP optimization), we require a function for finding
Pareto optimal points. Given a set of all points S with x ⊂ S:

popt(x) := {x ∈ S|∄x′ ∈ S s.t. x′ ⪯ x ∧ x′ ̸= x}. (38)

In our experiments pareto optimal points are determined by the y vector.

G Convergence and regret considerations

G.1 Discrete convergence

Specifically, assume α is UCB and given the corners of the constraint simplex {δx}, which is of size |A|L,
then every evaluation of f takes a discrete sequence x which is a finite-arm bandit with |A|L arms – one for

19

Under review as submission to TMLR

each corner. Each acquisition at step t now with UCB variance-scaling parameter β we select

pt = arg max
p∈δx

[µt−1(p) + β
1
2
t σt−1(p)]. (39)

Proposition 6. Assume α is UCB, then optimizing f̄ such that only δx are evaluated yields sub-linear regret.

Proof sketch. Let the search be over the finite set {δx : x ∈ AL} and place a GP prior on f̄ with any p.d.
kernel k, then any standard finite-arm GP-bandit algorithm applies (i.e. UCB, TS) if the candidate set is
restricted to {δx}. We use the finite-arm regret theorem under additional assumptions in Srinivas et al. (2012)
such that the final regret bound RT ≤ O(

√
TβT γT) with high probability; where γT is an upper bounded

maximum gain in information.

G.2 Continuous convergence

Performing continuous optimization directly on Pf or—given a probabilistic decoder—in the latent space
that maps onto Pf does not give standard continuous BO convergence. The required results apply only
under a set of assumptions on the model, and its evaluations (Jones et al., 1998; Garnett, 2022). Specifically,
f is required to belong to the kernel RKHS for GP-UCB to converge, however our f is a function on the
discrete realized (Dirac) input sequences, whereas the surrogate model and subsequent RKHS are formulated
on the continuous Pf . Strictly speaking, the model is thus misspecified, prohibiting the use of continuous
convergence results. Other convergence requirements are a compact Pf , any set of latents to be compact, and
k to be Lipschitz continuous. To address the f RKHS mismatch we need to consider to what extent f is
approximately in the surrogate f̄ RKHS with the proposed kernel such that the results by Bogunovic and
Krause (2021) on EC-GP-UCB can apply.

H Experimental Setup

Identifier Type Dimensions Task Reference
RFP amino acids 20396 stability & surface accessibility (2D) Stanton et al. (2022)
GFP amino acids 20237 CBas value (1D) Brookes et al. (2019)
PMO selfie tokens 6470 molecular properties (1D) Gao et al. (2022)

Table A2: Experiment Overview

I Baseline implementations and hyperparameters

I.1 Implementation and optimization

Models and experiments are implemented with Tensorflow (Apache License 2.0) (Martín Abadi et al., 2015)
(tf), Tensorflow-probability (Apache License 2.0), GPflow (Apache License 2.0) (Matthews et al., 2017),
and Trieste (MIT license) (Picheny et al., 2023). We provide a vectorized implementation of the weighted
hellinger kernel and base hellinger kernel in TF under the MIT license. Model hyperparameters are optimized
using the scipy LBFGS optimizer (BSD 3-Clause License) (Virtanen et al., 2020) on the model likelihood as
previously described. All results have been recorded with MlFlow (Apache License 2.0), and wandb (MIT
license).

I.2 Computational Resources

Initial development was done on a M1 Pro ARM architecture with tensorflow-metal support on a MacOS. All
final experiments have been run on a Linux HPC platform (4.18.0) x86_64 architecture with Intel Xeon 6248
CPUs. GPU resources include NVIDIA Titan Xp, RTX, Quadro, A40 with CUDA version 12.3.

20

Under review as submission to TMLR

I.3 Discrete biological sequence optimization library

This library contains the RFP, GFP, and all PMO problems, as well as the stable LamBO implementation
for experimental queries (Apache License 2.0). We define the RFP problem with FoldX (Academic License)
and SASA computations (BSD 3-Clause License of RDKit (Landrum, 2024)), respective the LamBO defined
pareto front. We additionally include a reference objective that is equivalent to the LamBO setup and includes
additional sequences.

I.4 CBas VAE model

1.00 0.75 0.50 0.25 0.00 0.25 0.50
z1

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

z 2

top
median
min
start
target

2.8 2.9 3.0 3.1 3.2 3.3 3.4
pred. observation

Figure A1: The latent space (z ∈ R2), encodes the corpus of all experimentally evaluated sequences (dots).
Available for optimization are only oracle evaluations - see markers (top ▲, median ●, and lowest ▼ 10
observations each). Start is wild-type and target the maximally fluorescent candidate. Fig. 1 displays the
dashed square latent space region.

The GFP problem is presented in Brookes et al. (2019) with a VAE as a latent variable model and a custom
predictive GP model.7 The full training corpus are 54025 unique sequences for which observations are
available and is originally provided in Sarkisyan et al. (2016). For the VAE: the encoder is a simple neural
network (size=50 units) with ELU activation mapping to 20 latent dimensions. The decoder is a deep neural
network with 3 layers of dimensions [50, 20*len(sequence), 20] with ELU and softmax activation respectively,
such that we first obtain a mapping from latent space to hidden space of size number of amino acids times
(aligned) sequence length and ultimately the label-encoded protein sequence. Model input are aligned GFP
sequences.

Training data are 5000 sequences of length 237 with 20 possible amino-acid tokens at each position. The
oracle training data are the upper-quantile (by fluorescence measurement), which is approximately 9% of
all available sequences. Training has been done for 100 epochs in batches of 10 using a (tensorflow2) Adam
optimizer with default configuration.

The model latent space is used in combination with a predictive GP oracle model as a surrogate for GFP.
For a specification of the predictive GP model we refer to Brookes et al. (2019).

The optimization task for the GFP problem is the minimization of the negative oracle values, to find the
global minimum - see Fig. 4. For later analysis the sign is inverted, as we ultimately intend to maximize the
oracle.

We adapt this architecture to two latent dimensions for visualization purposes only. All empirical results
queried against the GP utilize the initial model of full dimensionality. The remaining model specifications
remain the same.

7The authors provide no license, therefore we follow the ICML copyright by authors and PMLR 2023.

21

Under review as submission to TMLR

I.5 LamBO latent optimizer

We use the LamBO implementation directly from the stable tagged submission branch of Stanton et al. (2022)
(commit 22afec26da0b9ea1810e65f8a60ea7988c021cef Oct-2022) and refer to their exact model specifications. The
only addition we make is to define a dedicated task protocol to work with the discrete sequence optimization
library we provide, and associated configurations.
We highlight that the original model specification and experiments account for a large range of starting
sequences including seed-sequences. Additionally, when analyzing the model and observations we find that
the relative hypervolume is computed respective a hard-coded set of reference values. For our benchmarking
purposes we record this value also (see Supplementary Fig. A5). In our case we obtain the start values
from the black-box function evaluations and compute the relative HV with respect to that. We provide the
algorithm only with an exact set of 6 RFP PDB files to use, and do not access any provided seed-sequences.

The LamBO RFP data-set contains 50 PDB files (RFP structure files), 754 related sequences, and 1923
generated proxy seed sequences.

I.6 PMO VAE

We optimize the PMO tasks in a learned latent space, via a standard VAE architecture trained on ZINC250k
with selfies tokenization. Implementations of an identical architecture are provided in Tensorflow (for
CoRel) and PyTorch (for all torch-based models). The encoder is a three layer architecture with 2048, 1024,
256 dense layers, to the latent dimensions (×2 for µ and σ of the latent). All encoding layers have batch-
normalization, and dropout (p = 0.2) for each layer, with a ReLU activation function. The tf implementation
learns a tf Probability MultivariateNormalDiag, whereas the torch version learns a Normal distribution
object. The decoder is symmetrical to the encoder, with latent dimensions to 256, 1024, and 2048 dense layers,
each with batch-norm, activation, and dropout, as described in the encoder. The VAE is trained to minimize
a negative ELBO with a discounted KL divergence: −ELBO := −Eq(z|x)p(x|z) + 0.1 ∗DKL(q(z|x)||p(z)) .

We train a d = 128 latent variable model (VAE) which is used for all presented algorithms. In an ablation we
consider d = 64 latent dimensions (see Appendix J.3.1).

Model training for tf was stopped after 1050 iterations, with a train loss of 13.465 and test loss of 11.095,
and torch obtained a train loss of 11.188 and test loss of 17.904 at the same number of iterations.

We highlight that the training-/validation-loss show discrepancies between the two which are likely to
implementational differences on the library side (optimizer, sampling, etc.).

I.7 Random Mutations

As a naïve baseline, we consider mutating positions at random in the Pareto front. At each iteration, we
maintain a population of 16 elements (padding with random mutations if the Pareto front is not large enough).
Retaining well performing mutations leads to a hill-climbing algorithm. Each of these elements is then
mutated in two random positions (taking into account that sequences may have varying lengths, and never
performing any inserting/deleting operations). The results provided were averaged over 5 iterations with
different random seeds. The performance of this baseline is noteworthy, and the difference between it and
e.g. Stanton et al. (2022)’s NSGA-2 may be attributed to the fact that we mutate twice instead of once per
iteration.

I.8 Probabilistic Reparameterization

We set up Probabilistic Reparameterization (PR) as presented in Daulton et al. (2022) and the codebase
available with it. We find that the high dimensionality of our problem space poses a challenge and we treat
the problem therefore as a categorical problem space (for RFP, GFP) whereas the base implementation
may convert to one-hot encoding of the problem (PMO). The GFP problem is implemented as a single task
problem, whereas RFP as a multi-task problem. Conducting the GFP experiments was computationally
feasible in the categorical setup, however the algorithm suggests a lot of potential mutations per iteration.

22

Under review as submission to TMLR

Since the RFP task relies on running stability simulations via FoldX and the runtime of the method increases
with the number of mutations proposed, we find that running the RFP experiments within the given budget
to be prohibitively expensive. We remark that apart from high runtime of the black-box functions, the very
high number of proposed mutations is an unrealistic scenario for protein engineering tasks.

I.9 Sobol sampling

We use the Sobol sampler as provided with the Probabilistic Reparameterization codebase from Daulton et al.
(2022). In contrast to the previously described random mutations (see Appendix I.7) the whole sequence
i.e. every position is sampled completely at random. We remark that this algorithm yields a very large
number of mutations compared to a reference sequence because potentially any position can be mutated to
any other available amino acid. This is an unrealistic scenario for any protein engineering task and therefore
serves only as a random baseline.

I.10 NSGA-II

During the development and initial experimental runs we had included the Pymoo implementation of NSGA-II
Blank and Deb (2020) for multi-objective optimization. However, due to implementation constraints we
found that the NSGA-II algorithm proposes a very large number of mutations for candidates, making a direct
comparison to CoRel and LamBO challenging. On one side, this makes the experimental runs significantly
more expensive than CoRel, LamBO or random HC, while on the other hand this yields quite extreme
task values which appear initially like a significant improvement. We remark that proposing more than
20 mutations per iteration is however quite challenging in a protein engineering setting. An adaptation of
NSGA-II which includes a hard limit on number of mutations we leave for future work.

J Additional Results

J.1 Reported Metrics

std.err. = SE := σ√
n

std.dev. = SD = σ :=

√√√√ N∑
i=1

(xi − µ)2

N

µ = 1
N

N∑
i=1

xi

µnorm = 1
N

N∑
i=1

xi

xmax

In Table A3 we report the mean of the best observed values across seeds and standard deviation (±) across
seeds. In Table 1 we normalize each task (row) in Table A3 by the max value, such that the best observed
value per task is 1., and compute the empirical mean across the reported normalized value and standard
deviation.

J.2 PMO

PR and Bounce fail due to memory requirements, and terminate early. For these methods all values up until
the point of failure are recorded and displayed in results. Less runs fail for the lower-dimensional VAE
ablation (d = 64) for PR and Bounce.

23

Under review as submission to TMLR

Table A3: PMO results, average best function values over 9 seeds with standard deviation across seeds (±),
budget is 300 black-box evaluations.

BO ref.
group oracle CoRel PR Bounce Turbo VanillaBO CMA-ES random HC

optimize rdkit_logp 7.49 ± 0.95 5.23 ± 0.75 6.50 ± 3.38 10.57 ± 1.61 7.86 ± 0.82 9.88 ± 1.27 6.89 ± 0.25
rdkit_qed 0.94 ± 0.0 0.80 ± 0.06 0.53 ± 0.13 0.89 ± 0.05 0.88 ± 0.04 0.90 ± 0.02 0.88 ± 0.01
sa_tdc 8.78 ± 0.13 8.93 ± 0.10 8.79 ± 0.16 7.70 ± 0.24 7.60 ± 0.26 8.02 ± 0.14 7.95 ± 0.05

dock drd2_docking 0.03 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.14 ± 0.02 0.13 ± 0.08 0.20 ± 0.13 0.16 ± 0.13
gsk3_beta 0.2 ± 0.04 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
jnk3 0.09 ± 0.02 0.08 ± 0.01 0.08 ± 0.08 0.14 ± 0.06 0.10 ± 0.03 0.11 ± 0.01 0.08 ± 0.02

discover celecoxib_rediscovery 0.21 ± 0.0 0.13 ± 0.02 0.02 ± 0.01 0.22 ± 0.04 0.21 ± 0.01 0.22 ± 0.03 0.18 ± 0.03
thiothixene_rediscovery 0.22 ± 0.0 0.17 ± 0.03 0.02 ± 0.01 0.24 ± 0.01 0.22 ± 0.02 0.23 ± 0.02 0.23 ± 0.03
troglitazone_rediscovery 0.16 ± 0.01 0.11 ± 0.02 0.02 ± 0.00 0.20 ± 0.03 0.18 ± 0.01 0.21 ± 0.01 0.16 ± 0.00

mpo amlodipine_mpo 0.44 ± 0.0 0.24 ± 0.10 0.00 ± 0.00 0.45 ± 0.04 0.45 ± 0.01 0.48 ± 0.05 0.45 ± 0.03
fexofenadine_mpo 0.54 ± 0.12 0.36 ± 0.17 0.25 ± 0.00 0.70 ± 0.05 0.65 ± 0.03 0.64 ± 0.02 0.63 ± 0.02
osimetrinib_mpo 0.63 ± 0.03 0.60 ± 0.02 0.58 ± 0.05 0.72 ± 0.01 0.70 ± 0.02 0.74 ± 0.02 0.70 ± 0.05
perindopril_mpo 0.32 ± 0.0 0.10 ± 0.11 0.00 ± 0.00 0.33 ± 0.09 0.28 ± 0.03 0.37 ± 0.06 0.26 ± 0.09
ranolazine_mpo 0.34 ± 0.07 0.11 ± 0.04 0.13 ± 0.22 0.68 ± 0.08 0.43 ± 0.08 0.63 ± 0.08 0.37 ± 0.17
sitagliptin_mpo 0.08 ± 0.07 0.03 ± 0.02 0.00 ± 0.00 0.26 ± 0.02 0.28 ± 0.08 0.35 ± 0.10 0.23 ± 0.13
zaleplon_mpo 0.21 ± 0.02 0.09 ± 0.03 0.00 ± 0.00 0.37 ± 0.04 0.33 ± 0.01 0.40 ± 0.02 0.34 ± 0.05

other albuterol_similarity 0.33 ± 0.03 0.30 ± 0.08 0.17 ± 0.03 0.52 ± 0.06 0.46 ± 0.06 0.44 ± 0.05 0.46 ± 0.09
deco_hop 0.53 ± 0.0 0.52 ± 0.01 0.51 ± 0.01 0.56 ± 0.02 0.56 ± 0.00 0.55 ± 0.01 0.54 ± 0.02
isomer_c7h8n2o2 0.54 ± 0.08 0.33 ± 0.18 0.24 ± 0.31 0.87 ± 0.13 0.77 ± 0.16 0.92 ± 0.07 0.82 ± 0.08
isomer_c9h10n2o2pf2cl 0.37 ± 0.14 0.21 ± 0.09 0.05 ± 0.08 0.64 ± 0.08 0.63 ± 0.06 0.76 ± 0.07 0.51 ± 0.09
median_1 0.13 ± 0.01 0.13 ± ? 0.01 ± 0.01 0.15 ± 0.01 0.19 ± 0.04 0.19 ± 0.01 0.19 ± 0.05
median_2 0.12 ± 0.0 0.09 ± 0.00 0.01 ± 0.00 0.15 ± 0.01 0.14 ± 0.01 0.15 ± 0.01 0.15 ± 0.01
mestranol_similarity 0.31 ± 0.03 0.29 ± 0.02 0.03 ± 0.01 0.44 ± 0.06 0.36 ± 0.02 0.41 ± 0.03 0.37 ± 0.02
scaffold_hop 0.38 ± 0.0 0.36 ± 0.01 0.35 ± 0.01 0.39 ± 0.01 0.40 ± 0.02 0.44 ± 0.02 0.39 ± 0.02
valsartan_smarts 0.0 ± 0.0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

J.3 Ablation: Product kernel of different sizes (PMO VAE d=128)

BO ref.
CoRel (N=250) CoRel (N=2.5k) CoRel (N=25k) PR Bounce Turbo VanillaBO CMA-ES random HC

group value ±SD value ±SD value ±SD value ±SD value ±SD value ±SD value ±SD value ±SD value ±SD
optimize 0.90 0.03 0.86 0.06 0.62 0.00 0.78 0.05 0.72 0.16 0.94 0.08 0.84 0.05 0.93 0.05 0.83 0.01
discover 0.86 0.00 0.89 0.03 0.86 0.00 0.61 0.10 0.09 0.03 0.98 0.12 0.91 0.06 0.99 0.09 0.85 0.09
dock 0.61 0.17 0.53 0.16 0.39 0.00 0.22 0.04 0.21 0.21 0.57 0.18 0.45 0.20 0.60 0.24 0.46 0.26
mpo 0.68 0.07 0.60 0.12 0.39 0.00 0.37 0.14 0.19 0.06 0.92 0.10 0.83 0.08 0.98 0.11 0.79 0.16
other 0.62 0.05 0.59 0.07 0.47 0.00 0.54 - 0.28 0.07 0.83 0.08 0.80 0.08 0.86 0.06 0.79 0.09

Table A4: Aggregated results with d=128 VAE, evaluating CoRel with different kernel-sample sizes
(N=250,2500,25.000) (default N=1000) (5 seeds, 9 seeds for baselines). We find that product kernels
constructed with more samples do not necessarily yield performance increases.

J.3.1 Ablation: PMO VAE d=64

BO ref.
CoRel (N=1k) CoRel (N=25k) CoRel (N=2.5k) PR Bounce Turbo VanillaBO CMA-ES random HC

group value ±SD value ±SD value ±SD value ±SD value ±SD value ±SD value ±SD value ±SD value ±SD
optimize 0.87 0.01 0.66 0.00 0.86 0.01 0.80 0.10 0.67 0.12 0.92 0.11 0.89 0.04 0.92 0.06 0.91 0.07
discover 0.90 0.00 0.90 0.00 0.90 0.00 0.56 0.11 0.08 0.05 0.89 0.03 0.78 0.08 0.92 0.11 0.91 0.09
dock 0.40 0.10 0.30 0.00 0.40 0.11 0.46 0.22 0.38 0.40 0.76 0.15 0.69 0.13 0.63 0.17 0.92 0.56
mpo 0.67 0.05 0.52 0.10 0.67 0.06 0.47 0.17 0.16 0.13 0.89 0.13 0.87 0.14 0.94 0.13 0.88 0.16
other 0.65 0.08 0.55 0.04 0.64 0.08 0.60 - 0.29 0.04 0.81 0.05 0.84 0.10 0.80 0.07 0.82 0.10

Table A5: Aggregated results with d=64 VAE, evaluating CoRel with three different kernel-sample sizes (5
seeds CoRel, 9 seeds for remainder) for 100 iterations. We find that the lower dimensions are beneficial for
PR, VanillaBO, and the random HC baseline. Unaggregated results are in Table A6

24

Under review as submission to TMLR

BO ref.
group oracle CoRel (N=1k) CoRel (N=25k) CoRel (N=2.5k) PR Bounce Turbo VanillaBO CMA-ES random HC

optimize rdkit_logp 5.22 ± 0.3 5.05 ± 0.0 5.1 ± 0.09 5.95 ± 1.25 4.85 ± 2.42 8.53 ± 2.20 7.35 ± 0.50 7.89 ± 1.02 8.21 ± 0.92
rdkit_qed 0.94 ± 0.0 0.94 ± 0.0 0.94 ± 0.0 0.67 ± 0.13 0.42 ± 0.03 0.84 ± 0.03 0.87 ± 0.04 0.89 ± 0.03 0.87 ± 0.03
sa_tdc 8.57 ± 0.07 3.43 ± 0.0 8.55 ± 0.06 8.70 ± 0.12 8.67 ± 0.30 7.65 ± 0.30 7.79 ± 0.07 7.74 ± 0.24 7.44 ± 0.56

dock drd2_docking 0.02 ± 0.0 0.02 ± 0.0 0.02 ± 0.01 0.02 ± 0.00 0.01 ± 0.01 0.08 ± 0.04 0.04 ± 0.02 0.06 ± 0.02 0.18 ± 0.24
gsk3_beta 0.16 ± 0.0 0.16 ± 0.0 0.16 ± 0.0 0.22 ± 0.11 0.12 ± 0.11 0.29 ± 0.06 0.28 ± 0.06 0.23 ± 0.10 0.31 ± 0.12
jnk3 0.06 ± 0.03 0.03 ± 0.0 0.06 ± 0.03 0.06 ± 0.03 0.07 ± 0.08 0.10 ± 0.01 0.10 ± 0.01 0.09 ± 0.01 0.10 ± 0.03

discover celecoxib_rediscovery 0.21 ± 0.0 0.21 ± 0.0 0.21 ± 0.0 0.12 ± 0.04 0.02 ± 0.01 0.20 ± 0.00 0.15 ± 0.01 0.19 ± 0.03 0.17 ± 0.02
thiothixene_rediscovery 0.22 ± 0.0 0.22 ± 0.0 0.22 ± 0.0 0.12 ± 0.02 0.01 ± 0.01 0.20 ± 0.01 0.19 ± 0.03 0.22 ± 0.02 0.20 ± 0.03
troglitazone_rediscovery 0.15 ± 0.0 0.15 ± 0.0 0.15 ± 0.0 0.12 ± 0.01 0.02 ± 0.01 0.17 ± 0.01 0.16 ± 0.01 0.18 ± 0.02 0.21 ± 0.01

mpo amlodipine_mpo 0.44 ± 0.0 0.44 ± 0.0 0.44 ± 0.0 0.14 ± 0.14 0.00 ± 0.00 0.42 ± 0.01 0.42 ± 0.05 0.42 ± 0.03 0.42 ± 0.04
fexofenadine_mpo 0.35 ± 0.09 0.15 ± 0.17 0.35 ± 0.08 0.58 ± 0.02 0.14 ± 0.13 0.61 ± 0.03 0.60 ± 0.01 0.62 ± 0.02 0.64 ± 0.03
osimetrinib_mpo 0.61 ± 0.01 0.26 ± 0.28 0.61 ± 0.01 0.61 ± 0.03 0.42 ± 0.32 0.68 ± 0.02 0.67 ± 0.04 0.67 ± 0.03 0.68 ± 0.04
perindopril_mpo 0.32 ± 0.0 0.32 ± 0.0 0.32 ± 0.0 0.07 ± 0.05 0.00 ± 0.00 0.31 ± 0.06 0.19 ± 0.06 0.30 ± 0.02 0.31 ± 0.06
ranolazine_mpo 0.23 ± 0.0 0.23 ± 0.0 0.23 ± 0.0 0.18 ± 0.06 0.14 ± 0.14 0.40 ± 0.16 0.41 ± 0.03 0.51 ± 0.14 0.54 ± 0.11
sitagliptin_mpo 0.06 ± 0.07 0.0 ± 0.0 0.06 ± 0.08 0.10 ± 0.09 0.00 ± 0.00 0.19 ± 0.05 0.32 ± 0.17 0.31 ± 0.09 0.18 ± 0.08
zaleplon_mpo 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.10 ± 0.09 0.00 ± 0.00 0.33 ± 0.06 0.28 ± 0.01 0.26 ± 0.05 0.22 ± 0.09

other albuterol_similarity 0.31 ± 0.0 0.31 ± 0.0 0.31 ± 0.0 0.24 ± 0.03 0.17 ± 0.03 0.38 ± 0.01 0.42 ± 0.08 0.38 ± 0.06 0.38 ± 0.07
deco_hop 0.53 ± 0.0 0.53 ± 0.0 0.53 ± 0.0 0.52 ± 0.00 0.51 ± 0.01 0.55 ± 0.01 0.53 ± 0.01 0.55 ± 0.02 0.54 ± 0.01
isomer_c7h8n2o2 0.37 ± 0.21 0.04 ± 0.09 0.34 ± 0.21 0.38 ± 0.29 0.08 ± 0.08 0.65 ± 0.10 0.87 ± 0.11 0.51 ± 0.11 0.70 ± 0.19
isomer_c9h10n2o2pf2cl 0.28 ± 0.19 0.05 ± 0.11 0.23 ± 0.17 0.28 ± 0.14 0.01 ± 0.00 0.51 ± 0.02 0.55 ± 0.09 0.57 ± 0.01 0.43 ± 0.14
median_1 0.13 ± 0.01 0.12 ± 0.0 0.13 ± 0.01 0.11 ± 0.02 0.02 ± 0.02 0.14 ± 0.01 0.13 ± 0.03 0.15 ± 0.02 0.14 ± 0.01
median_2 0.12 ± 0.0 0.12 ± 0.0 0.12 ± 0.0 0.08 ± 0.02 0.01 ± 0.00 0.13 ± 0.01 0.13 ± 0.02 0.12 ± 0.01 0.14 ± 0.01
mestranol_similarity 0.21 ± 0.03 0.2 ± 0.02 0.22 ± 0.03 0.30 ± 0.00 0.02 ± 0.01 0.33 ± 0.02 0.33 ± 0.02 0.34 ± 0.03 0.39 ± 0.04
scaffold_hop 0.38 ± 0.0 0.38 ± 0.0 0.38 ± 0.0 0.36 ± 0.00 0.35 ± 0.01 0.39 ± 0.01 0.38 ± 0.01 0.39 ± 0.00 0.39 ± 0.02
valsartan_smarts 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Table A6: PMO VAE d=64 optimization results. All methods have been assessed on a VAE with 64 latent
dimensions, CoRel 5 seeds, remainder 9 seeds. Mean best observed values over 100 iterations (budget) across
seeds and standard deviation are reported. We report for three different CoRel kernel methods, where product
kernels have been sampled from different sample-sizes from ZINC250k (N=1k, 2.5k, 25k).

J.4 GFP

-0.
30

-0.
20

-0.
10 0.0

1
0.1

1
0.2

1

z1

-0.30

-0.20

-0.10

0.01

0.11

0.21

z 2

z=[0, 0]
Matern

0.
84

0.
87

0.
90

0.93

0.9
6

0.
99

-0.
30

-0.
20

-0.
10 0.0

1
0.1

1
0.2

1

z1

z 2

z=[0, 0]
Hellinger

0.48

0.
48

0.5
6

0.64

0.7
20.80

-0.
30

-0.
20

-0.
10 0.0

1
0.1

1
0.2

1

z1

z 2

z=[0.0, 0.19]
Hellinger weighted

0.9900

0.99000.9925

0.9925

0.9
95

0

0.9950

0.9950

0.9975

Figure A2: Covariance function values for the GFP (2D) latent space where the reference point is the GFP
wild-type sequence. Comparing Matérn 5/2 with the (weighted) Hellinger kernel. The reference points
corresponds to the start point in Fig. A1.

25

Under review as submission to TMLR

J.5 RFP

0 32 64 96 12
8

16
0

19
2

22
4

25
6

28
8

32
0

35
2

steps

1.00

1.05

1.10

1.15

1.20

re
l.

hy
pe

rv
ol

um
e

LamBO
CoRel
Random

Figure A3: Discretely optimizating RFP we compare against LamBO in the warm-start setting. Starting
N=50, batch-size=16 across seven seeds (random two seeds). Markers indicate batch averages with std.err.
bars. Shaded region is 95% CI.

0 32 64 96 12
8

16
0

steps

1.00

1.02

1.04

1.06

1.08

1.10

re
l.

hy
pe

rv
ol

um
e

LamBO
CoRel

Figure A4: Optimizing RFP discretely in the reference case with 512 starting sequences. We compare CoRel
against LamBO in the reference setup, batch-size=16 across three seeds. Given that we start with a relatively
large starting hypervolume only marginal improvements can be achieved. Markers indicate batch averages
with std.err. bars. Shaded region is 95% CI.

26

Under review as submission to TMLR

0 32 64 96 12
8

16
0

steps

1.0

1.2

1.4

1.6

La
m

BO
 re

l.
hy

pe
rv

ol
um

e
LamBO
CoRel

Figure A5: Optimizing RFP discretely in the reference case with 512 starting sequences using the LamBO
specific relative hypervolume improvement. This metric is computed with internal reference Pareto front
values, which remain fixed across all experiments and display a larger relative improvement over time.
Batch-size is 16 across three seeds. Markers indicate batch averages with std.err. bars. Shaded region is 95%
CI.

0 25 50 75 10
0

steps

2.9

3.0

3.1

3.2

f G
FP

PR
CoRel
Random HC
Sobol

Figure A6: Oracle observations during the course of 100 GFP optimization steps. CoRel jumps between
extreme values in contrast to the random climbing. Proposals by Sobol or PR sampling yield consistently
subpar values.

27

	Introduction
	Background
	Related Work
	The case for pre-trained probabilistic domain models

	Continuously relaxed Bayesian optimization
	From discrete to continuous space
	The model
	The weighted Hellinger kernel

	Optimizing the acquisition function
	The CoRel algorithms
	Convergence

	Empirical results
	Continuous optimization
	Discrete optimization

	Discussion
	Conclusion
	Proof that the relaxed objective has the same optima
	Multiple Optima

	Proof that the weighted Hellinger distance is negative definite
	Proof for the efficient evaluation of the Hellinger distance
	Efficient evaluation of the weighted Hellinger distance
	Product measures
	Hidden Markov model weighting
	PLM weighting

	Evaluations of f and the argmax p on acquisition
	CoRel algorithm specifications
	A continuous optimization algorithm
	A discrete optimization algorithm
	Optimizing multiple properties

	Convergence and regret considerations
	Discrete convergence
	Continuous convergence

	Experimental Setup
	Baseline implementations and hyperparameters
	Implementation and optimization
	Computational Resources
	Discrete biological sequence optimization library
	CBas VAE model
	LamBO latent optimizer
	PMO VAE
	Random Mutations
	Probabilistic Reparameterization
	Sobol sampling
	NSGA-II

	Additional Results
	Reported Metrics
	PMO
	Ablation: Product kernel of different sizes (PMO VAE d=128)
	Ablation: PMO VAE d=64

	GFP
	RFP

