
Appendices

A Auxiliary Results

In this appendix we extend several key results from [23] for the case of adding a bias term. Specifically,
we extend Theorem 4.2 from [23] which shows that under mild assumptions on the distribution,
the gradient of the loss points in a good direction which depends on the angle between the learned
vector w and the target v. We also bound the volume of a certain set in R2, which can be seen as an
extension of Lemma B.1 from [23].

Lemma A.1. Let P = {y ∈ R2 : w>y > b,v>y > b, ‖y‖ ≤ α} for b ∈ R and w,v ∈ R2 with

‖w‖, ‖v‖ = 1 and θ(w,v) ≤ π − δ for δ ∈ [0, π]. If b < α sin
(
δ
2

)
then Vol(P ) ≥ (α sin( δ2 )−b)

2

4 sin( δ2 )
.

Proof. The volume of P is smallest when the angle is exactly π − δ, thus we can lower bound the
volume by assuming that θ(w,v) = π − δ. Next, we can rotate to coordinates to consider without
loss of generality the volume of the set

P ′ =
{

(y1, y2) ∈ R2 : θ((y1, y2 − b′), e2) ≤ δ/2, ‖(y1, y2)‖ ≤ α
}
,

where b′ = b
sin(δ/2) and e2 = (0, 1). Let P ′′ = {(x, y) ∈ R2 : x2 + (y − b′)2 ≤ (α− b′)2} be the

disc of radius α− b′ around the point (0, b′). It is enough to bound the volume of P ′ ∩P ′′. We define
the rectangular sets:

P1 =

[
(α− b′)

2
sin

(
δ

4

)
, (α− b′) sin

(
δ

4

)]
×
[
b′ +

(α− b′)
2

cos

(
δ

4

)
, b′ + (α− b′) cos

(
δ

4

)]
P2 =

[
−(α− b′) sin

(
δ

4

)
,− (α− b′)

2
sin

(
δ

4

)]
×
[
b′ +

(α− b′)
2

cos

(
δ

4

)
, b′ + (α− b′) cos

(
δ

4

)]

See Figure 1 for an illustration. We have that P1, P2 ⊆ P ′ ∩ P ′′. We will show it for P1, the same
argument also works for P2. First, P1 ⊆ P ′′ is immediate by the definition of the two sets. For P ′,

the straight line in the boundary of P ′ is defined by y2 = b′ + y1 ·
cos( δ2 )
sin( δ2 )

. It can be seen that each

vertex of the rectangle P1, is above this line. Moreover, the norm of each vertex of P1 is at most α.
Hence all the vertices are inside P ′, which means that P1 ⊆ P ′. In total we get:

Vol(P ) ≥ Vol(P ′ ∩ P ′′) ≥ Vol(P1 ∪ P2)

=
(α− b′)2

2
sin

(
δ

4

)
cos

(
δ

4

)
=

(
α sin

(
δ
2

)
− b
)2

4 sin
(
δ
2

)

Theorem A.2. Let w,v ∈ Rd+1 , denote by w̃, ṽ their first d coordinates and by bw, bv their last
coordinate. Assume that θ(w̃, ṽ) ≤ π− δ for some δ ∈ [0, π), and that the distributionD is such that
its first d coordinates satisfy Assumption 4.1 (1) from [23], and that its last coordinate is a constant 1.
Denote b′ = max{−bw/‖w̃‖,−bv/‖ṽ‖, 0} · 1

sin( δ2 )
, and assume that b′ < α, then:

〈∇F (w),w − v〉 ≥
(α− b′)4 sin

(
δ
4

)3
β

84
·min

{
1,

1

α2

}
‖w − v‖2
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Figure 1: An illustration of the set P ′ (in red), the circle P ′′ (in blue) and the two rectangles P1, P2

(in black), for the case of δ = π/2, α = 1 and b = 0.3. For b = 0, P ′ would be a pie slice, and the
blue circle P ′′ will coincide with the red circle.

Proof. Let x̃ be the first d coordinates of x. We have that:

〈∇F (w),w − v〉 = Ex∼D
[
σ′(w>x)(σ(w>x)− σ(v>x))(w>x− v>x)

]
≥ Ex∼D

[
1(w>x > 0,v>x > 0)(w>x− v>x)2

]
= ‖w − v‖2 · Ex∼D

[
1(w̃>x̃ > −bw, ṽ>x̃ > −bv)((w − v)>x)2

]
≥ ‖w − v‖2 · inf

u∈span{w,v},‖u‖=1
Ex∼D

[
1(w̃>x̃ > −bw, ṽ>x̃ > −bv)(u>x)2

]

Let b = max{−bw/‖w̃‖,−bv/‖ṽ‖, 0}, then we can bound the above equation by:

‖w − v‖2 · inf
u∈span{w,v},‖u‖=1

Ex∼D

[
1(w̃

>
x̃ > b, ṽ

>
x̃ > b)(u>x)2

]
≥ ‖w − v‖2 · inf

u∈span{w,v},‖u‖=1
Ex̃∼D̃

[
1(w̃

>
x̃ > b, ṽ

>
x̃ > b, ‖x̃‖ ≤ α)(ũ>x̃ + bu)2

]
(4)

Here bu is the bias term of u, ũ are the first d coordinates of u and D̃ is the marginal distribution
of x on its first d coordinates. Note that since the last coordinate represents the bias term, then the
distribution on the last coordinate of x is a constant 1. The condition that ‖u‖ = 1 (equivalently
‖u‖2 = 1) translates to ‖ũ‖2 + b2u = 1.

Our goal is to bound the term inside the infimum. Note that the expression inside the distribution
depends just on inner products of x̃ with w̃ or ṽ, hence we can consider the marginal distributionDw̃,ṽ

of x̃ on the 2-dimensional subspace spanned by w̃ and ṽ (with density function pw̃,ṽ). Let ŵ and v̂

be the projections of w̃ and ṽ on that subspace. Let P = {y ∈ R2 : ŵ
>
y > b, v̂

>
y > b, ‖y‖ ≤ α},

then we can bound Eq. (4) with:
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‖w − v‖2 · inf
u∈R2,bu∈R:‖u‖2+b2u=1

Ey∼Dw̃,ṽ

[
1(y ∈ P ) · (u>y + bu)2

]
= ‖w − v‖2 · inf

u∈R2,bu∈R:‖u‖2+b2u=1

∫
y∈R2

1(y ∈ P ) · (u>y + bu)2pw̃,ṽ(y)dy

≥ β‖w − v‖2 · inf
u∈R2,bu∈R:‖u‖2+b2u=1

∫
y∈P

(u>y + bu)2dy

Combining with Proposition A.3 finishes the proof

Proposition A.3. Let P = {y ∈ R2 : ŵ
>
y > b, v̂

>
y > b, ‖y‖ ≤ α} for b ∈ R and ŵ, v̂ ∈ R2

with θ(ŵ, v̂) ≤ π − δ for δ ∈ [0, π]. Then

inf
u∈R2,bu∈R:‖u‖2+b2u=1

∫
y∈P

(u>y + bu)2dy ≥
(α− b′)4 sin

(
δ
4

)3
84

·min

{
1,

1

α2

}

for b′ = b

sin( δ2 )
.

Proof. As in the proof of Lemma A.1, we consider the rectangular sets:

P1 =

[
(α− b′)

2
sin

(
δ

4

)
, (α− b′) sin

(
δ

4

)]
×
[
b′ +

(α− b′)
2

cos

(
δ

4

)
, b′ + (α− b′) cos

(
δ

4

)]
P2 =

[
−(α− b′) sin

(
δ

4

)
,− (α− b′)

2
sin

(
δ

4

)]
×
[
b′ +

(α− b′)
2

cos

(
δ

4

)
, b′ + (α− b′) cos

(
δ

4

)]
with b′ = b

sin(δ/2) . Since we have P1 ∪ P2 ⊆ P , and the function inside the integral is positive, we
can lower bound the target integral by integrating only over P1 ∪ P2. Now we have:

inf
u∈R2,bu∈R:‖u‖2+b2u=1

∫
y∈P

(u>y + bu)2dy

≥ inf
u1,u2,bu∈R:u2

1+u2
2+b2u=1

∫
y∈P1∪P2

(u1y1 + u2y2 + bu)2dy

= inf
u1,u2,bu∈R:u2

1+u2
2+b2u=1

∫
y∈P1∪P2

(u1y1)2dy +

∫
y∈P1∪P2

(u2y2 + bu)2dy +

∫
y∈P1∪P2

2u1y1(u2y2 + bu)dy

= inf
u1,u2,bu∈R:u2

1+u2
2+b2u=1

∫
y∈P1∪P2

(u1y1)2dy +

∫
y∈P1∪P2

(u2y2 + bu)2dy

where in the last equality we used that P1∪P2 are symmetric around the y2 axis, i.e. (y1, y2) ∈ P1∪P2

iff (−y1, y2) ∈ P1 ∪ P2. By the condition that u2
1 + u2

2 + b2u = 1 we know that either u2
1 ≥ 1

2 or
u2

2 + b2u ≥ 1
2 . Using that both integrals above are positive, we can lower bound:

inf
u1,u2,bu∈R:u2

1+u2
2+b2u=1

∫
y∈P1∪P2

(u1y1)2dy +

∫
y∈P1∪P2

(u2y2 + bu)2dy

≥min

{
1

2

∫
y∈P1∪P2

y2
1dy, inf

u2,u3∈R:u2
2+u2

3= 1
2

∫
y∈P1∪P2

(u2y2 + u3)2dy

}
.
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We will now lower bound both terms in the above equation. For the first term, note that for every
y ∈ P1 ∪ P2 we have that |y1| ≥ (α−b′)

2 sin
(
δ
4

)
. Hence we have:

1

2

∫
y∈P1∪P2

y2
1dy ≥

≥1

2

∫
y∈P1∪P2

(α− b′)2

4
sin

(
δ

4

)2

dy

=
(α− b′)2

8
sin

(
δ

4

)2

· (α− b′)2

2
sin

(
δ

4

)
cos

(
δ

4

)
≥ (α− b′)4

16
√

2
sin

(
δ

4

)3

(5)

where in the last inequality we used that δ ∈ [0, π], hence δ/4 ∈ [0, π/4].

For the second term we have:

inf
u2,u3∈R:u2

2+u2
3= 1

2

∫
y∈P1∪P2

(u2y2 + u3)2dy

= inf
u∈

[
− 1√

2
, 1√

2

]
∫
y∈P1∪P2

(
uy2 +

√
1

2
− u2

)2

dy

=(α− b′) sin

(
δ

4

)
inf

u∈
[
− 1√

2
, 1√

2

]
∫
y2∈C

(
uy2 +

√
1

2
− u2

)2

dy2 . (6)

The last equality is given by changing the order of integration into integral over y2 and then over
y1, denoting the interval C =

[
b′ + (α−b′)

2 cos
(
δ
4

)
, b′ + (α− b′) cos

(
δ
4

)]
, and noting that the term

inside the integral does not depend on y1.

Fix some u ∈
[
− 1√

2
, 1√

2

]
. If u = 0, then we can bound Eq. (6) by (α−b′)2

4 sin
(
δ
4

)
cos
(
δ
4

)
. Assume

u 6= 0, we split into cases and bound the term inside the integral:

Case I:
∣∣∣∣√ 1

2−u2

u

∣∣∣∣ ≥ b′ + 3
4 · (α − b

′) cos
(
δ
4

)
. In this case, solving the inequality for u we have

|u| ≤
√

1

2+2(b′+ 3
4 (α−b′) cos( δ4 ))

2 . Hence, we can also bound:

√
1

2
− u2 ≥

√
1

2
− 1

2 + 2
(
b′ + 3

4 (α− b′) cos
(
δ
4

))2 =

√√√√ (
b′ + 3

4 (α− b′) cos
(
δ
4

))2
2 + 2

(
b′ + 3

4 (α− b′) cos
(
δ
4

))2
In particular, for every y2 ∈

[
b′ + (α−b′)

2 cos
(
δ
4

)
, b′ + 5(α−b′)

8 cos
(
δ
4

)]
we get that:

∣∣∣∣∣uy2 +

√
1

2
− u2

∣∣∣∣∣
≥

∣∣∣∣∣∣
√√√√ (

b′ + 3
4 (α− b′) cos

(
δ
4

))2
2 + 2

(
b′ + 3

4 (α− b′) cos
(
δ
4

))2 −
√√√√ (

b′ + 5
8 (α− b′) cos

(
δ
4

))2
2 + 2

(
b′ + 3

4 (α− b′) cos
(
δ
4

))2
∣∣∣∣∣∣

≥
(α− b′) cos

(
δ
4

)
8

√
2 + 2

(
b′ + (α− b′) cos

(
δ
4

))2
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Case II:
∣∣∣∣√ 1

2−u2

u

∣∣∣∣ < b′ + 3
4 · (α− b

′) cos
(
δ
4

)
. Using the same reasoning as above, we get for every

y2 ∈
[
b′ + 7(α−b′)

8 cos
(
δ
4

)
, b′ + (α− b′) cos

(
δ
4

)]
that:∣∣∣∣∣uy2 +

√
1

2
− u2

∣∣∣∣∣ ≥ (α− b′) cos
(
δ
4

)
8

√
2 + 2

(
b′ + (α− b′) cos

(
δ
4

))2
Combining the above cases with Eq. (6) we get that:

inf
u2,u3∈R:u2

2+u2
3= 1

2

∫
y∈P1∪P2

(u2y2 + u3)2dy

≥ (α− b′) sin

(
δ

4

)∫
y2∈C

(α− b′)2 cos
(
δ
4

)2
82(2 + 2

(
b′ + (α− b′) cos

(
δ
4

))2
)
dy2

≥
(α− b′)4 cos

(
δ
4

)3
sin
(
δ
4

)
2 · 82

(
2 + 2

(
b′ + (α− b′) cos

(
δ
4

)))2
≥

(α− b′)4 sin
(
δ
4

)3
2 · 82

√
2
(
2 + 2

(
b′ + (α− b′) cos

(
δ
4

)))2
≥

(α− b′)4 sin
(
δ
4

)3
84

·min

{
1,

1

α2

}
(7)

where in the second inequality we used that for δ ∈ [0, π] we have sin
(
δ
4

)
≤ cos

(
δ
4

)
, and in the last

inequality we used that b′ ≤ α, and (α− b′) cos
(
δ
4

)
≤ α. Combining Eq. (5) with Eq. (7) finishes

the proof.

B Proofs from Section 3

B.1 Proof of Theorem 3.1

Let ε > 0, for the input distribution, we consider the uniform distribution on the ball of radius ε. Let
bw be the last coordinate of w, and denote by w̃, x̃ the first d coordinates of w and x. Using the
assumption on the initialization of w0 and on the boundness of the distribution D̃ we have:

|〈w̃0, x̃〉| ≤ ‖w̃0‖‖x̃‖ ≤ ε
√
d.

Since bw0
is also initialized with U([−1, 1]), w.p > 1/2− ε

√
d we have that bw0

< −ε
√
d. If this

event happens, since the activation is ReLU we get that σ′(〈w0,x〉) = 1(〈w̃0, x̃〉+ bw0
> 0) = 0

for every x̃ in the support of the distribution. Using Eq. (3) we get that∇F (w0) = 0, hence gradient
flow will get stuck at its initial value.

B.2 Proof of Theorem 3.2

Lemma B.1. Let w ∈ Rd+1 such that bw = 0, w̃1 < − 4√
d

, and ‖w̃2:d‖ ≤ 2
√
d. Then,

Pr
x∼D

[
w>x ≥ 0,v>x ≥ 0

]
= 0 .

Proof. If v>x ≥ 0 then x1 ≥ r − r
2d2 and hence x2

1 ≥ r2 − r2

d2 . Since we also have ‖x̃‖ ≤ r then

‖x̃2:d‖2 = ‖x̃‖2 − x2
1 ≤ r2 −

(
r2 − r2

d2

)
=
r2

d2
.
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Hence,

Pr
x∼D

[
w>x ≥ 0,v>x ≥ 0

]
≤ Pr

x∼D

[
w>x ≥ 0, x1 ≥ r −

r

2d2
, ‖x̃2:d‖ ≤

r

d

]
.

Since bw = 0, ‖w̃2:d‖ ≤ 2
√
d and w̃1 < − 4√

d
, then for every x̃ ∈ B such that x1 ≥ r − r

2d2 ≥
r
2

and ‖x̃2:d‖ ≤ r
d we have

w>x = w̃>x̃ = w̃1x̃1 + 〈w̃2:d, x̃2:d〉 < −
4√
d
· r

2
+ 2
√
d · r

d
= 0 .

Therefore, Prx∼D
[
w>x ≥ 0,v>x ≥ 0

]
= 0.

Lemma B.2. With probability 1
2 − od(1) over the choice of w0, we have

Pr
x∼D

[
w>0 x ≥ 0,v>x ≥ 0

]
= 0 .

Proof. Let w ∈ Rd+1 such that bw = 0 and w̃ ∼ N (0, Id). Since w̃1 has a standard normal
distribution, then we have w̃1 < − 4√

d
with probability 1

2 − od(1). Moreover, note that ‖w̃2:d‖2 has
a chi-square distribution and the probability of ‖w̃2:d‖2 ≤ 4d is 1− od(1). Hence, by Lemma B.1,
with probability 1

2 − od(1) over the choice of w, we have

Pr
x∼D

[
w>x ≥ 0,v>x ≥ 0

]
= 0 .

Therefore,

Pr
x∼D

[
ρ
w>

‖w‖
x ≥ 0,v>x ≥ 0

]
= Pr

x∼D

[
w>x ≥ 0,v>x ≥ 0

]
= 0 .

Since ρ w>

‖w‖ has the distribution of w0, the lemma follows.

Lemma B.3. Assume that w0 satisfies Prx∼D
[
w>0 x ≥ 0,v>x ≥ 0

]
= 0. Let γ > 0 and let

w ∈ Rd+1 such that w̃ = γw̃0, and bw ≤ 0. Then, Prx∼D
[
w>x ≥ 0,v>x ≥ 0

]
= 0. Moreover,

we have

• If − bw
‖w̃‖ < r, then dw̃

dt = −sw̃ for some s > 0, and dbw
dt < 0.

• If − bw
‖w̃‖ ≥ r, then dw̃

dt = 0 and dbw
dt = 0.

Proof. For every x we have: If w>x = γw̃>0 x̃ + bw ≥ 0 then γw̃>0 x̃ ≥ 0, and therefore w>0 x =
w̃>0 x̃ ≥ 0. Thus

Pr
x∼D

[
w>x ≥ 0,v>x ≥ 0

]
≤ Pr

x∼D

[
w>0 x ≥ 0,v>x ≥ 0

]
= 0 . (8)

We have

−dw̃
dt

= ∇w̃F (w) = E
x

(
σ(w>x)− σ(v>x)

)
σ′(w>x)x̃

= E
x

(
σ(w>x)− σ(v>x)

)
1(w>x ≥ 0)x̃

= E
x

(
σ(w>x)− σ(v>x)

)
1(w>x ≥ 0,v>x < 0)x̃

+ E
x

(
σ(w>x)− σ(v>x)

)
1(w>x ≥ 0,v>x ≥ 0)x̃

(Eq. (8))
= E

x

(
σ(w>x)− σ(v>x)

)
1(w>x ≥ 0,v>x < 0)x̃

= E
x

(
σ(w>x)

)
x̃

= Ẽ
x
1(w̃>x̃ > −bw)(w̃>x̃ + bw)x̃ .

17



If − bw
‖w̃‖ ≥ r then for every x̃ ∈ B we have w̃>x̃ ≤ ‖w̃‖r ≤ −bw and hence dw̃

dt = 0. Note that

if − bw
‖w̃‖ < r, i.e., ‖w̃‖r > −bw, then Prx̃

[
w̃>x̃ > −bw

]
> 0. Since D̃ is spherically symmetric,

then we obtain dw̃
dt = −sw̃ for some s > 0.

Next, we have

−dbw
dt

= ∇bwF (w) = E
x

(
σ(w>x)− σ(v>x)

)
σ′(w>x) · 1

= E
x

(
σ(w>x)− σ(v>x)

)
1(w>x ≥ 0)

(Eq. (8))
= E

x

(
σ(w>x)− σ(v>x)

)
1(w>x ≥ 0,v>x < 0)

= E
x

(
σ(w>x)

)
= Ẽ

x
1(w̃>x̃ > −bw)(w̃>x̃ + bw) .

If − bw
‖w̃‖ ≥ r then for every x̃ ∈ B we have w̃>x̃ ≤ ‖w̃‖r ≤ −bw and hence dbw

dt = 0. Otherwise,

we have dbw
dt < 0.

Proof of Theorem 3.2. By Lemma B.2 w0 satisfies Prx∼D
[
w>0 x ≥ 0,v>x ≥ 0

]
= 0 w.p. at least

1
2 − od(1). Then, by Lemma B.3 we have for every t > 0 that w̃t = γtw̃0 for some γt > 0, bwt < 0,
and − bwt

‖w̃t‖ ≤ r. Moreover, we have Prx∼D
[
w>t x ≥ 0,v>x ≥ 0

]
= 0. Hence, for every t we have

F (wt) =
1

2
· E
x

(
σ(w>t x)− σ(v>x)

)2
=

1

2
· E
x

(
σ(w>t x)

)2
+

1

2
· E
x

(
σ(v>x)

)2 − E
x

(
σ(w>t x)σ(v>x)

)
=

1

2
· E
x

(
σ(w>t x)

)2
+

1

2
· E
x

(
σ(v>x)

)2
≥ 1

2
· E
x

(
σ(v>x)

)2
= F (0) .

Thus, gradient flow does not converge to the global minimum F (v) = 0 < F (0).

C Proofs from Section 4

Proof of Theorem 4.2. The gradient of the objective is:

∇F (w) = E
x∼D

[(
σ(w>x)− σ(v>x)

)
· σ′(w>x)x

]
.

We can rewrite it using that σ is the ReLU activation, and separating the bias terms:

∇F (w) = E
x̃∼D̃

[(
σ(w̃>x̃ + bw)− σ(ṽ>x̃ + bv)

)
· 1(w̃>x̃ + bw > 0)x

]
.

First, notice that if w̃ = 0 and bw < 0 then 1(w̃>x̃ + bw > 0) = 0 for all x̃, hence ∇F (w) = 0.
Second, using Cauchy-Schwartz we have that |〈w̃, x̃〉| ≤ c · ‖w̃‖. Hence, for w with w̃ 6= 0 and
− bw
‖w̃‖ ≥ c we have that 1(w̃>x̃ + bw > 0) = 0 for all x̃ in the support of the distribution, hence
∇F (w) = 0. Lastly, it is clear that for w = v we have that∇F (w) = 0. This shows that the points
described in the statement of the proposition are indeed critical points. Next we will show that these
are the only critical points.
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Let w ∈ Rd+1 which is not a critical point defined above - i.e. either w̃ = 0 and bw > 0, or w̃ 6= 0
and − bw

‖w̃‖ < c. Then we have:

〈∇F (w),w − v〉 = Ex∼D
[
σ′(w>x)(σ(w>x)− σ(v>x))(w>x− v>x)

]
= Ex∼D

[
1(w>x > 0,v>x > 0)(σ(w>x)− σ(v>x))(w>x− v>x)

]
+

+ Ex∼D
[
1(w>x > 0,v>x ≤ 0)σ(w>x)(w>x− v>x)

]
≥ Ex∼D

[
1(w>x > 0,v>x > 0)(w>x− v>x)2

]
+

+ Ex∼D
[
1(w>x > 0,v>x ≤ 0)(w>x)2

]
.

= Ex∼D
[
1(w̃>x̃ > −bw, ṽ>x̃ > −bv)(w>x− v>x)2

]
+

+ Ex∼D
[
1(w̃>x̃ > −bw, ṽ>x̃ ≤ −bv)(w>x)2

]
. (9)

Denote:

A1 := {x̃ ∈ Rd : w̃>x̃ > −bw, ṽ>x̃ > −bv, ‖x̃‖ < c}
A2 := {x̃ ∈ Rd : w̃>x̃ > −bw, ṽ>x̃ ≤ −bv, ‖x̃‖ < c}

Since w is not a critical point as defined above, we know that the set {x̃ ∈ Rd : w̃>x̃ > −bw, ‖x̃‖ <
c} has a positive measure, hence either A1 or A2 have a positive measure. Assume w.l.o.g that A1

have a positive measure, the other case is similar. Since both terms inside the expectations of Eq. (9)
are positive, we can lower bound it with:

Ex∼D
[
1(w̃>x̃ > −bw, ṽ>x̃ > −bv)(w>x− v>x)2

]
= ‖w − v‖2Ex∼D

[
1(x̃ ∈ A1)((w − v)>x)2

]
(10)

Denote u := w − v, and note that w 6= v, hence ‖u‖ = 1. Denote by p(x̃) the pdf of D̃, then we
can rewrite Eq. (10) as:

‖w − v‖2 ·
∫
x̃∈Rd

1(x̃ ∈ A1) · (ũ>x̃ + bu)2p(x̃)dx̃

= ‖w − v‖2 ·
∫
x̃∈A1

(ũ>x̃ + bu)2p(x̃)dx̃ (11)

Since the set A1 has a positive measure, and the set {x̃ : ũ>x̃ + bu = 0} is of zero measure, there is
a point x̃0 such that ũ>x̃ + bu 6= 0. By continuity, there is a small enough neighborhood A of x̃0,
such that ũ>x̃ + bu 6= 0 for every x̃ ∈ A. Using Assumption 4.1 we can lower bound Eq. (11) by:

‖w − v‖2 · β
∫
x̃∈A

(ũ>x̃ + bu)2dx̃

where this integral is positive. This shows that 〈∇F (w),w−v〉 > 0, which shows that∇F (w) 6= 0,
hence w is not a critical point.

D Proofs from Section 5

The following lemmas are required in order to prove Theorem 5.2. First, we show that if F (w) ≤
F (0)− δ then we can lower bound ‖w‖ and Prx

[
w>x ≥ 0,v>x ≥ 0

]
.

Lemma D.1. Let δ > 0 and let w ∈ Rd+1 such that F (w) ≤ F (0)− δ. Then

‖w‖ ≥ δ

c2
,

and
Pr
x

[
w>x ≥ 0,v>x ≥ 0

]
≥ δ

c2‖w‖
.
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Proof. We have

F (0)− δ ≥ F (w) =
1

2
E
x

(σ(w>x)− σ(v>x))2

=
1

2
E
x

(σ(w>x))2 +
1

2
E
x

(σ(v>x))2 − E
x

(σ(w>x)σ(v>x))

≥ F (0)− E
x

(σ(w>x)σ(v>x)) .

Hence
δ ≤ E

x
σ(w>x)σ(v>x) = E

x
1(w>x ≥ 0,v>x ≥ 0) ·w>x · v>x

≤ ‖w‖c2 · Pr
x

[
w>x ≥ 0,v>x ≥ 0

]
.

Thus,

‖w‖ ≥ δ

c2 · Prx [w>x ≥ 0,v>x ≥ 0]
≥ δ

c2
,

and
Pr
x

[
w>x ≥ 0,v>x ≥ 0

]
≥ δ

c2‖w‖
.

Using the above lemma, we now show that if F (w) ≤ F (0)− δ then ‖w − v‖ decreases.
Lemma D.2. Let δ > 0 and let B > 1. Let w ∈ Rd+1 such that F (w) ≤ F (0) − δ and
‖w − v‖ ≤ B − 1. Let γ = δ3

3·122B3c8c′2 and let 0 < η ≤ γ
c4 . Let w′ = w − η∇F (w). Then,

‖w′ − v‖2 ≤ ‖w − v‖2 · (1− γη) ≤ (B − 1)2 .

Proof. We have
‖w′ − v‖2 = ‖w − η∇F (w)− v‖2

= ‖w − v‖2 − 2η〈∇F (w),w − v〉+ η2‖∇F (w)‖2 . (12)

We first bound ‖∇F (w)‖2. By Jensen’s inequality and since σ is 1-Lipschitz, we have:

‖∇F (w)‖2 ≤ E
x

[(
σ(w>x)− σ(v>x)

)2
σ′(w>x)‖x‖2

]
≤ c2 E

x

[(
σ(w>x)− σ(v>x)

)2]
≤ c2 E

x

[(
w>x− v>x

)2]
= c2 E

x

[(
(w − v)>x

)2]
≤ c4‖w − v‖2 . (13)

Next, we bound 〈∇F (w),w − v〉. Let u = w − v. We have

〈∇F (w),w − v〉 = E
x

(
σ(w>x)− σ(v>x)

)
σ′(w>x)(w>x− v>x)

= E
x

(
w>x− v>x

)2
1(w>x ≥ 0,v>x ≥ 0)+

E
x
w>x · (w>x− v>x)1(w>x ≥ 0,v>x < 0)

≥ ‖w − v‖2 · E
x
1(w>x ≥ 0,v>x ≥ 0)(u>x)2 .

Let ξ = δ
12Bc3c′ . The above is at least

‖w − v‖2 · ξ2 · Pr
x

[
w>x ≥ 0,v>x ≥ 0, (u>x)2 ≥ ξ2

]
= ‖w − v‖2 · ξ2 ·

(
Pr
x

[
w>x ≥ 0,v>x ≥ 0

]
− Pr

x

[
w>x ≥ 0,v>x ≥ 0, (u>x)2 < ξ2

])
.
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By Lemma D.1, and since ‖w‖ ≤ ‖w − v‖+ ‖v‖ ≤ B − 1 + 1 = B, the above is at least

‖w − v‖2 · ξ2 ·
(

δ

c2‖w‖
− Pr

x

[
w>x ≥ 0,v>x ≥ 0, |u>x| < ξ

])
≥ ‖w − v‖2 · ξ2 ·

(
δ

c2B
− Pr

x

[
|u>x| ≤ ξ

])
= ‖w − v‖2 · ξ2 ·

(
δ

c2B
− Pr

x

[
|ũ>x̃ + bu| ≤ ξ

])
. (14)

We now bound Prx
[
|ũ>x̃ + bu| ≤ ξ

]
. We denote a = ‖ũ‖. If a ≤ 1

4c , then since ‖u‖ = 1 we have

bu ≥
√

1− 1
16c2 ≥

√
1− 1

16 =
√

15
4 . Hence, for every x with ‖x‖ ≤ c we have

|ũ>x̃ + bu| ≥ |bu| − |ũ>x̃| ≥
√

15

4
− ac ≥

√
15

4
− 1

4
>

1

2
.

Note that

ξ =
δ

12Bc3c′
≤ F (0)

12Bc3c′
=

1

12Bc3c′
· 1

2
E
x

(σ(v>x))2 ≤ 1

12Bc3c′
· 1

2
c2 =

1

24Bcc′
≤ 1

24
,

where the last inequality is since B, c, c′ ≥ 1. Therefore, |ũ>x̃ + bu| > ξ. Thus,

Pr
x

[
|ũ>x̃ + bu| ≤ ξ

]
= 0 .

Assume now that a ≥ 1
4c . We have

Pr
x

[
|ũ>x̃ + bu| ≤ ξ

]
= Pr

x

[
ũ>x̃ ∈ [−ξ − bu, ξ − bu]

]
= Pr

x

[
¯̃u>x̃ ∈ [− ξ

a
− bu

a
,
ξ

a
− bu

a
]

]
≤ c′ · 2 · ξ

a
≤ 8cc′ξ .

Combining the above with Eq. (14), we obtain

〈∇F (w),w − v〉 ≥ ‖w − v‖2 · ξ2 ·
(

δ

c2B
− 8cc′ξ

)
= ‖w − v‖2 δ2

122B2c6c′2
·
(

δ

c2B
− 8cc′ · δ

12Bc3c′

)
= ‖w − v‖2 δ2

122B2c6c′2
·
(

δ

3c2B

)
= ‖w − v‖2 δ3

3 · 122B3c8c′2
. (15)

Combining Eq. (12), (13) and (15), and using γ = δ3

3·122B3c8c′2 , we have

‖w′ − v‖2 ≤ ‖w − v‖2 − 2η‖w − v‖2 · γ + η2c4‖w − v‖2

= ‖w − v‖2 ·
(
1− 2ηγ + η2c4

)
.

Since η ≤ γ
c4 , we obtain

‖w′ − v‖2 ≤ ‖w − v‖2 ·
(

1− 2ηγ + ηc4 · γ
c4

)
= ‖w − v‖2 · (1− γη) ≤ ‖w − v‖2 ≤ (B − 1)2 .
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Next, we show that F (w) remains smaller than F (0)− δ during the training. In the following two
lemmas we obtain a bound for the smoothness of F in the relevant region, and in the two lemmas
that follow we use this bound to show that F (w) indeed remains small.

Lemma D.3. Let w ∈ Rd+1 such that F (w) ≤ F (0). Then, ‖∇F (w)‖ ≤ c
√

2F (0).

Proof. By Jensen’s inequality, we have

‖∇F (w)‖2 ≤ E
x

(
σ(w>x)− σ(v>x)

)2
σ′(w>x)‖x‖2

≤ c2 E
x

(
σ(w>x)− σ(v>x)

)2
≤ c22F (w) ≤ 2c2F (0) .

Lemma D.4. Let M,B > 0 and let w,w′ ∈ Rd+1 be such that for every s ∈ [0, 1] we have
M ≤ ‖w + s(w′ −w)‖ ≤ B. Then,

‖∇F (w)−∇F (w′)‖ ≤ ‖w −w′‖ · c2
(

1 +
8(B + 1)c′c2

M

)
.

Proof. We assume w.l.o.g. that ‖w−w′‖ ≤ M
2c . Indeed, let 0 = s0 < . . . < sk = 1 for some integer

k, let wi = w + si(w
′ −w), and assume that ‖wi −wi+1‖ ≤ M

2c for every i. If the claim holds for
every pair wi,wi+1, then we have

‖∇F (w)−∇F (w′)‖ = ‖
k−1∑
i=0

∇F (wi)−∇F (wi+1)‖

≤
k−1∑
i=0

‖∇F (wi)−∇F (wi+1)‖

≤
k−1∑
i=0

‖wi −wi+1‖ · c2
(

1 +
8(B + 1)c′c2

M

)
= c2

(
1 +

8(B + 1)c′c2

M

)
‖w −w′‖ .

We have

‖∇F (w)−∇F (w′)‖
= ‖E

x
(σ(w>x)− σ(v>x))σ′(w>x)x− (σ(w′>x)− σ(v>x))σ′(w′>x)x‖

≤ ‖E
x
1(w>x ≥ 0,w′>x ≥ 0)

(
w>x− σ(v>x)−w′>x + σ(v>x)

)
x‖+

‖E
x
1(w>x ≥ 0,w′>x < 0)

(
w>x− σ(v>x)

)
x‖+

‖E
x
1(w>x < 0,w′>x ≥ 0)

(
w′>x− σ(v>x)

)
x‖ .

By Jensen’s inequality and Cauchy-Shwartz, the above is at most

E
x
1(w>x ≥ 0,w′>x ≥ 0)‖w −w′‖ · ‖x‖ · ‖x‖+

E
x
1(w>x ≥ 0,w′>x < 0) (‖w‖ · ‖x‖+ ‖v‖ · ‖x‖) · ‖x‖+

E
x
1(w>x < 0,w′>x ≥ 0) (‖w′‖ · ‖x‖+ ‖v‖ · ‖x‖) · ‖x‖ .

By our assumption we have ‖x‖ ≤ c and ‖w‖, ‖w′‖ ≤ B. Hence, the above is at most

‖w −w′‖c2 + Pr
x

[
w>x ≥ 0,w′>x < 0

]
· c2 · (B + 1)

+ Pr
x

[
w>x < 0,w′>x ≥ 0

]
· c2 · (B + 1) . (16)
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Now, we bound Prx
[
w>x ≥ 0,w′>x < 0

]
. If w>x ≥ 0 and w′>x < 0 then

w>x = w′>x + (w −w′)>x < 0 + ‖w −w′‖ · ‖x‖ ≤ c · ‖w −w′‖ .
Hence, we only need to bound

Pr
x

[
w>x ∈ [0, c · ‖w −w′‖]

]
= Pr

x

[
w̃>x̃ + bw ∈ [0, c · ‖w −w′‖]

]
.

We denote a = ‖w̃‖. If a ≤ M
4c , then since ‖w‖ ≥ M we have |bw| ≥

√
M2 −

(
M
4c

)2
=

M
√

1− 1/(16c2). Hence for every x we have

|w̃>x̃ + bw| ≥ |bw| − |w̃>x̃| ≥ |bw| − ac ≥M
√

1− 1/(16c2)− M

4
≥M

√
1− 1/16− M

4

= M ·
√

15− 1

4
> M/2 ≥ c‖w −w′‖ .

Thus, Prx
[
w̃>x̃ + bw ∈ [0, c · ‖w −w′‖]

]
= 0.

Assume now that a ≥ M
4c . Hence, ca ≤

4c2

M . Therefore, we have

Pr
x

[
w̃>x̃ + bw ∈ [0, c · ‖w −w′‖]

]
= Pr

x

[
¯̃w>x̃ ∈ [−bw

a
,−bw

a
+
c

a
· ‖w −w′‖]

]
≤ Pr

x

[
¯̃w>x̃ ∈ [−bw

a
,−bw

a
+

4c2

M
· ‖w −w′‖]

]
≤ c′ · 4c2

M
· ‖w −w′‖ .

Hence, Prx
[
w>x ≥ 0,w′>x < 0

]
≤ c′ · 4c2

M · ‖w − w′‖. By similar arguments, this inequality
holds also for Prx

[
w>x < 0,w′>x ≥ 0

]
. Plugging it into Eq. (16), we have

‖∇F (w)−∇F (w′)‖ ≤ ‖w −w′‖
(
c2 + 2 · c2 · (B + 1) · c′ · 4c2

M

)
= ‖w −w′‖ · c2

(
1 +

8(B + 1)c′c2

M

)
.

Lemma D.5. Let f : Rd → R and let L > 0. Let x,y ∈ Rd be such that for every s ∈ [0, 1] we
have ‖∇f(x + s(y − x))−∇f(x)‖ ≤ Ls‖y − x‖. Then,

f(y)− f(x) ≤ ∇f(x)>(y − x) +
L

2
‖y − x‖2 .

Proof. The proof follows a standard technique (cf. [2]). We represent f(y)− f(x) as an integral,
apply Cauchy-Schwarz and then use the L-smoothness.

f(y)− f(x)−∇f(x)>(y − x) =

∫ 1

0

∇f(x + s(y − x))>(y − x)ds−∇f(x)>(y − x)

≤
∫ 1

0

‖∇f(x + s(y − x))−∇f(x)‖ · ‖y − x‖ds

≤
∫ 1

0

Ls‖y − x‖2ds

=
L

2
‖y − x‖2 .

Hence, we have

f(y)− f(x) ≤ ∇f(x)>(y − x) +
L

2
‖y − x‖2 .
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Lemma D.6. Let B, δ > 0 and let L = c2
(

1 + 16(B+1)c′c4

δ

)
. Let w ∈ Rd+1 such that

F (w) ≤ F (0) − δ and let w′ = w − η · ∇F (w), where η ≤ min

{
δ

2c3
√

2F (0)
, 1
L

}
=

min

{
δ

2c3
√

2F (0)
, δ
δc2+16(B+1)c′c6

}
. Assume that ‖w‖, ‖w′‖ ≤ B. Then, we haveF (w′)−F (w) ≤

−η
(
1− L

2 η
)
‖∇F (w)‖2, and F (w′) ≤ F (w) ≤ F (0)− δ.

Proof. Let M = δ
2c2 . By Lemmas D.1 and D.3, we have ‖w‖ ≥ δ

c2 and ‖∇F (w)‖ ≤ c
√

2F (0).
Hence for every λ ∈ [0, 1] we have

‖w − λη∇F (w)‖ ≥ δ

c2
− η · c

√
2F (0) ≥ δ

c2
− δ

2c3
√

2F (0)
· c
√

2F (0) =
δ

2c2
= M .

Since ‖w‖, ‖w′‖ ≤ B, we also have ‖w − λη∇F (w)‖ ≤ B. By Lemma D.4, we have for every
λ ∈ [0, 1] that

‖∇F (w)−∇F (w − λη∇F (w))‖ ≤ λη‖∇F (w)‖ · c2
(

1 +
8(B + 1)c′c2

M

)
.

We have L = c2
(

1 + 16(B+1)c′c4

δ

)
= c2

(
1 + 8(B+1)c′c2

M

)
. By Lemma D.5 we have

F (w − η∇F (w))− F (w) ≤ −η‖∇F (w)‖2 +
L

2
η2‖∇F (w)‖2 .

Since η ≤ 1
L , we also have F (w − η∇F (w)) ≤ F (w) ≤ F (0)− δ.

We are now ready to prove the theorem:

Proof of Theorem 5.2. Let B = ‖w0‖ + 2. Assume that η ≤

min

{
δ

2c3
√

2F (0)
, δ
δc2+16(B+1)c′c6 ,

γ
c4

}
. We have ‖w0 − v‖ ≤ ‖w0‖+ ‖v‖ = ‖w0‖+ 1 ≤ B − 1.

By Lemmas D.2 and D.6, for every t we have ‖wt − v‖ ≤ B − 1 (thus, ‖wt‖ ≤ B)
and F (wt) ≤ F (0) − δ. Moreover, by Lemma D.2, we have for every t that
‖wt+1 − v‖2 ≤ ‖wt − v‖2 · (1− γη). Therefore, ‖wt − v‖2 ≤ ‖w0 − v‖2 (1− γη)

t.

It remains to show that

min

{
δ

2c3
√

2F (0)
,

δ

δc2 + 16(B + 1)c′c6
,
γ

c4

}
=

γ

c4
.

Note that we have δ ≤ F (0) = 1
2 Ex(σ(v>x))2 ≤ 1

2 · c
2. Thus

γ

c4
=

δ3

3 · 122B3c12c′2
≤ δ

3 · 122B3c12c′2
· c

4

4
=

δ

123B3c8c′2
.

We have
δ

2c3
√

2F (0)
≥ δ

2c4
≥ γ

c4
,

where the last inequality is since B, c, c′ ≥ 1. Finally,

δ

δc2 + 16(B + 1)c′c6
≥ δ

c4

2 + 16(B + 1)c′c6
≥ δ

17(B + 1)c′c6
≥ δ

34Bc′c6
≥ γ

c4
.
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D.1 Proofs from Subsection 5.2

Proof of Theorem 5.4

We have

F (w) =
1

2
E
x

(
σ(w>x)− σ(v>x)

)2
= F (0) +

1

2
E
x

(
σ(w>x)

)2 − E
x
σ(w>x)σ(v>x)

≤ F (0) +
‖w‖2c2

2
− ‖w‖E

x
σ(w̄>x)σ(v>x) . (17)

Let ξ = α
4
√
c

sin
(
π
8

)
. We have

E
x
σ(w̄>x)σ(v>x) ≥ ξ2 · Pr

x

[
σ(w̄>x)σ(v>x) ≥ ξ2

]
≥ ξ2 · Pr

x

[
w̄>x ≥ 2

√
cξ,v>x ≥ ξ

2
√
c

]
. (18)

In the following two lemmas we bound Prx

[
w̄>x ≥ 2

√
cξ,v>x ≥ ξ

2
√
c

]
.

Lemma D.7. If bv ≥ 0 then

Pr
x

[
w̄>x ≥ 2

√
cξ,v>x ≥ ξ

2
√
c

]
≥
β
(
α sin

(
π
8

)
− 2
√
cξ
)2

4 sin
(
π
8

) .

Proof. If ‖ṽ‖ ≥ 1
4c , then we have

Pr
x

[
w̄>x ≥ 2

√
cξ,v>x ≥ ξ

2
√
c

]
≥ Pr

x

[
w̄>x ≥ 2

√
cξ, ṽ>x̃ ≥ ξ

2
√
c

]
= Pr

x

[
˜̄w>x̃ ≥ 2

√
cξ, ¯̃v>x̃ ≥ ξ

2
√
c‖ṽ‖

]
≥ Pr

x

[
˜̄w>x̃ ≥ 2

√
cξ, ¯̃v>x̃ ≥ 2

√
cξ
]

≥
β
(
α sin

(
π
8

)
− 2
√
cξ
)2

4 sin
(
π
8

) ,

where the last inequality is due to Lemma A.1, since θ(w̃, ṽ) ≤ 3π
4 .

If ‖ṽ‖ ≤ 1
4c , then

bv ≥
√

1− 1

16c2
≥
√

1− 1

16
=

√
15

4
>

3

4
,

and hence

v>x = ṽ>x̃ + bv > −
1

4c
· c+

3

4
=

1

2
≥ ξ ≥ ξ

2
√
c
.

Therefore,

Pr
x

[
w̄>x ≥ 2

√
cξ,v>x ≥ ξ

2
√
c

]
= Pr

x

[
w̄>x ≥ 2

√
cξ
]

= Pr
x

[
˜̄w>x̃ ≥ 2

√
cξ
]
.

For ũ ∈ Rd such that ‖ũ‖ = 1 and θ(w̃, ũ) = 3π
4 , Lemma A.1 implies that the above is at least

Pr
x

[
˜̄w>x̃ ≥ 2

√
cξ, ũ>x̃ ≥ 2

√
cξ
]
≥
β
(
α sin

(
π
8

)
− 2
√
cξ
)2

4 sin
(
π
8

) .
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Lemma D.8. If bv < 0 and − bv
‖ṽ‖ ≤ α ·

sin(π8 )
4 , then

Pr
x

[
w̄>x ≥ 2

√
cξ,v>x ≥ ξ

2
√
c

]
≥
β
(
α sin

(
π
8

)
− 2
√
cξ
)2

4 sin
(
π
8

) .

Proof.

Pr
x

[
w̄>x ≥ 2

√
cξ,v>x ≥ ξ

2
√
c

]
= Pr

x

[
w̄>x ≥ 2

√
cξ, ṽ>x̃ ≥ ξ

2
√
c
− bv

]
= Pr

x

[
˜̄w>x̃ ≥ 2

√
cξ, ¯̃v>x̃ ≥ ξ

2
√
c‖ṽ‖

− bv
‖ṽ‖

]
. (19)

Moreover, we have (
α ·

sin
(
π
8

)
4

)2

≥
(
bv
‖ṽ‖

)2

=
1− ‖ṽ‖2

‖ṽ‖2
=

1

‖ṽ‖2
− 1 ,

and hence

‖ṽ‖2 ≥ 16

α2 sin2
(
π
8

)
+ 16

≥ 16(
α sin

(
π
8

)
+ 4
)2 ≥ 16

(c · 1 + 4c)
2 ,

where in the last inequality we used c ≥ α and c ≥ 1. Thus,

‖ṽ‖ ≥ 4

5c
≥ 1

2c
.

Combining the above with Eq. (19), and using − bv
‖ṽ‖ ≤ α ·

sin(π8 )
4 , we have

Pr
x

[
w̄>x ≥ 2

√
cξ,v>x ≥ ξ

2
√
c

]
≥ Pr

x

[
˜̄w>x̃ ≥ 2

√
cξ, ¯̃v>x̃ ≥

√
cξ + α ·

sin
(
π
8

)
4

]
= Pr

x

[
˜̄w>x̃ ≥ 2

√
cξ, ¯̃v>x̃ ≥ 2

√
cξ
]

≥
β
(
α sin

(
π
8

)
− 2
√
cξ
)2

4 sin
(
π
8

) ,

where the last inequality is due to Lemma A.1, since θ(w̃, ṽ) ≤ 3π
4 .

Combining Eq. (18) with Lemmas D.7 and D.8, we have

E
x
σ(w̄>x)σ(v>x) ≥ ξ2 ·

β
(
α sin

(
π
8

)
− 2
√
cξ
)2

4 sin
(
π
8

) =
α2 sin2

(
π
8

)
16c

·
β
(
α
2 sin

(
π
8

))2
4 sin

(
π
8

)
=
α4β sin3

(
π
8

)
256c

= M .

Plugging the above into Eq. (17) we have

F (w) ≤ F (0) +
‖w‖2c2

2
− ‖w‖ ·M .

The above expression is smaller than F (0) if ‖w‖ < 2M
c2 .

E Discussion on the Assumption on bv

In Corollary 5.5 we had an assumption that − bv
‖ṽ‖ ≤ α ·

sin(π8 )
4 . This implies that either the bias term

bv is positive, or it is negative but not too large. Here we discuss why this assumption is crucial for
the proof of the theorem, and what can we still say when this assumption does not hold.
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In Theorem 3.2 we showed an example with bv < 0 where gradient descent with random initialization
does not converge w.h.p. to a global minimum even asymptotically4. In the example from Theorem 3.2
we have− bv

‖ṽ‖ = r
(
1− 1

2d2

)
, and the input distribution is uniform over a ball of radius r. In this case,

we must choose α from Assumption 5.3 to be smaller than r (otherwise β = 0) and hence − bv
‖ṽ‖ >

α
(
1− 1

2d2

)
. Therefore it does not satisfy the assumption − bv

‖ṽ‖ ≤ α ·
sin(π8 )

4 (already for d > 1). If

we choose, e.g., α = r
2 , then the example from Theorem 3.2 satisfies − bv

‖ṽ‖ = α
(
2− 1

d2

)
≤ 2α. It

implies that our assumption on − bv
‖ṽ‖ is tight up to a constant factor, and is also crucial for the proof,

since already for − bv
‖ṽ‖ = 2α we have an example of convergence to a non-global minimum.

On the other hand, if − bv
‖ṽ‖ > α · sin(π8 )

4 (i.e. the assumption does not hold) we can calculate the loss
at zero:

F (0) =
1

2
· E
x

[(
σ(v>x)

)2]
=

1

2
· E
x

[
1(ṽ>x̃ + bv ≥ 0)

(
ṽ>x̃ + bv

)2]
=

1

2
· E
x

[
1

(
¯̃v>x̃ ≥ − bv

‖ṽ‖

)
‖ṽ‖2

(
¯̃v>x̃ +

bv
‖ṽ‖

)2
]

≤ ‖ṽ‖
2

2
· E
x

[
1

(
¯̃v>x̃ ≥ α ·

sin
(
π
8

)
4

)(
¯̃v>x̃

)2]
.

Let ε > 0 be a small constant. Suppose that the distribution D̃ is spherically symmetric, and that α is

large, such that the above expectation is smaller than ε. For such α, we either have− bv
‖ṽ‖ ≤ α ·

sin(π8 )
4 ,

in which case gradient descent converges w.h.p. to the global minimum, or − bv
‖ṽ‖ > α · sin(π8 )

4 , in
which case the loss at w = 0 is already almost as good as the global minimum. For standard Gaussian
distribution, we can choose α to be a large enough constant that depends only on ε (independent of
the input dimension), hence β will also be independent of d. This means that for standard Gaussian
distribution, for every constant ε > 0 we can ensure either convergence to a global minimum, or the
loss at 0 is already ε-optimal.

Note that in Remark 3.3 we have shown another distribution which is non-symmetric and depends
on the target v, such that the loss F (0) is highly sub-optimal, but gradient flow converges to such a
point with probability close to 1

2 .

F Proofs from Section 6

Before proving Theorem 6.2, we first proof two auxiliary propositions which bounds certain areas
for which the vector w cannot reach during the optimization process. The first proposition shows
that if the norm of w̃ is small, and its bias is close to zero, then the bias must get larger. The second
proposition shows that if the norm of w̃ is small, and the bias is negative, then the norm of w̃ must
get larger.

Proposition F.1. Assume that ‖w̃ − ṽ‖2 ≤ 1, and that Assumption 6.1 holds. If ‖w̃‖ ≤ 0.4 and

bw ∈
[
0, α

3β
640

]
then (∇F (w))d+1 ≤ −

α3β
640 .

Proof. The d + 1 coordinate of the distribution D is a constant 1. We denote by D̃ the first d
coordinates of the distribution D. Hence, we can write:

(∇F (w))d+1 = Ex∼D
[
(σ(w>x)− σ(v>x))1(w>x > 0)

]
= Ex̃∼D̃

[
(σ(w̃>x̃ + bw)− σ(ṽ>x̃ + bv))1(w̃>x̃ > −bw)

]
= Ex̃∼D̃

[
(w̃>x̃ + bw) · 1(w̃>x̃ > −bw)

]
−

− Ex̃∼D̃
[
(ṽ>x̃ + bv) · 1(w̃>x̃ > −bw, ṽ>x̃ > −bv)

]
(20)

4In Theorem 3.2 we have ‖v‖ 6= 1, but it still holds if we normalize v, namely, replace v with v
‖v‖ .
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We will bound each term in Eq. (20) separately. Using the assumption that D̃ is spherically symmetric,
we can assume w.l.o.g that w̃ = ‖w̃‖e1, the first unit vector. Hence we have that :

Ex̃∼D̃
[
(w̃>x̃ + bw) · 1(w̃>x̃ > −bw)

]
=Ex̃∼D̃

[
(‖w̃‖x1 + bw) · 1

(
x1 > −

bw
‖w̃‖

)]
=‖w̃‖Ex̃∼D̃

[
x11

(
x1 > −

bw
‖w̃‖

)]
+ bwEx̃∼D̃

[
1

(
x1 > −

bw
‖w̃‖

)]
(a)

≤0.4Ex̃∼D̃

[
x11

(
x1 > −

bw
‖w̃‖

)]
+ bw

(b)

≤0.4Ex̃∼D̃ [x11(x1 > 0)] + bw . (21)

Here, (a) is since ‖w̃‖ ≤ 0.4, and Ex̃∼D̃

[
1

(
x1 > − bw

‖w̃‖

)]
≤ 1, (b) is since bw ≥ 0, hence

Ex̃∼D̃

[
x11

(
0 > x1 > −

bw
‖w̃‖

)]
≤ 0 .

For the second term of Eq. (20), we assumed that ‖w̃ − ṽ‖2 ≤ 1, which shows that θ(w̃, ṽ) ≤ π
2 ,

and the term is largest when this angle is largest. Hence, to lower bound this term we can assume
that θ(w̃, ṽ) = π

2 , and since the distribution is spherically symmetric we can also assume w.l.o.g that
ṽ = e2, the second unit vector. Now we can bound:

Ex̃∼D̃
[
(ṽ>x̃ + bv) · 1(w̃>x̃ > −bw, ṽ>x̃ > −bv)

]
≥Ex̃∼D̃

[
(x2 + bv) · 1

(
x1 > −

bw
‖w̃‖

, x2 > −bv
)]

≥1

2
Ex̃∼D̃ [(x2 + bv) · 1 (x2 > −bv)]

≥1

2
Ex̃∼D̃ [x2 · 1 (x2 > 0)] +

1

2
Ex̃∼D̃ [(x2 + bv) · 1 (0 > x2 > −bv)]

≥1

2
Ex̃∼D̃ [x2 · 1 (x2 > 0)] =

1

2
Ex̃∼D̃ [x1 · 1 (x1 > 0)] , (22)

where we used the assumption bv ≥ 0 and the symmetry of the distribution. Combining Eq. (21),
Eq. (22) with Eq. (20) we get:

(∇F (w))d+1 ≤ bw − 0.1Ex̃∼D̃ [x1 · 1(x1 > 0)] .

Let D̂ be the marginal distribution of D̃ on the plane spanned by e1 and e2, and denote by x̂ the
projection of x̃ on this plane. By Assumption 6.1(3) we have that the pdf of this distribution is at
least β in a ball or radius α around the origin. This way we can bound:

Ex̃∼D̃ [x1 · 1(x1 > 0)] = Ex̂∼D̂ [x1 · 1(x1 > 0)]

≥αβ
2

P(α/2 < ‖x̂‖ < α, x1 > α/2)

≥αβ
2

P(x1 ∈ [α/2, 3α/4], x2 ∈ [−α/4, α/4]) =
α3β

32
.

Combining the above, and using the assumption on bw we get that:

(∇F (w))d+1 ≤ bw −
α3β

320
≤ −α

3β

640
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Proposition F.2. Assume that ‖w̃− ṽ‖ < 1, and Assumption 6.1 holds. Denote by τ =
Ex̃∼D̃[|x1x2|]
Ex̃∼D̃[x2

1]

where D̃ is the projection of the distribution D on its first d coordinates. If ‖w̃‖ ≤ τ
2 and bw ≤ 0

then 〈∇F (w)1:d, w̃〉 ≤ 0.

Proof. Denote by D̃ the projection of the distribution D on its first d coordinates, we have that:

〈∇F (w)1:d, w̃〉 =Ex∼D
[(
σ(w>x)− σ(v>x)

)
1(w>x > 0)w̃>x̃

]
=Ex̃∼D̃

[(
σ(w̃>x̃ + bw)− σ(ṽ>x̃ + bv)

)
1(w̃>x̃ > −bw)w̃>x̃

]
≤Ex̃∼D̃

[(
w̃>x̃ + bw − σ(ṽ>x̃)

)
· 1(w̃>x̃ > −bw)w̃>x̃

]
. (23)

The inequality above is since bv ≥ 0. Recall that our goal is to prove that the above term is negative,
hence we will divide it by ‖w̃‖. Also, since the distribution D̃ is symmetric we can assume w.l.o.g
that w̃ = ‖w̃‖e1. Hence, it is enough to prove that the following term is non-positive:

‖w̃‖Ex̃∼D̃

[(
‖w̃‖x1 + bw − σ(ṽ>x̃)

)
· 1
(
x1 > −

bw
‖w̃‖

)
x1

]
=‖w̃‖Ex̃∼D̃

[(
‖w̃‖x2

1 + bwx1

)
· 1
(
x1 > −

bw
‖w̃‖

)]
− ‖w̃‖Ex̃∼D̃

[
x1ṽ

>x̃ · 1
(
x1 > −

bw
‖w̃‖

, ṽ>x̃ > −bv
)]

≤‖w̃‖Ex̃∼D̃

[(
‖w̃‖x2

1 + bwx1

)
· 1
(
x1 > −

bw
‖w̃‖

)]
− ‖w̃‖Ex̃∼D̃

[
x1ṽ

>x̃ · 1
(
x1 > −

bw
‖w̃‖

, ṽ>x̃ > 0

)]
.

(24)

We will first bound the second term above. Since the term only depend on inner products between
w̃, ṽ with x̃, we can consider the marginal distribution D̂, of D̃ on the plane spanned by w̃ and ṽ.
Since D̃ is symmetric we can assume w.l.o.g that D̂ is spanned by the first two coordinates x1 and
x2. Let ˆ̃v be the projection of ṽ on this plane, then we can write ˆ̃v = (v1, v2) where v2

1 + v2
2 = 1.

Note that since the distribution D̂ is symmetric, we have that E[x2
1] = E[x2

2]. By Cauchy-Schwarz
we have:

|covD̂(x1, x2)| ≤
√

varD̂(x1) · varD̂(x2) = varD̂(x1)

Again, by symmetry of D̂ we have that E[x1] = E[x2]. Opening up the above terms we get that
E[x1 · x2] ≤ E[x2

1]. Also, we assumed that ‖w̃ − ṽ‖ < 1, then θ(ṽ, w̃) ≤ π
2 which means that

v1 ≥ 0. Hence, the second term of Eq. (24) is smallest when ṽ = e2. In total, we can bound Eq. (24)
by:

‖w̃‖Ex̃∼D̃

[(
‖w̃‖x2

1 + bwx1

)
· 1
(
x1 > −

bw
‖w̃‖

)]
− ‖w̃‖Ex̃∼D̃

[
x1x2 · 1

(
x1 > −

bw
‖w̃‖

, x2 > 0

)]
≤‖w̃‖Ex̃∼D̃

[(
‖w̃‖x2

1 + bwx1 −
1

2
x1|x2|

)
· 1
(
x1 > −

bw
‖w̃‖

)]
=‖w̃‖Ex̃∼D̃

[(
‖w̃‖x1 + bw −

1

2
|x2|
)
· x11

(
x1 > −

bw
‖w̃‖

)]
(25)

By our assumption, bw ≤ 0. Both terms inside the expectation in Eq. (25) are largest when bw = 0.
Hence, we can bound Eq. (25) by:

‖w̃‖Ex̃∼D̃

[(
‖w̃‖x1 −

1

2
|x2|
)
· x11 (x1 > 0)

]
=
‖w̃‖2

2
Ex̃∼D̃

[
x2

1

]
− ‖w̃‖

4
Ex̃∼D̃ [|x1x2|]

≤‖w̃‖
2

2
Ex̃∼D̃

[
x2

1

]
− ‖w̃‖τ

4
Ex̃∼D̃

[
x2

1

]
= c1

(
‖w̃‖2

2
− ‖w̃‖τ

4

)
. (26)

In particular, for ‖w̃‖ ≤ τ
2 , Eq. (26) non-positive.
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We are now ready to prove the main theorem:

Proof of Theorem 6.2. Denote bt = max{0,− bwt
‖w̃t‖}. We will show by induction on the iterations of

gradient descent that throughout the optimization process bt < 2.4 ·max
{

1, 1√
τ

}
and θ(w̃t, ṽ) ≤ π

2

for every t ≥ 0.

By the assumption on the initialization we have that ‖w̃0− ṽ‖2 ≤ ‖w0−v‖2 < 1, and also ‖ṽ‖ = 1,
hence θ(w̃0, ṽ) ≤ π

2 . We also have that bw0
≥ 0, hence b0 = 0 this proves the case of t = 0. Assume

this is true for t. We will bound the norm of the gradient of the objective using Jensen’s inequality:

‖∇F (w)‖2 ≤ Ex∼D
[
(σ(w>x)− σ(v>x))2

1(w>x > 0)x>x
]

≤ Ex∼D
[
(w>x− v>x)2x>x

]
≤ ‖w − v‖2Ex∼D

[
‖x‖4

]
= ‖w − v‖2c . (27)

For the (t+ 1)-th iteration of gradient descent we have that:

‖wt+1 − v‖2 =‖wt − η∇F (wt)− v‖2

=‖wt − v‖2 − 2η〈∇F (wt),wt − v〉+ η2‖∇F (wt)‖2

≤‖wt − v‖2 − 2η〈∇F (wt),wt − v〉+ η2c‖wt − v‖2 . (28)
By Theorem A.2, and the induction assumption on θ(w̃t, ṽ) we get that there is a universal constant
c0, such that 〈∇F (wt),wt − v〉 ≥ c0β(α−

√
2bt)

α2 ‖wt − v‖2. Using the induction assumption that

bt < 2.4 ·max
{

1, 1√
τ

}
and Assumption 6.1(3) we can bound (α −

√
2bt) ≥ 0.1. In total we get

that 〈∇F (wt),wt − v〉 ≥ c0β
10α2 ‖wt − v‖2. By taking η ≤ c0β

10cα2 and combining with Eq. (28) we
have that:

‖wt+1 − v‖2 < ‖wt − v‖2 .
In particular, ‖w̃t+1 − ṽ‖2 ≤ ‖wt+1 − v‖2 < ‖wt − v‖2 < 1, which shows that θ(w̃t+1, ṽ) ≤ π

2 ,
and concludes the first part of the induction.

The bound for bt is more intricate, for an illustration see Figure 2. Let t′ be the first iteration for which
‖w̃t′‖ ≥ 0.4. First assume that t ≤ t′, we will show that in this case bt = 0. Assume otherwise, and
let t0 be the first iteration for which bt0 > 0, this means that bwt0 < 0 and bwt0−1 ≥ 0. We have that:

bwt0 = bwt0−1
− η∇F (wt0)d+1 .

If bwt0−1
≤ α3β

640 , then by Proposition F.1 the last coordinate of the gradient is negative, hence

bwt0 > bwt0−1 ≥ 0. Otherwise, assume that bwt0−1 > α3β
640 . By Eq. (27): |∇F (wt0)d+1| ≤

‖∇F (w)‖ ≤
√
c. Hence, by taking η < β

640
√
c
≤ α3β

640
√
c
, we get that bwt0 ≥ 0, which is a

contradiction (note that by Assumption 6.1(3), we have α ≥ 1). We proved that if t ≤ t′ then
bwt ≥ 0, which means that bt = 0.

Assume now that t > t′. We will need the following calculation: Assume that ‖w̃t‖ = δ, Then
‖w̃t − ṽ‖2 ≥ (1− δ)2, and the minimum is achieved at w̃ = δṽ. Since we have:

‖w̃t − ṽ‖2 + (bwt − bv)2 = ‖wt − v‖2 ≤ 1 ,

we get that (bwt − bv)2 ≤ 1 − (1 − δ)2 ≤ 2δ. If we further assume that bwt ≤ 0, then b2wt ≤
(bwt − bv)2 ≤ 2δ. Combining all the above, we get that if ‖w̃t‖ = δ then:

bt = max

{
0,− bwt
‖w̃t‖

}
≤
√

2

δ
. (29)

To show the bound on bt we split into cases, depending on the norm of w̃t:

Case I: 2τ
5 < ‖w̃t‖ ≤ τ

2 and bwt ≤ 0. In this case we have:

‖w̃t+1‖2 = ‖w̃t − η∇F (wt)1:d‖2

= ‖w̃t‖2 − 2η〈w̃t,∇F (wt)1:d〉+ η2‖∇F (wt)1:d‖2

≥ ‖w̃t‖2 − 2η〈w̃t,∇F (wt)1:d〉 .
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We can use Proposition F.2 to get that 〈w̃t,∇F (wt)1:d〉 ≤ 0, hence ‖w̃t+1‖2 ≥ ‖w̃t‖2. By Eq. (29)

we get that bt+1 ≤
√

5
τ ≤

2.4√
τ

.

Case II: ‖w̃t‖ ≥ min
{

0.4, τ2
}

. In this case, by choosing a step size η < 1
40c min{1, τ}we can

bound

‖w̃t+1‖ ≥ ‖w̃t‖2 − 2η〈w̃t,∇F (wt)1:d〉
≥ ‖w̃t‖2 − 2η‖w̃t‖‖∇F (wt)1:d‖
≥ ‖w̃t‖2 − 2η‖w̃t‖‖∇F (wt)‖

≥ ‖w̃t‖2 − 2η · 2c ≥ min

{
0.39,

2τ

5

}
.

Again, by Eq. (29) we get that bt+1 ≤ max
{√

5.2, 2.4√
τ

}
≤ 2.4 ·max

{
1, 1√

τ

}
. This concludes the

induction.

Case III: ‖w̃t‖ ≤ min
{

0.4, 2τ
5

}
. We split into sub-cases depending on the previous iteration: (a) If

bwt−1
≤ 0, then by Case I the norm of w̃ cannot get below 2τ

5 , hence this sub-case is not possible;
(b) If bwt−1

≥ 0 and ‖w̃t−1‖ ≤ min
{

0.4, 2τ
5

}
, then by the same reasoning in the case of t < t′,

bwt cannot get smaller than zero. Hence, we must have that bwt+1
≥ 0; (c) If bwt−1

≥ 0 and
‖w̃t−1‖ ≥ min

{
0.4, 2τ

5

}
then the bound depend on whether ‖w̃t−1‖ is larger than 0.4 or not. If

‖ ˜wt−1‖ ≤ 0.4, then using the same reasoning as the case of t′ < t twice (both for the t − 1 and t
iterations) we get that bt+1 ≥ 0. If ‖w̃t−1‖ > 0.4 and bwt ≥ 0, then again this is the same case as in
the case of t′ < t (since ‖w̃t‖ ≤ 0.4. The last case is when ‖w̃t−1‖ > 0.4 and bwt < 0, here using
the same calculation as in Case II, we have that ‖w̃t‖ ≥ 0.39. Since ‖w̃t‖ ≤ min

{
0.4, 2τ

5

}
, using

Proposition F.2, the norm of w̃t can only grow, hence by the same reasoning as in Case I we can also
bound bt+1 < 2.4 max

{
1, 1√

τ

}
.

Until now we have proven that throughout the entire optimization process we have that θ(w̃t, ṽ) ≤ π
2

and bt ≤ 2.4 ·max
{

1, 1√
τ

}
. Let δ = π − θ(w̃t, ṽ), we now use Theorem A.2 and Eq. (27) to get

that:

‖wt+1 − v‖2 =‖wt − η∇F (wt)− v‖2

=‖wt − v‖2 − 2η〈∇F (wt),wt − v〉+ η2‖∇F (wt)‖2

≤‖wt − v‖2 − 2η

(
α− bt

sin( δ2 )

)4

β

84α2
sin

(
δ

4

)3

‖wt − v‖2 + η2c‖wt − v‖2

≤‖wt − v‖2 − η
(
α−
√

2bt
)4
β

84α2
sin

(
δ

4

)3

‖wt − v‖2 + η2c‖wt − v‖2

≤‖wt − v‖2 − ηC̃β

α2
‖wt − v‖2 + η2c‖wt − v‖2 (30)

where C̃ is some universal constant, and we used the bounds from the induction above that δ ∈
[
π
2 , π

]
,

bt ≤ 2.4 · max
{

1, 1√
τ

}
, and by the assumption that α ≥ 2.5

√
2 max

{
1, 1√

τ

}
. By choosing

η ≤ C̃β
2cα2 , and setting λ = C̃β

2cα2 we get that:

‖wt − v‖2 − ηC̃βmin

{
1,

1

α2

}
‖wt − v‖2 + η2c‖wt − v‖2

≤(1− λη)‖wt − v‖2 ≤ · · · ≤ (1− ηλ)t‖w0 − v‖2 ,

which finished the proof.
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Figure 2: A 2-d illustration of the optimization landscape. The x axis represents ‖w̃‖, and the y-axis
represents bw. In the figure, for simplicity, we assume that bv = 0, and τ = 0.1 which means that
2τ
5 = 0.4. The red circle represents the area with ‖w − v‖ ≤ 1, throughout the optimization process
wt stays in this circle. The black region represents the area where bt = − bw

‖w̃‖ can be potentially
large, our goal is to show that wt stays out of this region. Case I shows that wt cannot cross the blue
region. Case II shows that if wt is to the right of the black region, then bt is upper bounded. Case
III shows that wt cannot cross the orange region (sub-cases (a) and (b)), and cannot cross from the
green region directly to the black region (sub-case (c)).
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